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Composite Higgs models are a class of models proposed to address the hierarchy and naturalness
problems associated with the Standard Model fundamental scalar Higgs. 𝑆𝑈 (2) with two funda-
mental flavours is a minimal model for the composite Higgs sector which is not yet ruled out by
experimental data. We present lattice results for 𝑆𝑈 (2) with two fundamental mass degenerate
flavours. For the fermion action we use the new exponential clover Wilson fermion action, which
offers 𝑂 (𝑎) improvement. We discuss tuning the 𝑐SW parameter through Schrödinger functional
simulations, the scale setting of the ensembles using the Wilson gauge flow, and the low energy
spectroscopy of the theory including the masses of the pseudoscalar isotriplet Goldstone bosons
and the vector isotriplet.
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1. Introduction

The Standard Model of Particle Physics has reigned supreme for 50 years as humanity’s finest
scientific achievement. Despite this, we know that it is certainly not the fundamental theory
of nature. There are a number of tantalising directions of tension, among these the naturalness
problem and the hierarchy problem. Models of particle physics where the Higgs boson is composite
are proposed in order to address these problems [1].

Composite Higgs models are realised by introducing a new confining strong sector analogous
to QCD into the SM, providing a dynamical origin for the spontaneous breaking of electroweak
symmetry. In this case, the physical Higgs state emerges either as a pseudo-Nambu-Goldstone
boson or as a light scalar resonance (technicolour). These two scenarios are not mutually exclusive,
and they are two extremes of a one-parameter space of theories parameterised by the vacuum
misalignment angle 𝜃.

If there truly is a composite Higgs sector, then it will affect scattering processes currently being
tested at the LHC. The long term goal for our research program is therefore to understand clearly
how an undetected composite Higgs sector would affect scattering amplitudes and the observable
Higgs boson phenomenology at the LHC.

A minimal model for a composite Higgs sector based on 𝑆𝑈 (2) with two mass degenerate
fundamental fermions has been introduced in [2], and it has been previously studied on the lattice [3–
8]. The new strong sector in isolation features an enhanced 𝑆𝑈 (4) flavour symmetry due to the
pseudoreality of the 𝑆𝑈 (2) representation, which is expected to spontaneously break down to 𝑆𝑝(4).
Therefore, the chiral symmetry breaking pattern is associated with 5 Goldstone bosons. However,
we will classify states by isospin. In the continuum the Lagrangian density of the strong sector in
isolation is given by

L = −1
4
𝐹𝑎
𝜇𝜈𝐹

𝜇𝜈
𝑎 + u(𝑖𝛾𝜇𝐷𝜇 − 𝑚)u + d(𝑖𝛾𝜇𝐷𝜇 − 𝑚)d, (1)

where u and d are Dirac fields.
With regards to our previously stated long-term goal of understanding scattering and phe-

nomenology of composite Higgs models, the scattering properties of the isosinglet Lorentz scalar
state (the 𝜎) are of considerable interest. Previous work studying the composite Higgs sector in
isolation from the Standard Model using an untuned (𝑐SW = 1) Wilson clover action has shown the
singlet state to be stable down to 𝑚V

𝑚PS
< 2.5 towards the chiral limit under the new interaction [9],

which is the current threshold we are aiming to move beyond. However, in that previous setup there
were strong 𝑂 (𝑎) effects for small lattice spacing, one of the facts which contributed to moving to
the new setup with the exponential clover action used in this work.

In this study we present our setup and the tuning necessary to achieve 𝑂 (𝑎) improvement, our
scale setting strategy and initial spectroscopy results. We begin by explaining our lattice setup for
the physics simulations and the Schrödinger functional simulations required to tune the action. We
then give more detail about the specifics of how the action is tuned, and go on to present the results
of the physics simulations and some remarks on them.
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2. Lattice Setup

Let us begin with discussing the lattice setup for investigating physical predictions of the
composite Higgs sector in isolation. For the gauge part of the action we use the Wilson plaquette
action, and for the fermion fields we employ the recently introduced Symanzik-improved exponential
clover fermion action [10]. The exponential clover action provides 𝑂 (𝑎) improvement once the
parameter 𝑐SW is tuned non-perturbatively. Unlike the Wilson clover action, the exponential
clover action also offers enhanced numerical stability by protecting against zero modes of the odd-
odd block of the even-odd preconditioned Dirac operator. The non-perturbative tuning requires
dedicated simulations that will be discussed below. The action we use can be written as

𝑆 =
∑︁
𝑥

[
𝛽

2

∑︁
𝜇<𝜈

Re Tr[1 − 𝑃𝜇,𝜈 (𝑥)] + 𝜓(𝑥)𝐷𝜓(𝑥)
]
, (2)

where the diagonal part of the even-odd preconditioned Wilson-Dirac operator is

𝐷𝑒𝑒 + 𝐷𝑜𝑜 = (4 + 𝑚0) exp
[

𝑐SW
4 + 𝑚0

𝑖

4
𝜎𝜇𝜈𝐹𝜇𝜈

]
. (3)

Here 𝜓 = (u, d)𝑇 , 𝛽 = 4/𝑔2
0, 𝑚0 is the bare fermion mass, 𝐹𝜇𝜈 is the lattice gauge field strength,

𝜎𝜇𝜈 = 𝑖
2 [𝛾𝜇, 𝛾𝜈] and 𝑐SW is the Sheikholeslami-Wohlert parameter. 𝐷 is diagonal in flavour space.

We consider box sizes of volume 𝑉 = 𝐿3 × 𝑇 , and we write quantities in lattice units. The
boundary conditions for the fermion fields and the gauge field are periodic in all four directions. The
numerical simulations are performed using an improved version of the HiRep code first described
in [11]. We also make use of the Hasenbusch determinant factorisation to speed up our simulations
to explore the chiral regime of the gauge theory we are focusing on.

As previously mentioned, we label states by 𝑆𝑈 (2) isospin, a subgroup of the flavour symmetry
group 𝑆𝑝(4), and in this work we restrict to just isovector states. The interpolating fields considered
are:

𝑂Γ = ūΓu(𝑥) − d̄Γd(𝑥), with Γ = 𝛾5, 𝛾𝜇 . (4)

We will refer to states which transform as pseudoscalars under the Lorentz group with a
subscript PS, and to states which transform as vectors under the Lorentz group with a subscript V.

3. Simulation Results

3.1 Non-perturbative tuning of 𝑐SW using Schrödinger Functional Simulations

The parameter 𝑐SW must be tuned non-perturbatively, which is accomplished by performing
simulations with Schrödinger functional boundary conditions following the well-established proce-
dure [12]. For a fixed value of 𝛽, first the critical mass 𝑚crit

0 (𝛽, 𝑐SW) is determined. This is achieved
by imposing that the unrenormalised PCAC mass, denoted 𝑀 , matches its tree level value. To
determine the value of 𝑐SW(𝛽) which provides 𝑂 (𝑎) improvement, a second matching condition is
required. The condition requires that a linear combination Δ𝑀 (𝛽, 𝑚crit, 𝑐SW) defined through Ward
identities vanishes up to tree level corrections. The tuning procedure is illustrated in figure 1, and
the results are displayed in figure 2.
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Figure 1: Results from the Schrödinger functional simulations used in the tuning.
Left: The unrenormalised PCAC mass as a function of the hopping parameter 𝜅 = 1

2𝑎𝑚0+8 , with a linear
interpolation to find 𝜅crit at fixed 𝑐SW.
Right: Δ𝑀 as a function of 𝜅. The horizontal line represents the perturbation theory result. When 𝑐SW is
tuned, Δ𝑀 at 𝜅crit will be equal to its value defined in perturbation theory.
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Figure 2: The tuned value of 𝑐SW as a function of the gauge coupling for two different volumes and compared
to the 1-loop PT result. The fit is a Padé approximant where the first two terms are matched with the 1-loop
PT result.

We ran simulations with a volume of 164 for various values of 𝛽, 𝑚0 and 𝑐SW in order to tune
𝑐SW. We also ran simulations with a volume of 84 to investigate finite volume effects. As can be
seen in figure 2 our results match the 1-loop perturbation theory results shown by the dashed line
in the small coupling regime. In the large coupling region we observe large deviations from the
perturbation theory result. We also observe possible signs of non-monotonicity for 𝛽 < 2.2. The
data are well described by a polynomial fit in the region 𝛽 > 2.2 as shown by the dash-dot lines.
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(b) The interpolation determining 𝑤0.

Figure 3: Results from a simulation at the finest lattice spacing. The parameters of this simulation are
𝛽 = 2.3. 𝑉 = 484, 𝑚 = −0.2987.

3.2 Scale Setting and Topological Charge

We set the scale using the Wilson gauge flow. We define the reference scale 𝑤0 for a given
ensemble by 𝑊 (𝑤2

0) = 1.0, where 𝑊 (𝑡) = 𝑡 𝑑
𝑑𝑡

{
𝑡2⟨𝐸 (𝑡)⟩sym

}
following the definitions in [13]. We

use symmetric finite differences in the definition of 𝐸 (𝑡) and 𝑊 (𝑡). In physical units, observables
such as masses obtained from the simulation are dimensionless quantities 𝑎𝑚 carrying a factor
of the lattice spacing, and the measured 𝑎−1𝑤0 carries a factor of the inverse lattice spacing, so
𝑎−1𝑤0 × 𝑎𝑚 = 𝑤0𝑚 is a quantity independent of the lattice spacing. This allows masses calculated
on ensembles with different lattice spacings to be compared. In practice we average 𝑊 (𝑡) over
configurations, and then interpolate to solve for 𝑤0. In order to estimate the error while managing
autocorrelations in the data, the whole analysis is performed in a two-layer bootstrap to estimate
the error and the error on the error for a range of bin sizes. Then the optimum bin size is chosen
by plotting the error on the error against the bin size and choosing the bin size for which the error
plateaus. In smearing the gauge field using the Wilson flow, it is important to monitor the smearing
radius 𝑐 =

√
8𝑤0 to make sure that we do not oversmear and introduce unwanted effects due to

the periodic boundary conditions. For all our ensembles we have 𝑐 < 0.4𝐿. We monitor the
topological charge history measured at the reference Wilson flow time 𝑡 = 𝑤2

0 in order to make
sure the simulations are not frozen. Figure 3a is a plot showing the topological charge history for
an ensemble at our finest lattice spacing 𝛽 = 2.3, and while the autocorrelation time is large, the
topological charge is not frozen. Here we work with 𝑤0 at finite PCAC mass, and at this stage do
not extrapolate to the chiral limit.

3.3 Spectroscopy

We only consider ensembles with 𝐿𝑚PS > 5 to ensure that there is no contamination from
finite volume effects. The correlators 𝑓Γ [𝑡] are folded according to the periodicity in lattice time 𝑡,
where Γ stands for some combination of 𝛾 matrices. The effective mass 𝑚eff

Γ
[𝑡] is then computed

by implicitly solving

5
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𝑓Γ [𝑡 − 1]
𝑓Γ [𝑡]

=
𝑒−(𝑇−(𝑡−1) )𝑚eff

Γ
[𝑡 ] + 𝑒−(𝑡−1)𝑚eff

Γ
[𝑡 ]

𝑒−(𝑇−𝑡 )𝑚eff
Γ
[𝑡 ] + 𝑒−𝑡𝑚

eff
Γ
[𝑡 ]

. (5)

In order to extract the ground state energy, a constant is then fitted to 𝑚eff
Γ
[𝑡] in the plateau region.

To determine the error, the same binning double bootstrap procedure is performed as for the scale
setting. In this preliminary work we use ensembles with 𝛽 = 2.2 and 𝛽 = 2.3. Figure 5 shows the
dependence of 𝑚V

𝑚PS
against 𝑤0𝑚PS at the two different lattice spacings, which provides confidence

that the results are not strongly affected by finite 𝑎 effects. In this new setup at 𝛽 = 2.3, 𝑚V has
reached the maximum value for which the singlet state is known to be stable.
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Figure 4: An effective mass plot for the pseudoscalar channel showing the effective mass plateau and the fit,
again at 𝛽 = 2.3, 𝑉 = 484, 𝑚 = −0.2987. The points are connected to guide the eye.
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Figure 5: The mass of the lightest vector isotriplet state to the lightest pseudoscalar state as a function of the
lightest pseudoscalar state.
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4. Conclusion

Preliminary results have been presented using the new exponential clover action for 𝑆𝑈 (2)
with two fundamental flavours, a minimal model for the composite Higgs sector in isolation. We
have obtained tuned values for 𝑐SW in the exponential clover action, giving 𝑂 (𝑎) improvement for
any 𝛽 ≥ 2.2. Physics simulations were then performed using the tuned action, for which the finite
volume effects and lattice discretisation error are well under control, and we are now simulating
the region of parameter space where 𝑚V

𝑚PS
> 2.5 for two different lattice spacings. Our long term

goal is to compute scattering amplitudes in the singlet channel and constrain the phenomenology
of the Higgs boson at the LHC. To this end we require excellent control of the systematic errors,
particularly the discretisation error. This is the reason for using the exponential clover action.
We are now performing simulations at two different lattice spacings at the scale where we expect
the singlet resonance to be unstable. The next simulations will provide insight into the range
of validity of the underlying effective field theory that describes the composite Higgs sector in
isolation of the Standard Model. We will then be able to provide non-perturbative estimates of the
low energy constants of the theory which can be used to constrain the phenomenology of composite
Higgs models. The next steps are to perform a continuum limit extrapolation of the spectroscopic
quantities, and then to perform scattering calculations in this new setup with these and more chiral
runs.
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