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1. Introduction

It has long been accepted that quantum chromodynamics (QCD) is the correct theory of the
strong interaction. In the 50 years since its formulation, QCD has been hugely successful at high
energies where perturbation theory can be applied. However, this rich and elusive theory still has
much left to uncover. A significant hurdle towards progress in strong-interaction physics is the
low-energy regime of QCD where the theory becomes non-perturbative. Additionally, the observed
degrees of freedom are not the quarks and gluons which define QCD but rather composite states
corresponding to color singlets. How the underlying theory of QCD leads to the vast number of
observed hadrons is still not understood and remains an active area of research.

Adding to the confusion, there have been questions raised regarding the reliability of certain
states observed in the hadronic spectrum. The overwhelming majority of hadrons are resonances
(i.e. unstable states) which in many instances correspond to the observance of a bump-like behavior
in the cross section. However, there are other structures within the scattering amplitudes, not
corresponding to resonances, that can cause similar behavior that may be misconstrued as actual
resonances or may simply lead to incorrect resonance properties. Fortunately, there are rigorous
methods to reliably extract resonance information from poles in the scattering amplitudes. These
methods enforce certain constraints on the structure of analytically continued scattering amplitudes.

In addition to the use of these methods when analyzing experimental data, they can also be used
in conjunction with theoretical calculations. However, due to the difficulty in direct calculations
of QCD at low energies, much of our theoretical understanding comes from various models. The
quark model in particular was a crucial step towards organizing and understanding the origin of the
huge number of observed hadrons. But, with the observation of many exotic hadron candidates in
the past two decades that do not quite fit the quark model, several extensions have been needed to
describe these new states.

While models are important to build intuition, direct calculations within QCD would be
extremely beneficial. Lattice QCD can be used to reliably extract scattering information through
relationships between the scattering amplitudes in infinite volume and the finite-volume spectrum.
Then, utilizing the more sophisticated analysis methods based on the correct analytic structures for
the scattering amplitude, these results along with experimental methods constitute a powerful duo
for the robust understanding of the QCD spectrum.

2. The Spectrum of Hadrons

The 1950s and early 1960s were an exciting, albeit confusing, time for particle physics with the
discovery of many particles that did not fit expectations at the time. With the advent of the hugely
successful quark model [1–3], much of this confusion subsided for quite some time, as we then had
a consistent means for categorizing the particles being seen in experiment and predicting ones yet
to be seen. However, this period was not to last, and we are again in the midst of a similar situation
where many new particles are being discovered that do not fit any given model.

Thus, we once again find ourselves in need of improving our theoretical methods to explain the
scattering data within the past few decades. There has indeed been significant progress towards this
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Figure 1: Selected examples of exotic candidates discovered in the past two decades. The 𝑋 (3872) discovered
by Belle [8] which defined expectations from the quark model, the 𝑍𝑐 (3900) discovered by BESIII [9] which
is a charged charmonium state and thus must be more than 𝑐𝑐, and the𝑇+

𝑐𝑐 (3875) discovered by LHCb [10, 11]
which has two charm quarks and integer spin and therefore must be exotic.

from various directions (see e.g. Refs. [4, 5] for recent reviews on theoretical methods for hadron
spectroscopy). We focus here on the theoretical work relevant for calculations in lattice QCD.

2.1 The Quark Model

Up until the early 2000s, the quark model was able to reasonably describe all observed hadrons
as baryons (three quarks) or mesons (quark and antiquark), which on the one hand was an immense
achievement, but on the other hand it was a great puzzle as to why it worked so well. In fact,
QCD allows for many more types of states, so long as they are color singlets. These extra states
are referred to as exotics: e.g. glueballs (made entirely of gluons), hybrid mesons (mesons with a
gluonic degree of freedom), tetraquarks (two quarks and two antiquarks), pentaquarks (four quarks
and an antiquark), etc.

However, starting with the discovery of the 𝐷𝑠 (2317) by BaBar in the spring of 2003 [6], a
flood of new states, some of which were exotic candidates that did not fit the quark model, began
to appear. Three particularly interesting states, with their discoveries spread across 20 years, are
shown in Fig. 1. There are various reasons for some of these states not fitting the quark model. For
instance, some have quantum numbers that cannot be realized using only the conventional hadrons,
some simply have properties that are very different than predicted from the quark model, and others
may not correspond to any state predicted at all.

It should also be noted that prior to this preponderance of new states that could not be explained
by the quark model, there were several cases in which the quark model was showing its limits. For
example, the quark model could not explain why the Roper resonance lies below the lightest
negative-parity nucleon, or why the Λ(1405) is lighter than its nucleon counterpart. Further, it
was pointed out by Jaffe that a tetraquark description of the light scalar mesons fit better with
experimental observations [7].

Despite its shortcomings, the quark model still plays an important role in our understanding of
the hadronic spectrum by giving context to and intuition for the experimental observations. Further,
lattice QCD calculations typically use the quark model as a basis for the interpolating operators
used in simulations.
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2.2 The Scattering Amplitude

To address the issues with the hadronic spectrum, a good theoretical understanding of the
scattering amplitude 𝑇 is needed. The various states in QCD are understood to be each associated
with a pole in the scattering amplitude. The extraction of the pole and residue corresponding
to a particular state is the most rigorous way to determine the properties of that state, as, unlike
other methods for studying QCD states, the properties of these poles are process independent. The
scattering amplitude 𝑇 is defined in terms of the scattering matrix 𝑆 = 1 + 𝑖𝑇 which relates the in
and out states1

out⟨ 𝑓 |𝑖⟩in ≡ ⟨ 𝑓 | 𝑆 |𝑖⟩
= 𝛿 𝑓 𝑖 + ⟨ 𝒑 𝑓 𝛼 𝑓 | 𝑖𝑇 | 𝒑𝑖𝛼𝑖⟩
= 𝛿 𝑓 𝑖 + 𝑖𝛿4(𝑝 𝑓 − 𝑝𝑖)T𝛼 𝑓 𝛼𝑖 ( 𝒑 𝑓 , 𝒑𝑖),

(1)

where 𝑝𝑖 ≡ (𝐸𝑖 , 𝒑
𝑖) is shorthand notation for the set of four-momentum of the initial state, 𝛼𝑖

specifies the scattering channel and the internal degrees of freedom (e.g. spin, isospin, etc.) of
the initial particles, and similarly for the final scattering state. Note that, although the scattering
amplitude depends on the three-momentum of the scattering particles, symmetry considerations
restrict the values they can take. In particular, Poincaré invariance reduces the number of indepen-
dent kinematic variables that the amplitude depends on by ten, corresponding to the ten generators
of the Poincaré symmetry group.

In the case of two-to-two scattering, this leaves just two independent kinematic variables on
which the scattering amplitude depends corresponding to the total energy 𝐸cm and the scattering
angle 𝜃 in the final state, which are both taken to be defined in the center-of-momentum frame.
Note that typically the coordinate system used in the center-of-momentum frame is taken to be
such that the relative motion of the initial particles is aligned along the 𝑧-axis, and then the polar
angles for the final state 𝜃 and 𝜙 take on their conventional definitions. Thus the symmetry in
rotations about the 𝑧-axis leads to 𝜙 dependence in the scattering amplitude only as an overall
phase. Further, two-to-two scattering admits three scattering processes or “channels” with their
individual center-of-momentum energy squared corresponding to the three Mandelstam variables2

𝑠 ≡ (𝑝𝑖1 + 𝑝
𝑖
2)

2 = (𝑝 𝑓

1 + 𝑝 𝑓

2 )
2 = 𝐸2

cm, (2)

𝑡 ≡ (𝑝𝑖1 − 𝑝
𝑓

1 )
2 = (𝑝 𝑓

2 − 𝑝𝑖2)
2 = −

𝐸2
cm
2

(1 + cos 𝜃), (3)

𝑢 ≡ (𝑝𝑖1 − 𝑝
𝑓

2 )
2 = (𝑝 𝑓

1 − 𝑝𝑖2)
2 = −

𝐸2
cm
2

(1 − cos 𝜃). (4)

These Lorentz invariant kinematic quantities are a convenient set to use for the dependence of the
scattering amplitude, rather than the three-momentum. Thus, in this case of two-to-two scattering,
the scattering amplitude can be written as T𝛼 𝑓 𝛼𝑖 (𝑠, 𝑡, 𝑢), where sometimes 𝑢 is excluded as it can
be written in terms of 𝑠 and 𝑡. However, some physical intuition can be gained through considering
the scattering amplitude to depend on all three Mandelstam variables, where we can consider the

1Several different conventions for normalizations exist in the literature. Here we follow those laid out in Ref. [12].
2To go beyond two-to-two scattering, one can define generalized Mandelstam variables but this just makes the problem

more complicated.
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scattering amplitude to be living in a two-dimensional space spanned by three linearly-dependent
coordinates corresponding to the Mandelstam variables, which shows their interdependence. In
particular, the possible physical scattering region for each channel places limits on the values the
Mandelstam variables can take and these represent disjoint regions within the two-dimensional
space. In this way, as the physical scattering regions are disjoint, one can define a single scattering
amplitude living in the entire two-dimensional space with the property that it becomes equivalent to
the scattering amplitude for a particular channel when the Mandelstam variables take on the values
corresponding to the physical scattering region for that channel. Then, upon analytic continuation to
complex values for the Mandelstam variables, one can provide relationships between the scattering
amplitude in one channel and in the other two. That the scattering amplitude indeed can be defined
in this way is know as the Mandelstam hypothesis. In all, there are three general properties that we
demand the scattering amplitude to satisfy:

1. Unitarity of the 𝑆-matrix - The squared matrix elements |𝑆 𝑓 𝑖 |2 are interpreted as the probabil-
ity of an initial state |𝑖⟩ to evolve into the final state | 𝑓 ⟩. From this interpretation, conservation
of probability demands

∑
𝑓 |𝑆 𝑓 𝑖 |2 to be unity, which in turn implies 𝑆†𝑆 = 1, and therefore 𝑆

must be unitary. A consequence of unitarity is the occurrence of a branch cut starting from
each threshold and going off to the right towards infinity. The first sheet, whose real axis is
where the scattering amplitude can be measured, is referred to as the physical sheet. Thus,
each new threshold doubles the number of Riemann sheets in which the scattering amplitude
lives.

2. Crossing symmetry - This is the relationship between the various scattering channels and
is essentially the statement of the Mandelstam hypothesis discussed above. A consequence
of crossing symmetry is the occurrence of a left-hand cut coming from the partial-wave
projection of the scattering amplitude containing the pole associated with the exchanged
particle or particles in the other channels.

3. Causality - This implies the commutator of two fields must be zero if they are space-like
separated. The consequences of this can be shown to require analyticity in certain regions of
the scattering amplitude. This is generally used to demand the scattering amplitude only take
on singularities that are associated with some physical origin.

The analyticity constraints on the scattering amplitude limit the location for which poles associated
with various states arising in the theory can be located. Specifically, there are three types of poles
allowed, each corresponding to a different type of state: i) poles on the real axis of the physical
sheet below threshold correspond to bound states, ii) poles on the real axis of an unphysical sheet
below threshold correspond to virtual bound states, and iii) poles off the real axis on an unphysical
sheet correspond to resonances. No other poles are allowed without violating the properties above.
It should be noted that there is really no clear distinction in the origin of the different pole types,
despite the different names for each. And, in fact, poles have been seen to evolve from one type to
another as e.g. the quark masses are changed.

In the case of two open channels, the Riemann sheets produced are shown in Fig. 2. This figure
shows the difficulty faced when attempting to uncover poles that may be far from the region in which
physical scattering takes place (represented by the green line). For poles nearby, and with a clear
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Figure 2: The four Riemann sheets corresponding to two open scattering channels. The green line corre-
sponds to the location of physical scattering. Figure taken from Ref. [13].

path to, the region of physical scattering, the typical bump structure associated with a resonance
is likely to be seen. But what is not so clear, is how poles far away from this region will be seen
(or not seen). Additionally, for poles nearby the singularities produced in the crossed scattering
channels, the effects of those singularities may mask the poles. This makes including the correct
analytic structure an essential aspect of a robust analysis in those cases. However, the three general
properties of the 𝑆-matrix described above are not always taken into account in the literature when
constraining scattering amplitudes from data, although this can sometimes be justified in isolated
cases.

2.3 Partial-wave projection

Typically the way analysis of scattering data proceeds is through a partial-wave analysis which
starts by expanding the scattering amplitude in partial waves and analyzing the partial-wave projected
amplitudes independently. We focus on the case of two-to-two scattering, as this is much simpler
and scattering more than two particles in an experiment is practically very challenging. Scattering
of two particles can still, of course, result in final states with more than two particles, but we do
not address this here. We will see in later sections that this is one advantage of lattice QCD, in that
creating initial states with more than two particles is not a serious barrier. In the case of two-to-two
scattering of particles with helicity denoted by 𝜆, the partial-wave expansion takes the form

T 𝑎 𝑓 𝑎𝑖

𝜆
𝑓

1 𝜆
𝑓

2 ;𝜆𝑖1𝜆
𝑖
2
(𝑠, 𝑡) =

√
𝑠

𝜋
√︁
𝑘𝑎𝑖 𝑘𝑎 𝑓

𝑒𝑖 (𝜆𝑖−𝜆 𝑓 )𝜙
∑︁
𝐽

(2𝐽 + 1) 𝑑 (𝐽 )
𝜆𝑖𝜆 𝑓

(𝜃) 𝑡 (𝐽 )𝑎 𝑓 𝑎𝑖

𝜆
𝑓

1 𝜆
𝑓

2 ;𝜆𝑖1𝜆
𝑖
2
(𝑠), (5)

where 𝜆𝑖 = 𝜆𝑖1 − 𝜆
𝑖
2, 𝜆 𝑓 = 𝜆

𝑓

1 − 𝜆 𝑓

2 , 𝑎𝑖 and 𝑎 𝑓 denote the initial and final scattering channels, 𝑘𝑎𝑖
and 𝑘𝑎 𝑓

are the magnitudes of the three-momentum of each particle in the initial and final states,
𝑑
(𝐽 )
𝜆𝑖𝜆 𝑓

(𝜃) is the Wigner (small) d-matrix, 𝑡 (𝐽 )𝑎 𝑓 𝑎𝑖

𝜆
𝑓

1 𝜆
𝑓

2 ;𝜆𝑖1𝜆
𝑖
2
(𝑠) are the helicity partial-wave amplitudes, and

recall the relationship between 𝑡 and 𝜃 given in Eq. (4). Note, however, that when not specifying a
particular basis, the term partial-wave amplitude typically refers to the amplitudes in the 𝐿𝑆-coupled
basis, rather than the helicity basis used here. The reason for this is that helicity states do not in
general have definite parity, whereas states in the 𝐿𝑆 basis do, and as states in the hadronic spectrum
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are specified with both total angular momentum 𝐽 and parity 𝑃 (i.e. 𝐽𝑃), it is convenient to default
to a basis in which the states have definite parity. However, the theoretical advantage of using the
helicity basis is that for two-particle states the total spin component along the direction of relative
motion is simply the difference of the helicities of the two particles, and therefore this difference is
also the total angular momentum component along the direction of relative motion since the orbital
angular momentum is always perpendicular to this direction. Of course, simple relations between
the helicity basis and the 𝐿𝑆 basis can be used to easily convert between them. In the case of
spinless particles only, the sum over 𝐽 is replaced by a sum over the orbital angular momentum ℓ

and the Wigner 𝑑𝐽 matrix is replaced by the ℓth Legendre polynomial. In this simplified case, the
helicity and 𝐿𝑆 basis are trivially related.

When dealing with situations in which multiple two-particle scattering channels are kinemati-
cally allowed, it can be convenient to introduce the 𝐾-matrix defined by

𝐾−1
𝑎 𝑓 𝑎𝑖

(𝑠) = 2𝑇−1
𝑎 𝑓 𝑎𝑖

(𝑠) + 𝐼𝑎 𝑓 𝑎𝑖 (𝑠), (6)

where 𝐼𝑎 𝑓 𝑎𝑖 (𝑠) ≡ 𝑖𝛿𝑎 𝑓 𝑎𝑖𝜃 (𝑠 − 𝑠
𝑎𝑖
thr), and 𝑠𝑎𝑖thr is the location of 𝑎𝑖th scattering-channel threshold. It

can be shown that Hermiticity of the 𝐾-matrix is a general way to enforce unitarity of the 𝑆-matrix.
The convenience of this is simply the ease of constructing a Hermitian matrix over a unitary matrix.
Thus, one can simply parameterize the𝐾-matrix such that it is Hermitian, and this will guarantee that
unitarity of the 𝑆-matrix is satisfied. Further, when below the three-particle production threshold,
the 𝑆-matrix projected to definite angular momentum 𝐽, denoted here by 𝑆 (𝐽 ) and defined in terms
of the partial-wave amplitudes 𝑡 (𝐽 ) by 𝑆 (𝐽 ) ≡ 1 + 𝑡 (𝐽 ) , is also itself unitary. We can then define the
𝐾-matrix projected to definite angular momentum 𝐽 as 𝐾 (𝐽 )−1 ≡ 2𝑡 (𝐽 )−1 + 𝐼. It is this partial-wave
projected 𝐾-matrix, 𝐾 (𝐽 ) , that is typically most convenient to work with. It should also be noted
that all that is really required to satisfy unitarity is for Im 𝐼𝑎 𝑓 𝑎𝑖 (𝑠) = 𝛿𝑎 𝑓 𝑎𝑖𝜃 (𝑠 − 𝑠

𝑎𝑖
thr). Therefore,

one can use different functions for the real part of 𝐼 (𝑠), some of which can improve the analytic
behavior of the 𝐾-matrix. For instance, the use of the Chew-Mandelstam function [14] for 𝐼 (𝑠) has
been shown to remove unphysical singularities that can arise below threshold. This procedure has
been used in lattice QCD calculations, e.g. in Ref. [15] where further details about this prescription
can be found.

2.4 Experimental Analysis

First, let us consider the case of elastic scattering of two spinless particles in which 𝑆 (𝐽 )

becomes a scalar and 𝐽 = ℓ. We can then introduce the scattering phase shift 𝛿ℓ , defined via
𝑆 (ℓ ) = 𝑒2𝑖 𝛿ℓ which leads to 𝐾 (ℓ )−1 = cot 𝛿ℓ . A common parameterization used to described the
"bump" behavior in the cross sections coming from resonances is the Breit-Wigner (BW), defined
by

tan 𝛿ℓ (𝑠) =
ΓBW/2

𝑚BW −
√
𝑠
, (7)

where ΓBW is the BW width and 𝑚BW is the BW mass of the resonance. We can also now consider
multiple spinless scattering channels, which adds a channel index to 𝑆 (ℓ ) . For example, in the case
of two scattering channels, we have

𝑆
(ℓ )
11 = 𝜂ℓ𝑒

2𝑖 𝛿 (1)
ℓ , 𝑆

(ℓ )
22 = 𝜂ℓ𝑒

2𝑖 𝛿 (2)
ℓ , 𝑆

(ℓ )
12 = 𝑆

(ℓ )
21 = 𝑖

√︃
1 − 𝜂2

ℓ
𝑒𝑖 (𝛿

(1)
ℓ

+𝛿 (2)
ℓ

) , (8)
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where 0 ≤ 𝜂ℓ ≤ 1 is the inelasticity. Another common parameterization, based on the multi-channel
generalization of the effective range expansion, is

𝑘
ℓ+1/2
𝑎 𝑓

𝐾
(ℓ )−1
𝑎 𝑓 𝑎𝑖 (𝑠) 𝑘ℓ+1/2

𝑎𝑖 =
∑︁
𝑛=0

𝑐𝑛;ℓ
𝑎 𝑓 ,𝑎𝑖

𝑠𝑛, (9)

where the coefficients 𝑐𝑛;ℓ
𝑎𝑖 ,𝑎 𝑓

can be determined from fits to data, and some of these coefficients have
names (e.g. 𝑐0;ℓ is inversely related to the scattering length). Finally, in some cases it is possible
to generalize to scattering involving particles with spin, but this typically requires the particular
system to allow for a basis in which 𝑆 (𝐽 ) is diagonal in the spin indices, which can be done in
e.g. 𝑁𝜋 and nucleon-nucleon scattering. Note that in this case, the 𝐾-matrix projected to definite
angular momentum 𝐽, 𝐾 (𝐽 ) , would then include indices to describe the extra degrees of freedom
coming from spin. The parameterizations mentioned here are not exhaustive by any means, and
many others have been considered in the literature.

However, in general, any given parameterization may rely on certain assumptions. For instance,
the BW parameterization assumes the resonance in question is both narrow and isolated from other
states, but exactly how narrow and isolated the resonance must be is not easily defined. Further,
using the BW parameters to characterize a resonance are not in general independent of the particular
process being studied. The misuse of the BW parameterization in this way has led to much confusion
regarding states in which these assumptions are far from valid, like in the case of the 𝜎 resonance.
One really should instead aim to use parameterizations which satisfy the analytic constraints, and
then analytically continue the resulting scattering amplitude to search for poles corresponding to
the resonance.

The analytic structure demanded for the scattering amplitude can be implemented in a consistent
manner that respects crossing symmetry through a set of integral equations, referred to as dispersion
relations. These techniques, first used for 𝜋𝜋 scattering, were pioneered by Roy [16]. However,
several analyses did not use these dispersive techniques, due to the simplicity of applying strategies
like the BW parameterization. And, before these techniques became widely used, there was a long
history of confusing and inconsistent results surrounding the properties of the 𝜎 resonance. Given
the relevance of the𝜎 in nucleon interactions, this was an important puzzle to resolve. The problem,
as has been alluded to, was coming from the location of the 𝜎 resonance pole lying far enough into
the complex plane that the use of the BW to describe the 𝜋𝜋 scattering data was not leading to a
clean picture. As is shown in Fig. 3, the pole positions coming from dispersive analyses lead to
much more stable pole positions. For a detailed overview of this long history, see the review in
Ref. [17].

Given the difficulties in extracting pole positions deep in the complex plane, especially if
several such poles are all nearby, and that typical analyses of scattering data do not take into full
consideration the correct analytic structure of the scattering amplitudes, this leads one to ask how
certain we are of the current state of the resonances found in experiment. Of particular interest is
how reliably the huge number of exotic candidates, which call into question the validity of the quark
model, have been determined.

For example, the COMPASS experiment had confirmed earlier claims of two hybrid mesons
determined from 𝜂𝜋 and 𝜂′𝜋 final states, namely the 𝜋1(1400) [18] and the 𝜋1(1600) [19]. However,
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Figure 3: Spread of pole positions for the 𝜎 resonance from various analyses. The red circles are from
analyses that use dispersive approaches, while blue squares are from BW fits. Figure taken from Ref. [13].

a recent reanalysis of the data by the JPAC collaboration using more robust methods found evidence
for only one 𝜋1 hybrid meson [20], which has since been confirmed from a lattice calculation [21].

There are also other situations that can give the appearance of a resonance, like triangle
singularities [22] and threshold cusps [23]. Therefore it is of great importance to the field that we
strive to use modern analysis methods that take into account the relevant theoretical constraints on
the scattering amplitudes in order to confirm the resonances being claimed in various experiments.
This includes using both experimental and lattice methods.

3. Scattering on the Lattice

As we have seen, much of the knowledge of the spectrum of hadrons comes from scattering
experiments involving the preparation of asymptotic states which can occupy a continuum of states
by varying the initial momenta followed by real-time dynamics as they become close enough to
interact and finally the measurement of the resulting asymptotic states. Conversely, lattice QCD
simulations are performed in a finite, Euclidean volume where the eigenstates become discrete and
asymptotic states cannot be created. At first glance, the differences between the two approaches
appear significant enough to question whether lattice QCD is able to provide scattering amplitudes
in a comparable fashion to experiment. Indeed, there are two main obstacles to consider: the use
of a Euclidean metric (i.e. an imaginary-time setup) and the restriction to a finite volume where
asymptotic states cannot be constructed. The difficulty of the first issue was investigated by Maiani
and Testa [24] where it was observed that Euclidean correlators of temporally-separated pion fields
could only give access to the scattering amplitude at one energy, namely at threshold. While, in
principle, analytic continuation to Minkowski space could resolve this issue, using lattice data to
do this leads to an ill-posed inverse problem. However, there has been recent work to revisit these
approaches through the extraction of the relevant spectral functions [25, 26], including extensions
of the results from Maiani and Testa to go beyond threshold by utilizing modified correlators [27].
These methods, while addressing some of the limitations of current methods, typically need larger
volumes than are used in most lattice simulations in order to neglect finite-volume corrections. This
brings us to the second obstacle for lattice simulations, namely the finite volume.

9
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The approach introduced by Lüscher [28, 29] in fact uses the finite volume as a tool rather than a
hindrance. Similarly to the spectral function approaches mentioned above, this method relies on the
extraction of a metric-independent observable. In Lüscher’s approach, this observable is the two-
particle finite-volume spectrum which can be shown to have its finite-volume dependence dictated
by the interactions of the two particles and thereby providing constraints on the corresponding
scattering amplitude, referred to as the quantization condition. The intuition for this is that the
finite volume prevents asymptotic states or, put another way, it forces the particles in the box to
interact thereby shifting the energy of the multi-particle state away from that of just multiple free
particles. Although not the focus here, it is important to mention another alternative to Lüscher’s
approach, known as the HAL QCD potential method [30, 31] which has been used extensively by
the HAL QCD collaboration. The basic idea is to extract the Nambu-Bethe-Salpeter (NBS) wave
function from correlators involving two spatially-separated single-particle operators along with a
two-particle operator to create the two-particle states of interest. Assuming the two-particle states
created only contain insignificant contributions from inelastic states, the NBS wave function can
be used to extract a potential and then scattering observables from using this potential to solve the
Schrödinger equation. It should be noted that the potentials extracted in the HAL QCD method
rely on a derivative expansion which must be truncated in practical calculations. A review on the
HAL QCD method, including a discussion on the systematics associated with this truncation can
be found in Ref. [32]. This is not to say the Lüscher method does not have its own systematic errors
to deal with, and we will discuss these in turn in the following sections.

3.1 Finite-Volume spectrum

An essential aspect in applications of the Lüscher formalism and its extensions is the extraction
of the relevant finite-volume spectrum. This is important because in many studies it is where the
largest systematic errors can enter the analysis. Therefore, we discuss it in detail here. In principle,
one can extract the finite-volume spectrum from a two-point temporal correlation function of the
form

𝐶 (𝑡sep) =
∑︁
𝑡0

⟨Osnk(𝑡sep + 𝑡0)O†
src(𝑡0)⟩

=

∞∑︁
𝑛=0

⟨Ω| Osnk |𝑛⟩ ⟨Ω| Osrc |𝑛⟩∗ 𝑒−𝐸𝑛𝑡sep ,

(10)

where |Ω⟩ denotes the vacuum state, Osnk(𝑡) and Osrc(𝑡) are generic interpolating operators, 𝑡sep

is the time separation between the operators, |𝑛⟩ denotes the 𝑛th eigenstate of the Hamiltonian
corresponding to the energy 𝐸𝑛, and thermal effects have been ignored. The difficulty in extracting
the spectrum from a correlator like this is merely a practical one coming from the finite statistics
and the exponentially bad signal-to-noise ratio, which e.g. for baryons of mass 𝑚𝐵 scales as
𝑒−(𝑚𝐵−3𝑚𝜋/2)𝑡sep . The finite statistics can make fits including more than two or three exponentials
difficult, and if one instead truncates the fit model to the first few eigenstates then this necessitates
𝑡sep to be large enough to make the model valid which in turn leads to an exponentially worse signal.
Therefore, this can lead to a large systematic error in the extracted spectrum due to contamination
from higher excited states, including elastic states that do not cause issues in the HAL QCD method.

10
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To avoid these issues, the common approach is to construct a Hermitian correlator matrix of
the form

𝐶𝑖 𝑗 (𝑡sep) =
∑︁
𝑡0

⟨O𝑖 (𝑡sep + 𝑡0)O†
𝑗
(𝑡0)⟩ , (11)

where the set of interpolating operators {O𝑖} is chosen such that each operator has overlap with at
least one of the desired states. It was demonstrated that the eigenvalues of this matrix behave as

𝜆𝑛 (𝑡sep) ∝ 𝑒−𝐸𝑛𝑡sep +𝑂 (𝑒−Δ𝑛𝑡sep), (12)

where Δ𝑛 ≡ minm≠n |En − Em | [33], which offers a method for extracting several excited states,
but the contamination in these eigenvalues coming from other states can be significant for dense
spectra. It was proposed that forming a generalized eigenvalue problem (GEVP)

𝐶 (𝑡sep)𝜐𝑛 (𝑡sep, 𝜏0) = 𝜆𝑛 (𝑡sep, 𝜏0)𝐶 (𝜏0)𝜐𝑛 (𝑡sep, 𝜏0) (13)

could ameliorate the situation. This was investigated in detail where it was found that for 𝜏0 chosen
large enough, the leading contamination to the generalized eigenvalues could be lessened with
Δ𝑛 = 𝐸𝑁 − 𝐸𝑛 where 𝑁 is the size of the correlator matrix [34]. Another advantage of this method
is the coefficients appearing in front of the exponentials in the eigenvalues are positive, meaning
the effective energy of 𝜆𝑛 (𝑡sep, 𝜏0) monotonically approaches 𝐸𝑛. This means that determining
ground-state saturation is more reliable when a plateau in the effective energy is observed, whereas
a plateau from correlators with both positive and negative coefficients could be the result of delicate
cancellation coming from contamination in the eigenvalues.

As a closing remark, the importance of the operator set should be emphasized. Situations can
arise in which the extracted spectrum has non-negligible dependence on the set of operators used.
For example, if the chosen operator set has very small, but non-zero, overlap onto some states in
the region of interest, this can lead to an incorrect extraction of the spectrum. This dependence has
been observed in lattice calculations, e.g. in the study of the 𝜌 resonance [35].

This question is of particular importance to the long-standing two-nucleon disagreement in
the literature, which is exacerbated by the poor signal-to-noise ratio for baryons. Several modern
studies of two-baryon systems using the Lüscher method have used the GEVP to lessen these
issues [36–39]. These works have led to new understandings of the problems, but further studies
are needed before the disagreement can be fully resolved. For some perspective on this as it applies
to two-baryon systems, see Ch. 15 and 16 of Ref. [40].

3.2 Two-particle Quantization Condition

In the approach first introduced by Lüscher, the derivation was for two identical spinless
particles with zero total momentum. Since that time, this has been generalized to include non-zero
momentum [41–43], multiple scattering channels [44–46], and non-degenerate particles [47, 48]
with intrinsic spin [49–51]. For a recent review, see Ref. [52]. In summary, the quantization
condition, valid up to the first threshold including three or more particles and ignoring exponentially
suppressed corrections in the volume, takes the form

det[�̃�−1(𝐸cm) − 𝐵𝑷 (𝐸cm)] = 0, (14)

11
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where 𝐵𝑷 (𝐸cm) is a known finite-volume kinematic function called the box matrix, and the angular
momentum projections of �̃� are defined by

�̃�
(𝐽 )−1
ℓ 𝑓 𝑆 𝑓 𝑎 𝑓 ;ℓ𝑖𝑆𝑖𝑎𝑖 (𝐸cm) = 𝑘

ℓ 𝑓 +1/2
𝑎 𝑓

𝐾
(𝐽 )−1
ℓ 𝑓 𝑆 𝑓 𝑎 𝑓 ;ℓ𝑖𝑆𝑖𝑎𝑖 (𝐸cm)𝑘ℓ𝑖+1/2

𝑎𝑖 , (15)

where the ℓ and 𝑆 indices correspond to the orbital angular momentum and spin, respectively. The
notation used here follows that in Ref. [53], but many other equivalent forms have been utilized,
e.g. in Ref. [54]. When used in practical calculations, where the energies extracted correspond
to irreducible representations (irreps) of the reduced symmetry group for a lattice, the determinant
condition is block diagonalized in these irreps and one can focus on the corresponding block for any
given energy. Further, owing to the partial-wave mixing induced by the reduced symmetry of the
lattice, the blocks are still of infinite dimension and one must truncate the quantization condition
at a maximum value ℓmax. The truncation errors are usually observed to be small, due to the
angular-momentum barrier, however this can also lead to difficulty in constraining the higher partial
waves that contribute.

The general procedure for the practical use of the quantization condition is to parameterize �̃�
(or �̃�−1) and adjust the free parameters until the spectrum predicted from the quantization condition
for these parameters (determined by finding all values of 𝐸cm that lead to a vanishing determinant)
matches the spectrum extracted from the lattice calculation. The use of this quantization condition
is at a very mature level, having been used extensively by the community.

3.2.1 Left-hand cuts

There is another limitation of the two-particle quantization condition coming from allowed
particle exchanges in the 𝑢 and 𝑡 channels. Specifically, these particle exchanges lead to poles in
the scattering amplitude that become cuts, commonly referred to as left-hand cuts, after projection
to a particular partial wave. These cuts induce an imaginary part of the scattering amplitude which
the current form of the quantization condition is not capable of reproducing. During much of the
work on developing the quantization condition, it was not expected that this limitation would pose
a problem, as many systems do not produce energies near the left-hand cuts. However, in cases
where the scattering particles are much heavier than the exchanged particles in the crossed channels,
finite-volume energies can become quite near and even cross the start of these cuts. This has been
seen already in some lattice QCD studies [38, 55].

Recently, there have been various proposals for circumventing the issue by avoiding the partial
wave projections [56], and even extensions of the quantization condition below the start of the first
left-hand cut [57]. For systems in which one of the scattering particles is a two-body bound state,
there is also a third option, which is to utilize the three-particle quantization condition which has
recently been demonstrated to appropriately handle the issues arising in the two-particle quantization
condition [58]. These studies have also revealed issues when using energies that are simply too
close to, but still above, the left-hand cut where the exponentially-suppressed volume corrections
ignored in the derivation can become large.

3.3 Three-particle Quantization Condition

The majority of resonances have open decay channels involving three or more particles, and
therefore the limits of the two-particle quantization condition prevent their study. Early work
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towards the extension of the quantization condition beyond the first three-particle threshold was
done in Refs. [59, 60]. Soon after, the first fully-relativistic three-particle quantization condition
making no approximations regarding the two-particle interactions, referred to as the relativistic field
theory (RFT) approach, was worked out [61], which takes the form

det[Kdf,3(𝐸∗) + 𝐹3(𝐸, 𝑷, 𝐿)−1] = 0, (16)

where Kdf,3 is the divergence-free three-particle 𝐾-matrix used to describe the short-distance
three-particle interactions, and 𝐹3 contains both kinematical finite-volume functions as well as the
two-particle 𝐾-matrix. Although the form of this quantization condition is reminiscent of the two-
particle quantization condition in Eq. (14), there are some key differences. First there is no clean
separation between finite and infinite volume physics anymore since 𝐹3 depends on the interactions in
the two-particle subchannels through its dependence on the two-particle 𝐾-matrix, and secondKdf,3

is an intermediate scheme-dependent quantity. Obtaining the three-to-three scattering amplitude
requires the solution of integral equations [58, 62, 63]. One of the reasons for this introduction
of the intermediate quantity Kdf,3 is the need to truncate angular momentum decompositions
of the scattering amplitudes in practical implementations of the formalism. Specifically, long
distance contributions to the three-to-three scattering amplitude coming from subchannel two-to-
two interactions prevents the general uniform convergence of the angular momentum decomposition
of the three-to-three scattering amplitude. Thus, these long-distance contributions are formally
subtracted off to produce the quantity Kdf,3.

It should not be too surprising to see the two-particle 𝐾-matrix in the quantization condition,
however, as the two-particle pairs within the three-particle system produce constraints on the
two-particle interactions. Therefore, typically one should perform a global fit to the two- and three-
particle spectrum utilizing both the two- and three-particle quantization conditions in order to benefit
from the constraints on the two-particle interactions within the three-particle system. Typically, the
parameterizations used for the three-particle interactions are determined by truncating the threshold
expansion of Kdf,3 to some order. Explicit details of this parameterization, and other details of
implementing the three-particle quantization condition can be found in e.g. Ref. [64].

Since the introduction of the RFT formalism, first derived for a system of three scalar fields
without transitions to two particles, there have been several extensions. These include allowing
for 2 ↔ 3 interactions [65], allowing for two-particle subchannel resonances [66], non-maximal
isospin [67], non-degenerate particles [68, 69], non-zero spin [70], etc. Further, returning to the
issue of left-hand cuts in the two-particle quantization condition, the formalism for circumventing
this in studies of the 𝑇+

𝑐𝑐 with the three-particle quantization condition have been worked out [71].
There are also two other competing formalisms to the RFT approach, namely the non-relativistic

effective field theory (NREFT) approach [72, 73] and the finite-volume unitarity (FVU) ap-
proach [74]. All three approaches are reviewed in Ref. [75]. It has also been shown recently
that the RFT and FVU approaches are equivalent [76–78]

With the development of the three-particle quantization conditions beginning to reach a mature
level, there have been several lattice QCD studies of three-meson systems utilizing these formalisms,
e.g. studies involving pions and kaons with maximal isospin [79–82], three-body resonances [83,
84], extractions of the three-to-three scattering amplitude [85], etc.
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Figure 4: The squared scattering amplitudes (top), the pole locations (middle), and the finite-volume energies
(bottom) for the 𝜋Σ − �̄�𝑁 system from a lattice QCD calculation with 𝑚𝜋 ≈ 200 MeV [93].

4. Recent Applications

The use of the two-particle and three-particle quantization conditions and the HAL QCD
method has reached a mature level, with hundreds of works performing these types of calculations.
Like in experiment, the two-particle quantization condition constrains the scattering amplitude on
the real-axis only and one must infer the poles from this through analytic continuation. Here we
review some recent work in applying these methods, with an emphasis on recent studies.

4.1 The two-pole structure of the Λ(1405)

There has been much debate regarding the nature of the Λ(1405) (see recent reviews in e.g.
Refs. [86–89]). First, the fact that this resonance is lighter than its nucleon counterpart, despite
having a strange quark, makes fitting this state into the quark model difficult [90]. Second, the use
of unitarized chiral perturbation theory (UChPT) produces strong support for the Λ(1405) actually
corresponding to two poles, first suggested in Ref. [91]. This second pole, referred to as theΛ(1380)
has recently made the listings by the Particle Data Group [13], albeit with less confidence.

There have been a few previous studies from lattice QCD of this resonance, but only recently has
there been a calculation which included the relevant coupled channels [92, 93]. The main result of
this work is shown in Fig. 4. From the analytic continuation of the constrained scattering amplitude,
two poles were found, one corresponding to a virtual bound state and the other a resonance. Given
that this calculation was performed at a pion mass of 𝑚𝜋 ≈ 200 MeV, this is in fact consistent with
the predictions from UChPT.

4.2 Poles of the 𝐷∗
0(2300)

Studies using UChPT have also suggested other resonances may in fact have a two-pole
structure, with each pole corresponding to different SU(3) flavor representations [87]. For example,
in the charmed meson sector, there there has been much discussion raised regarding the nature of
the 𝐷∗

0(2300) (originally named the 𝐷∗
0(2400)) discovered by Belle in 2003 [94]. This resonance

has a strange partner, the 𝐷∗
𝑠0(2317) discovered by BaBar, also in 2003 [6]. These were among
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Figure 5: Second pole positions from the scattering amplitudes for the coupled 𝐷𝜋−𝐷𝜂−𝐷𝑠�̄� system. The
pole predicted from UChPT with scattering lengths obtained in lattice QCD is shown in green [96]. The other
poles come from the lattice data in Ref. [97] without constraints from UChPT (yellow) and with constraints
from UChPT [98]. The vertical dashed lines correspond to the 𝐷𝜂 (green) and 𝐷𝑠�̄� (blue) thresholds.

the many states being seen in the early 2000s that did not fit predictions from the quark model.
In particular, why do the two states have very similar masses, given the expectation of a heavier
𝐷∗

𝑠0(2317) due to its strange valence quark?
The extraction of these resonances was initially based on the Breit-Wigner model, which many

argue is not a good approximation for this system. Indeed, there is a consistent picture formed
from the use of UChPT with input from lattice QCD [95] which predicts a two-pole nature for
the 𝐷∗

0(2300) [96]. However, the question arose as to why a second stable pole position was not
found in the lattice QCD study in this system from the Hadron Spectrum Collaboration [97]. Of
course, this is not all that unexpected, as the second pole is predicted to be on a Riemann sheet
that is not directly connected to the physical sheet where stable pole predictions can be challenging.
Additionally, poles near threshold with a small residue can produce effects similar to that of a pole
far from threshold with a larger residue, further exacerbating the problem of finding stable pole
positions. This question was recently revisited with a reanalysis of the lattice data, but including
constraints from UChPT which led to much more stable second pole positions that are consistent
with predictions from UChPT [98]. The locations of these poles are shown in Fig. 5.

4.3 The 𝜎 Resonance via Dispersion Relations

Most lattice calculations to date only explicitly enforce the unitarity of the 𝑆-matrix, but ignore
the left-hand cuts associated with crossing symmetry. This is generally accepted, as inclusion of the
full analytic structure of the scattering amplitude is not strictly necessary in certain circumstances.
However, for poles lying near a left-hand cut or poles lying deep in the complex plane such that
left-hand cuts can produce competing effects for the scattering amplitude on the physical sheet, it
is typically necessary to include these cuts in the description of the scattering amplitude.

As discussed above, one way to consistently implement the correct analytic structure is through
the use of dispersion relations. This was recently done in a lattice QCD calculation of all three

15



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
0
6

Hadron spectroscopy and few-body dynamics from Lattice QCD Andrew D. Hanlon

−800

−600

−400

−200

0
450 500 550 600 650 700 750 800

2
Im
√
s
(M

eV
)

Re
√
s (MeV)

Figure 6: The set of pole locations for the 𝜎 resonance extracted from different parameterizations for the
scattering amplitude. The blue points correspond to parameterizations that obey the dispersion relations,
while those in gray do not. The calculation was performed at a pion mass 𝑚𝜋 ≈ 239 MeV [100].

isospin 𝜋𝜋 channels [99, 100]. The dispersion relations in that work were implemented with

𝑡
(ℓ )
𝐼

(𝑠) = 𝜏 (ℓ )
𝐼

(𝑠) +
∑︁
𝐼 ′ ,ℓ′

∫ ∞

4𝑚2
𝜋

𝑑𝑠′𝐾 𝐼 𝐼 ′
ℓℓ′ (𝑠

′, 𝑠) Im 𝑡
(ℓ′ )
𝐼 ′ (𝑠′), (17)

where 𝑡 (ℓ )
𝐼

is the partial-wave projected scattering amplitude with isospin 𝐼, 𝜏 (ℓ )
𝐼

are polynomials
in 𝑠 with parameters determined by the number of subtractions used,3 and 𝐾 𝐼 𝐼 ′

ℓℓ′ (𝑠
′, 𝑠) are known

functions depending on the number of subtractions. To make use of these dispersion relations,
first a set of scattering amplitudes that only include the constraints from unitarity are considered
and fed into the right-hand-side of the equation. Then, those that satisfy 𝑡 (ℓ )

𝐼
(𝑠) = 𝑡 (ℓ )

𝐼
(𝑠) can be

shown to implement crossing symmetry and analyticity correctly. As was found when analyzing
experimental data, the amplitudes obeying these properties lead to much more stable pole positions,
as seen in Fig. 6.

4.4 The doubly-charmed tetraquark 𝑇+
𝑐𝑐 (3875)

The recently observed 𝑇+
𝑐𝑐 by LHCb [10, 11] in the 𝐷0𝐷0𝜋+ mass spectrum just below the

𝐷∗+𝐷0 threshold has received a lot of attention, as it must be an exotic hadron given the two
valence charm quarks and overall integer spin. Further interest has been generated in its uniquely
narrow width, as compared to most other exotic hadron candidates observed. There were a few
investigations of this system using lattice QCD prior to the discovery, including a study utilizing
the HAL QCD method which found no evidence of a bound state or resonance for the pion masses
considered [101] and studies of the finite-volume spectrum [102, 103] which did not rule out such
a state but did not extract a pole position.

Naturally, the discovery by LHCb led to new studies of its existence from lattice QCD. The
first such study utilizing the two-particle quantization condition found a virtual bound state in the
𝐷𝐷∗ scattering amplitude [55]. Given the larger than physical pion mass 𝑚𝜋 ≈ 280 MeV, this
may indeed correspond to the 𝑇+

𝑐𝑐 which could evolve from a resonance to a virtual bound state as
the pion mass is increased. However, it was later pointed out that some of the energies used were
near or below the first left-hand cut which leads to uncontrolled systematics for phase shifts coming

3These subtractions included in the dispersion relations are used to ensure the contour at infinity can safely be ignored.

16



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
0
6

Hadron spectroscopy and few-body dynamics from Lattice QCD Andrew D. Hanlon

Figure 7: The scattering phase shift for the 𝐷𝐷∗ system as a function of the scattering momentum 𝑝. The
energies were determined in Ref. [55], and the gray band corresponds to the fit performed in that work. The
orange (real part) and purple (imaginary part) are from fits done in Ref. [104] taking into account the effects
from the left-hand cut (which starts from the vertical dashed line). The left figure uses all data (including
errors) above the left-hand cut, while the right figure only uses the datapoints that lie entirely above the
left-hand cut.

from those energies [104]. In this work, a reanalysis was done with the lattice data, taking into
account the constraints from the left-hand cuts. The results are shown in Fig. 7. Additionally, given
the proximity of the left-hand cut, this should be taken into account in the scattering amplitudes
utilized. Overall, this limits the conclusions that can be drawn. There were also recent lattice QCD
results for 𝑚𝜋 ≈ 350 MeV, that extracted a single energy level near threshold which, however, does
not allow for a reliable constraint on the scattering amplitude [105]. Finally, there was another study
using the HAL QCD method with a nearly physical pion mass which also observed a virtual bound
state [106]. However, the effects of the left-hand cut were also not considered in this study. The
three-particle quantization condition has yet to be used to solve these issues, but, as the formalism
for this is now available, results for this should soon be available.

4.5 Three-meson scattering

As discussed above, there have now been several numerical studies of three-meson systems
using lattice QCD. The past year saw the first application of the RFT approach to mixed systems of
pions and kaons [107], utilizing the formalism and implementation details presented in Refs. [69]
and [108], respectively. The 𝜋𝜋𝐾 spectrum for one ensemble in this work is shown on the left in
Fig. 8. These results, along with those in Ref. [82], include constraints on higher-partial waves
and give strong evidence for significant short-range three-particle interactions in Kdf,3 which have
been ignored in many studies. This work also made use of Wilson ChPT [109, 110] to make an
assessment of the leading-order systematics errors induced by the non-zero lattice spacing, which
were found to be negligible within statistics.

Furthermore, this year we saw the next-to-leading order calculations of Kdf,3 for three pions in
ChPT [111], which showed surprisingly strong corrections to the leading order results, relieving the
concerns of the strong disagreement between the leading-order ChPT expectations for the lowest
two terms in the threshold expansion initially seen in Ref. [82]. These results for the coefficient K1

of the second term in the threshold expansion, along with the lattice data of Ref. [82] are shown on
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Figure 8: (Left) The 𝜋𝜋𝐾 finite-volume spectrum from lattice QCD with𝑚𝜋 ≈ 340 MeV [107]. The colored
points correspond to predictions from the three-particle quantization condition with the parameterizations
constrained by the energies associated with the teal points. The orange points were not included in the fits.
(Right) The leading-order (LO) and next-to-leading order (NLO) predictions of K1 for a 𝜋𝜋𝜋 system [111]
compared with results from lattice QCD [82].

the right in Fig. 8. This work has recently been extended to all isospin channels for three pions [112].

5. Conclusions and Outlooks

There has been significant progress towards more robust determinations of the hadronic spec-
trum from both lattice QCD and the wider community. Here we saw the extraction of pole positions,
the implementation of dispersive techniques, progress on dealing with left-hand cuts, exploration
of three-hadron systems, etc.

However, there is still a significant amount of work to be done. We are far from a complete
understanding of the spectrum of QCD. Some of the problems within hadron spectroscopy, and
potential directions toward their solutions, were reviewed. We focused on the questions that lattice
QCD can address.

It is clear from the current work being done that calculations involving some of the puzzles
within the hadronic spectrum, like robust calculations of the 𝑇+

𝑐𝑐, the Roper resonance, etc., are on
the horizon. It is truly an exciting time to be working in hadron spectroscopy with lattice QCD.
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