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1. Introduction

The study of strongly interacting matter under extreme conditions is an active field of re-
search, with a long history: First speculations the behavior of strongly interacting matter at high
temperatures go back to Pomeranchuk in the 1950s. Modern lattice field theory techniques allow
for a quantitative study of the thermodynamics of strongly interacting matter from first principles,
i.e., starting from the equations of Quantum Chromodynamics (QCD), the fundamental theory
governing the storng interactions. Today we know that at large enough temperatures, a form of
matter called the quark-gluon plasma (QGP) is created. This strongly interacting liquid is the first
form of condensed matter that appeared in the early history of our Universe. The transition from
hadronic matter (where quarks and gluons are confined) to the QGP is of particular interest. At the
energy scales where the transition happens, QCD is strongly coupled, which necessitates a fully
non-perturbative treatment, which the lattice provides. Among other things, we known from lattice
simulations that the transition in the kind of conditions that were present in the early universe, i.e.
a very small, almost zero quark densities, the transition between hadronic matter and QGP is a
smooth crossover [1]. Some aspects of the transition at zero density, such as the dependence of the
order of the transition on the quark masses - however - remain unresolved.

Much lower temperatures and significantly larger quark (or baryon) densities, up to several
times the density of atomic nuclei, are likely found in the cores of neutron stars: the most dense
objects known in Nature. Mergers of neutron stars probe a slightly hotter, but still very dense part
of the phase diagram. Relativistic heavy ion collisions can be used to experimentally interpolate
between these two regimes: high energy collisions probe hot but not baryon dense matter, similar
to the conditions in the Early Universe. Lowering the collision energy, the matter created in the
collision becomes denser and colder, getting closer to the conditions found in neutron star mergers.
At the larger baryon densities (or baryochemical potentials 𝜇𝐵) achieved in these lower collision
energy experiments, many model calculations predict a critical endpoint [2–4], where the crossover
transition line turns into a firs-order transition line on the phase diagram in the temperature (𝑇)-
baryochemical potential(𝜇𝐵) plane. Locating this conjectured critical endpoint is the purpose of
current as well as future heavy ion collision experiments. Unfortunately, a complex action (or
sign) problem [5] makes it very difficult to extract information on the thermodynamics of QCD
at non-zero 𝜇𝐵 from first-principle lattice simulations. Nevertheless, there are indirect ways of
obtaining information on the phase diagram at non-zero (but small enough) densities (or chemical
potentials). Such indirect methods have led to significant progress in our understanding of QCD
matter in recent years.

In this review I present recent progress on our knowledge of QCD thermodynamics at zero and
small baryochemical potentials. The structure of this review is as follows: First, I review thermo-
dynamics at zero baryochemical potential. I will discuss aspects of the chiral transition, the nature
of the chiral transition as a function of the quark masses - the so-called Columbia plot and aspects
of the𝑈 (1)𝐴 anomaly. Second, I will review thermodynamics at non-zero baryochemical potential.
I will discuss the sign problem, results from analytic continuation techniques the Taylor series in
the baryochemical potential 𝜇𝐵 around 𝜇𝐵 = 0 and its resummations, and recent developments on
reweighting techniques. Note that in this review I ignore other possible variables of interest, such
as a non-zero isospin density [6], magnetic field [7, 8], or strangeness density [9, 10].
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Figure 1: Three different scenarios for the Columbia plot (see main text). Sketches taken from Ref. [11].

2. Aspects of the chiral transition and the chiral limit

In the limit of 𝑁 𝑓 quark masses going to zero, QCD has an 𝑆𝑈 (𝑁 𝑓 )𝐿 × 𝑆𝑈 (𝑁 𝑓 )𝑅 global
symmetry, called chiral symmetry. It is generally believed that in this limit, the QCD transition is not
a crossover anymore, but a genuine phase transition, where chiral symmetry, that is spontaneously
broken to its 𝑆𝑈 (𝑁 𝑓 )𝑉 subgroup at low temperatures, is restored. The order parameter for this
phase transition in the chiral limit is called the chiral condensate. The bare chiral condensate and
the chiral susceptibility are defined by differentiating the free energy with the light quark mass,
which we assume to be the same for the two light flavours 𝑚𝑢𝑑 = 𝑚𝑢 = 𝑚𝑑 , giving:

⟨𝜓̄𝜓⟩ = 𝑇

𝑉

𝜕 log 𝑍

𝜕𝑚𝑢𝑑

, 𝜒ch =
T
V
𝜕2 log Z
𝜕m2

ud
. (1)

The condensate and the susceptibility have an additive and multiplicative divergence, which has to
be renormalized. One way to remove the additive divergence is by subtracting the zero temperature
contribution, and one way to remove the multiplicative divergence is by multiplying with a quark
mass. This leads to one possible definition of a renormalized condensate and susceptibility:

⟨𝜓̄𝜓⟩𝑅 =
𝑚𝑢𝑑

𝑓 4
𝜋

[
⟨𝜓̄𝜓⟩0 − ⟨𝜓̄𝜓⟩𝑇

]
, 𝜒R

𝜓̄𝜓
=

mud

f4
𝜋

[𝜒0 − 𝜒T] . (2)

In the limit of zero quark mass, there is no additive renormalization, due to chiral symmetry.
In this limit the chiral condensate is an order parameter for chiral symmetry breaking/restoration: it
is zero when chiral symmetry is restored at high temperatures, and non-zero when chiral symmetry
is broken at low temperatures. For a finite quark mass, there is no exact chiral symmetry and thus
no exact order parameter. Still, the inflection point of the condensate or the peak position of the
susceptibility can be used to define the crossover temperature. Similarly, finite volume scaling of
the susceptibility can be used to study the order of the transition. While it is very well established
that the chiral transition is a crossover for physical quark masses [1], how this situation change for
smaller-than-physical masses is not known.

2.1 The Columbia plot

The nature of the QCD transition with 𝑁 𝑓 = 2 + 1 quark flavours as a function of the quark
masses is summarised in the so-called Columbia plot: the vertical axis is the strange quark mass
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𝑚𝑠, while the horizontal axis is the common light quark mass 𝑚𝑢𝑑 = 𝑚𝑢 = 𝑚𝑑 . Several scenarios
for the Columbia plot are sketch in Fig. 1. If both the light quark mass 𝑚𝑢𝑑 and the strange quark
mass 𝑚𝑠 are taken to infinity, we arrive at the quenched limit: pure 𝑆𝑈 (3) gauge theory. In this
limit, the transition is first order [12], characterized by the spontaneous breaking of the 𝑍3 center
symmetry [13]. Locating the large values of the quark masses in the top right corner of the Columbia
plot where the transition turns to a crossover at a critical line of the 3D Ising universality class is
subject to ongoing research [14]. The main difficulty in locating it is in the cut-off effects: The
small Compton-wavelength of heavy quarks requires requires small lattice spacings for a reliable
continuum extrapolation.

In the opposite limit of light (or zero) quark masses, chiral symmetry emerges. The two-flavor
chiral limit 𝑚𝑢𝑑 → 0 corresponds to the left edge of the Columbia plot, while the three-flavor chiral
limit 𝑚𝑢𝑑 = 𝑚𝑠 → 0 corresponds to the bottom left corner. In the 𝑁 𝑓 -flavor chiral limit, there is
a global 𝑆𝑈 (𝑁 𝑓 )𝐿 × 𝑆𝑈 (𝑁 𝑓 )𝑅 chiral symmetry, which is broken spontaneously to the 𝑆𝑈 (𝑁 𝑓 )𝑉
subgroup, with the corresponding Goldstone-bosons being the 𝑁2

𝑓
− 1 pions. The order parameter

for this symmetry breaking is the chiral condensate. In addition, the anomalously broken 𝑈 (1)𝐴
symmetry also plays an important role. Thinking on the Columbia plot is heavily influenced by
the seminal work in Ref. [15], that presents a perturbative renormalization group analysis (using
the 𝜖 expansion) of the possible existence of renormalization group (RG) fixed points with the
given symmetry breaking pattern. They find that the existence of the corresponding RG fixed
points depends on the effective restoration of the anomaly, i.e., whether anomaly- induced terms are
present in the Landau-Ginzburg effective action, or not. In the case an effectively restored anomaly,
no RG fixed point was found for the 𝑁 𝑓 = 2 or 𝑁 𝑓 = 3 chiral limit, implying that the transition
cannot be second order. For the case with no effective anomaly restoration, there was no fixed
point found for the 𝑁 𝑓 = 3 case, while the 𝑁 𝑓 = 2 case corresponds to the three-dimensional 𝑂 (4)
universality class. Futhermore, Ref. [16] argues that the transition in the 𝑁 𝑓 = 2 chiral limit can
only be continuous if the effective breaking of𝑈 (1)𝐴 is sufficiently large. In summary, the standard
lore is that the scenario on the left panel of Fig. 1. corresponds to a case with an effectively restored
anomaly, while the scenario in the middle panel corresponds to a case with a broken anomaly.
Recently, in Ref. [17] a different analysis was presented, with a functional renormalization group
approach, where a fixed point was found for the 𝑁 𝑓 = 3 case. One important feature, in which
Ref. [17] differs from earlier treatments is a larger set of couplings on which the RG flows are
analyzed. If this new RG fixed point (or new universality class) indeed exists, that leaves open the
possibility of the scenario for the Columbia plot which is shown in the right panel of Fig. 1. In this
particular case, there would no first order region in the bottom left corner of the Columbia plot and
the transition could be second order in both the 𝑁 𝑓 = 2 and 𝑁 𝑓 = 3 chiral limit.

The left edge of the Columbia plot, i.e., the 𝑁 𝑓 = 2 chiral limit has also been studied with
lattice simulations. The phase transition temperature in the chiral limit was estimated to be around
130MeV, based on simulations with HISQ fermions [18]. Later, the transition was also studied with
a different discretization, twisted mass Wilson fermions in Ref. [19], with a compatible estimate for
the transition temperature in the two-flavour chiral limit. The available simulations cannot clearly
identify the order of the transition in the two-flavor chiral limit: while the data are consistent with
𝑂 (4) scaling, Ising criticality with a small critical value for the quark mass (corresponding to the
first order scenario in the chiral limit) cannot be rigorously ruled out.
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Direct lattice QCD treatments of the bottom left corner of the Columbia plot are the most
challenging, due to the large cut-off effects present for observables related to chiral symmetry. For
coarse (unimproved) staggered lattices, a first order region can be found on the bottom left corner
of the Columbia plot. Repeating this first order region search for smaller lattice spacings with
the unimproved staggered action, there is no evidence that this first order region survives in the
continuum limit [11]. This might lead one to suspect the right panel of Fig. 1. to be correct.
However, studies based on unimproved staggered fermions cannot be conclusive, due to potentially
severe cut-off effects. Ideally, one should aim to study the issue with a chiral discretization, such as
overlap or domain wall fermions. Recent preliminary results with Möbius domain-wall fermions
suggest that at least for the case of the light quark having physical masses and 𝑚𝑢𝑑 = 𝑚𝑠, the
transition is still a crossover [20]. A recent lattice study with HISQ fermions with a fixed number
of time-slices again does not find a first order region [21] in the lower left corner of the Columbia
plot. This is again not conclusive as staggered fermions with a fixed lattice spacing do not possess
the full chiral symmetry, but it is an indication that if a first order region exists, it is practically very
hard to find. Using a non-lattice approach, a recent calculation using truncated Dyson-Schwinger
equations [22] also does not find a first order region in the three flavour chiral limit.

In summary, the long-standing standard scenarios in the left and middle panels of Fig. 1 have
come under question in recent works. To finally resolve the important open issue of the Columbia
plot, it is important both to establish or rule out the existence of a new universality class for the
three-flavour chiral limit, and to advance lattice simulations with chirally symmetric fermions, such
that the chiral limit can be sufficiently approached in full QCD.

2.2 Aspects of the 𝑈 (1)𝐴 anomaly at high temperature

It is clear from the previous discussion that the fate of the anomalous 𝑈 (1)𝐴 symmetry plays
a key role in the chiral limit. The central idea here as an effective restoration of 𝑈 (1)𝐴 at high
temperatures. If such an effective restoration takes place, certain quantities which should be zero for
an intact 𝑈 (1)𝐴 symmetry, but are non-zero at zero temperature, become zero at high temperatures
(in the chiral limit). An often studied example is the different between the susceptibility for the 𝜋

and 𝛿 mesons, which can be written in terms of the spectral density 𝜌(𝜆) of the Dirac operator as:

𝜒𝜋 − 𝜒𝛿 =

∫
𝑑𝜆

𝑚2

(𝑚2 + 𝜆2)2 . (3)

This is to be contrasted with the chiral condesate, which is written in terms the spectral density as:

⟨𝜓̄𝜓⟩ =
∫

𝑑𝜆
𝑚

𝑚2 + 𝜆2 . (4)

Due to the kernel in the above integral formulae, both are dominated by small eigenvalues of the Dirac
operator in the chiral limit. It is, however, possible, to have a chiral limit where at large temperatures
we have ⟨𝜓̄𝜓⟩ = 0 but ⟨𝜓̄𝜓⟩ ≠ 0. This would be an example of chiral symmetry restoration without
effective restoration of 𝑈 (1)𝐴. If, on the other hand, in the chiral limit ⟨𝜓̄𝜓⟩ = 0 and ⟨𝜓̄𝜓⟩ = 0,
we talk about chiral symmetry restoration being accompanied by an effective restoration of 𝑈 (1)𝐴.
The exact behavior of low modes of the Dirac operator is key in understanding this issue. Low
modes in the Dirac operator are in turn related to topolocial excitations (instantons/calorons). In
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Ref. [23] it was shown that analyticity in the quark masses (due to the absence of Golstone modes
at high temperature) and analyticity of the spectral density imply the effective restoration of𝑈 (1)𝐴.
However, there is growing numerical evidence that the QCD spectral density develops a (singular)
peak near zero at high temperatures [24–28] (with the exception of Ref. [29], where the suppression
of the low mode peak could be due to the small volume used for the simulations). A simple but
plausible explanation for the known features of small Dirac modes is given recently in a matrix
model of high temperature instantons, introduced in Ref. [30]. The model predicts 𝜒𝜋 − 𝜒𝛿 = 0 in
the three-flavour chiral limit (suggesting effective restoration), but 𝜒𝜋 − 𝜒𝛿 ≠ 0 in the two-flavour
chiral limit (suggesting that 𝑈 (1)𝐴 remains broken).

3. Non-zero baryochemical potential

In QCD processes the net number of any quark flavour is conserved. For three flavors of quarks,
this implies the existence of three conserved charges, the net number of 𝑢, 𝑑 and 𝑠 quarks separately:
𝑁𝑢, 𝑁𝑑 and 𝑁𝑠. In the grand canonical ensemble, a chemical potential is coupled to each of these
charges. Obviously any linear combination of the three charges is also conserved. Instead of the
three quark numbers, the baryon number 𝑁𝐵, the electric charge 𝑁𝑄 and strangness 𝑁𝑆 is often used
instead. The quark chemical potentials are related to the baryon number, strangeness and electric
charge chemial potentials via the charges of the different quark flavours:

𝜇𝑢 =
1
3
𝜇𝐵 + 2

3
𝜇𝑄, 𝜇d =

1
3
𝜇B − 1

3
𝜇Q, 𝜇s =

1
3
𝜇B − 1

3
𝜇Q − 𝜇S. (5)

Generalized susceptibilities are important observables in this context. These can be defined in
either the 𝑢,𝑑,𝑠 or the 𝐵,𝑄,𝑆 basis as derivatives of the pressure 𝑝:

𝜒𝑢𝑑𝑠
𝑖 𝑗𝑘 =

𝜕𝑖+ 𝑗+𝑘
(
𝑝/𝑇4)

𝜕 (𝜇𝑢/𝑇)𝑖 𝜕 (𝜇𝑑/𝑇) 𝑗 𝜕 (𝜇𝑠/𝑇)𝑘
𝜒
𝐵𝑆𝑄

𝑖 𝑗𝑘
=

𝜕𝑖+ 𝑗+𝑘
(
𝑝/𝑇4)

𝜕 (𝜇𝐵/𝑇)𝑖 𝜕 (𝜇𝑆/𝑇) 𝑗 𝜕
(
𝜇𝑄/𝑇

) 𝑘 . (6)

The 𝜒𝑢𝑑𝑠
𝑖 𝑗𝑘

can be obtained as linear combinations of the 𝜒
𝐵𝑆𝑄

𝑖 𝑗𝑘
and vice versa. When either of

the 𝑖, 𝑗 or 𝑘 indices are zero, we omit the corresponding upper and lower indices. E.g. we define
𝜒𝐵𝑆
𝑖 𝑗

=
𝜕𝑖+ 𝑗 (𝑝/𝑇4)

𝜕(𝜇𝐵/𝑇 )𝑖𝜕(𝜇𝑆/𝑇 ) 𝑗 and 𝜒𝐵
𝑖

=
𝜕𝑖 (𝑝/𝑇4)
𝜕(𝜇𝐵/𝑇 )𝑖 . All of these susceptibilities are functions of the

temperature 𝑇 as well as the three different chemical potentials. The susceptibilities appear in many
physics applications, some of which I will discuss shortly.

Most calculations do not consider the full 4-dimensional 𝑇 − 𝜇𝐵 − 𝜇𝑆 − 𝜇𝑄space. Rather, they
show observables as a function of𝑇 and 𝜇𝐵 only, while using extra conditions to fix the values of the
other two chemical potentials. Common choices here include a zero strangeness chemical potential
𝜇𝑆 = 0 or a zero strange quark chemical potential 𝜇𝑠 = 0. A more realistic choice, corresponding
to the initial conditions in a heavy ion collision, is strangeness neutrality, which requires a tuning
of 𝜇𝑆 in such a way that 𝜒𝑆

1 = 0 is satisfied for all 𝜇𝐵 and 𝑇 . The electric charge chemical potential
is most often chosen to be zero: 𝜇𝑄 = 0. A more realistic choice is to tune the chemical potentials
in such a way that 0.4𝜒𝐵

1 ≈ 𝜒
𝑄

1 . This is motivated by the fact that the heavy nuclei collided by
experiments, such as gold or lead, has slightly more neutrons than protons in the initial state. In
subsequent sections I will discuss observables as a function of 𝜇𝐵, but I will also shortly state the
choices made for 𝜇𝑆 and 𝜇𝑄 for any particular calculation.
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3.1 The complex action/sign problem and extrapolation methods

For three flavour of quarks on the lattice, the grand canonical partition function is written as:

𝑍 =

∫
D𝑈 det 𝑀 (𝑈, 𝑚𝑢, 𝜇𝑢) det 𝑀 (𝑈, 𝑚𝑢, 𝜇𝑢) det 𝑀 (𝑈, 𝑚𝑢, 𝜇𝑢)𝑒−𝑆𝑌𝑀 (𝑈) , (7)

where 𝑈 are the usual link variables on the lattice, 𝑆𝑌𝑀 is the discretized Yang-Mills action and
the three factors of det 𝑀 are the quark determinants for the 𝑢/𝑑/𝑠 quarks respectively. The
quark determinants depend on the quark masses and the quark chemical potentials. Eq. (7) uses
a schematic notation, meaning that the details of the discretization are suppressed both in 𝑆𝑌𝑀

and the quark determinants, and staggered rooting is omitted from the formula, in the case of
staggered fermions. It can be show that det 𝑀 (𝑈, 𝑚, 𝜇)∗ = det 𝑀 (𝑈, 𝑚,−𝜇∗), where the (. . . )∗
denotes complex conjugation. It immediately follows that the determinant is real for a zero or
purely imaginary chemical potential. If the discretization also has at least a 𝑈 (1) remnant of chiral
symmetry, such as staggered or minimally doubled fermions, the determinant can also be shown
to be positive in these cases. In other situations, the determinant can be complex, leading to the
breakdown of importance sampling. The presence of the sign problem makes direct simulations at
real 𝜇 ≠ 0 incredibly difficult. Thus, most results on QCD at non-zero density come from some
kind of extrapolation, either from zero or purely imaginary chemical potentials.

The Taylor method: For simplicity, consider the case of 𝜇𝑆 = 𝜇𝑄 = 0. The Taylor expansion
of the pressure 𝑝(𝑇, 𝜇𝐵) or the baryon number susceptibility 𝜒𝐵

2 (𝑇, 𝜇𝐵) can then be written as:

(𝑝(𝑇, 𝜇𝐵) − 𝑝(0, 𝜇𝐵))/𝑇4 = 𝜒𝐵
2 (𝑇, 0) (𝜇𝐵/𝑇)2 /2! +𝜒𝐵

4 (𝑇, 0) (𝜇𝐵/𝑇)4 /4! + . . .

𝜒𝐵
2 (𝑇, 𝜇𝐵) = 𝜒𝐵

2 (𝑇, 0) +𝜒𝐵
4 (𝑇, 0) (𝜇𝐵/𝑇)2 /2! + . . .

(8)

For other choices of the chemical potentials, such as, e.g., the case of strangeness neutral matter,
the Taylor coefficients can also be worked out, and they are combinations of the different 𝜒𝐵𝑆

𝑛𝑚 (𝑇, 0)
coefficients [31]. The Taylor expansion coefficients, such as 𝜒𝐵

𝑛 (𝑇, 0), can be expressed as sums
of products of the expectation values of products of traces of products involving the inverse Dirac
operator and its derivatives with respect to the chemical potential. The standard way to evaluate
these is a stochastic method, using random Gaussian sources [32]. This way, the Taylor coefficients
can be evaluated using simulations at zero chemical potential. In addition to the pressure, other
observables can be Taylor expanded as well. Those Taylor coefficients can also be calculated with
𝜇𝐵 = 0 simulations. Since the Taylor coefficients allow for an extrapolation to small non-zero 𝜇𝐵,
this gives us a windows into hot-and-dense QCD matter.

The imaginary chemical potential method: An alternative way to extrapolate to non-zero
real 𝜇𝐵 is to perform simulations at purely imaginary 𝜇𝐵, i.e., 𝜇2

𝐵
≤ 0, a situation with no sign

problem. If an observable is calculated for several values of 𝜇2
𝐵
≤ 0, one can use ansätze in 𝜇2

𝐵

to extrapolate it to 𝜇2
𝐵

> 0. An obvious source of systematic errors here is the choice of the
extrapolation ansatz, which is conceptually on a similar footing as the truncation errors in a Taylor
expansion. The Taylor and imaginary chemical potential methods are obviously strongly related,
as they are both based (mathematically speaking) on analytic continuation. These are the methods
that gave us most of our knowledge on physics at non-zero baryochemical potential to date.
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Figure 2: Taylor coefficients of the crossover line𝑇𝑐 (𝜇𝐵) (see equ.(9)) for strangeness neutral matter. Results
from several collaborations are compared (see main text). The calculational method is color coded: green
points use the imaginary chemical potential method while blue points use the Taylor method.

3.2 The phase diagram at small 𝜇𝐵

The value of the crossover temperature at 𝜇𝐵 = 0 is well established [33, 34]. A recent,
precise latice QCD calculation [35], based on the chiral condensate (see eqs. (1) and (2)), gives
𝑇𝑐 (𝜇𝐵 = 0, 𝐿𝑇 = 4) = 158.0 ± 0.6MeV. At 𝜇𝐵 > 0, the transition temperature is usually written as
a Taylor expansion:

𝑇𝑐 (𝜇𝐵)/𝑇𝑐 (0) = 1 − 𝜅2 (𝜇𝐵/𝑇𝑐 (𝜇𝐵))2 − 𝜅4 (𝜇𝐵/𝑇𝑐 (𝜇𝐵))4 + . . . . (9)

The expansion is written in terms of 𝜇𝐵/𝑇𝑐 (𝜇𝐵) and not 𝜇𝐵 due to convenience: the quark
determinant on the lattice for quark flavour 𝑓 only depends on the ratio 𝜇 𝑓 /𝑇 , chemical potential-
to-temperature ratios are thus the natural quantities for an expansion. Of course, the coefficients 𝜅2

and 𝜅4 can be converted to Taylor expansion coefficients in the chemical potential 𝜇𝐵 itself [36]. The
coefficients 𝜅2 and 𝜅4 can and have been be calculated with both the Taylor or the imaginary chemical
potential methods. Results with the two methods agree. For the 𝜅2 coefficient, calculations by the
Pisa group, the Wuppertal-Budapest group and the HotQCD group are in good agreement [35,
37–40]. For the 𝜅4 coefficient, there are two calculations at the moment, one by the HotQCD
collaboration, using the Taylor method [40], and one by the Wuppertal-Budapest collaboration,
using the imaginary chemical potential method [35]. These are again in agreement. Available
continuum extrapolated results for the case of strangeness neutral matter are summarized in Fig. 2.
All determinations in the comparison use chiral observables to define 𝑇𝑐. The most precise
determination of the 𝜅2 and 𝜅4 coefficients at the moment can be found in Ref. [35], giving:

𝜅2 = 0.0153 ± 0.0018, 𝜅4 = 0.00032 ± 0.00067. (10)

Thus, the transition line on the phase diagram at small enough 𝜇𝐵 is - to a very good ap-
proximation - a parabola. A joint Bayesian analysis [36] of the Taylor coefficient data of Ref. [40]
and the imaginary chemical potential data of Ref. [35] suggest that the transition line can be well
approximated with a parabola in 𝜇𝐵 (but not in 𝜇𝐵/𝑇𝑐 (𝜇𝐵)) up to chemical potentials as high as
𝜇𝐵 ≈ 600MeV.
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3.2.1 Chemical freeze-out

It is worth comparing the QCD transition line to the phenomenological chemical freeze-out
line in heavy ion collisions. Chemical freeze-out is the point in the time-evolution of a heavy ion
collision where non-elastic scattering rates between hadrons become slower than the expansion
rate of the fireball, and hadron yields are frozen. On the phase diagram, chemical freeze-out is
characterized by a curve in the 𝑇 − 𝜇𝐵 plane. At zero baryochemical potential, the freeze-out
temperature 𝑇𝑐ℎ is expected to be close to the crossover transition [41]. This is indeed the case:
𝑇𝑐ℎ at large collision energies (corresponding to small 𝜇𝐵) approximately agrees with, or is slightly
below 𝑇𝑐 (𝜇𝐵 = 0) [42–45]. On the other hand, at large 𝜇𝐵, the freeze-out curve is expected to
be significantly below the chiral transition line, as it is expected to approach the nuclear-liquid gas
critical point [46], where there is chiral symmetry breaking and quark confinement on both sides of
the transition. Where and how the deviation between the chiral transition curve and the freeze-out
curve happens on the phase diagram is an important open question.

3.3 Taylor coefficients near 𝜇𝐵 = 0 and comparisons with the hadron resonance gas

Knowing the𝑇𝑐 (𝜇𝐵) curve discussed previously does not automatically lead to a determination
of the position of the covated critical endpoint (CEP). For that purpose, other observables have to
be considered. On possibility is the study of baryon number fluctuation observables, such as
𝜒𝐵

2 (𝑇, 𝜇𝐵), which should diverge at a CEP. Since they are the Taylor coefficients of 𝜒𝐵
2 (𝑇, 𝜇𝐵), the

higher order fluctuations at 𝜇𝐵, i.e., 𝜒𝐵
𝑛 (𝑇, 𝜇𝐵 = 0), could also show signs of the conjectured CEP.

Since 𝑇𝑐 (𝜇𝐵) decreases with increasing 𝜇𝐵, the critical endpoint should be below the crossover
temperature at 𝜇𝐵 = 0. Thus, a way to look for signs of criticality is to study high order Taylor
coefficients at 𝜇𝐵 = 0 in the hadronic phase. A commonly used model of QCD thermodynamics
in the hadronic phase is given by the hadron resonance gas model. This model approximates the
QCD pressure as a sum of partial pressures for hadrons and hadron resonances, both treated as free
particles. It is a simple approximation of the S-matrix formalism of statistical mechanics for the
case when the scattering matrix is dominated by the production of narrow resonances [47, 48]. In
the context of the CEP search, the hadron resonance gas plays a key role, as a non-critical model that
describes the hadronic phase of QCD quite well. A minimal goal for criticality search could then
be to establish deviations from the hadron resonance gas and full QCD data, e.g. of the coefficients
𝜒𝐵
𝑛 (𝑇, 𝜇𝐵 = 0) at low temperatures.

The lattice QCD community has spent considerable effort in calculating these coefficients. The
highest order coefficient available from the lattice is 𝜒𝐵

8 [49–53]. In Fig. 3 three different lattice QCD
results are shown for the the coefficients 𝜒𝐵

6 and 𝜒𝐵
8 . The green bands are results of the HotQCD

collaboration [52], using the Taylor method and a coarser lattice, with HISQ fermions [54] and 8
timeslices. The black points are results from the Wuppertal-Budapest collaboration [50], using the
imaginary chemical potential method, on a finer lattice, with 4stout fermions [55] and 12 timeslices.
Finally, the orange bands shows recent results from the Wuppertal-Budapest collaboration [53] in
the continuum limit, using the Taylor method, but with a physical box size 𝐿 that is half the value
of that of the other two calculations. The continuum limit extrapolation was possible due to the
introduction of the novel 4HEX discretization. In addition to the different lattice spacing and slightly
different discretization (different versions of rooted staggered fermions) the HotQCD calculation

9
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Figure 3: 𝜒𝐵
6 (left) and 𝜒𝐵

8 at 𝜇𝐵 = 0 from different lattice QCD calculations (see main text). The solid
black lines show predictons of the hadron resonance gas model.

also differs from the other two calculations in how it defines the chemical potential on the lattice.
While the two 4stout and 4HEX results both use the standard exponential definition, which couples
to the exact conserved charges on the lattice [56], the HISQ result uses the linear definition, which
is much less understood in terms of renormalization and cut-off effects. There is a striking tension
between the green bands and the other two results, which makes one conclude that the 𝑁𝜏 = 8
HISQ results are probably effected by large cut-off effects. On the other hand, agreement between
the black points and the orange bands below 𝑇 = 145MeV indicate that in this range (which is
the most relevant range for the CEP search) the finite volume effects are already negligible for the
smaller volume result from Ref. [53]. The lattice results are compared with the prediction from
the hadron resonance gas (HRG) model (solid black line). In regards to the comparison with the
hadron resonance gas at the low temperatures relevant for the CEP search, we find that the 4stout
and 4HEX results are in much better agreement with the HRG than the HISQ results. We thus can
conclude that the Taylor coefficients up to 8th order are in good agreement with the HRG model for
all temperatures below 𝑇 ≈ 145MeV, as long as the continuum limit is taken1.

Let me warn the reader here, that this does not necessarily imply that the CEP does not exist. It
is also a possiblity, that it exists, but its effects on coefficients up to 𝜒𝐵

8 are smaller than the current
error bars, or that its effects are only substantial for higher order coefficients.

Finally, let me note that there have been attempts to extract the position of the leading singularity
of the QCD free energy from lattice QCD data [57–60], with the hope of eventually arriving at a
prediction for the critical endpoint position. Unfortunately, these calculations have all been based
on lattice QCD results on coarse lattices. Considering the rather large cut-off effects at 𝜇𝐵 > 0,
which can be seen, e.g., in the green bands of Fig. 3., these works are at the moment have no solid
indications for heavy ion phenomenology. They are interesting to lattice practitioners, however, as
they introduce several novel methods to analyze lattice data from either the Taylor or the imaginary
chemical potential methods.

1Since corrections to the HRG model are expected to be exponentially suppressed at small 𝑇 [47] agreement for the
range available on the lattice implies that 𝜒𝐵6 and 𝜒8

𝐵
will likely also agree with the HRG at lower temperatures.

10
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Figure 4: The width of the transition as a function 𝜇𝐵, from analytic continuation from an imaginary 𝜇𝐵.

3.4 The width of the transition and resummations based on shifting sigmoid functions

Since the chiral/deconfinement transition at 𝜇𝐵 = 0 is a crossover, there is no non-analyticity in
the free energy, and thus no sharp point of transition. Rather, there is an extended transition region
in 𝑇 , which can be characterized with a width parameter. One possible definition of such a width
parameter 𝜎 is given in Ref. [35]. The definition is based on a finite difference approximation of
the temperature derivative of the renormalized chiral condensate of eq. 2. When the 𝑇 derivative is
large at 𝑇𝑐, the width parameter is small so the transition is narrow. When the 𝑇 derivative is small,
the width parameter is large and the transition is broad. In Ref. [35], this 𝜎 width parameter was
also extrapolated to real 𝜇𝐵 using the imaginary chemical potential method. The results are shown
in Fig. 4. 𝜎 going to zero would indicate the presence of a CEP. The results show that for small
𝜇𝐵 the width 𝜎 is approximately constant: The transition does not get narrower below the value of
𝜇𝐵 ≈ 300MeV, where the error bars blow up, and the extrapolation becomes unpredictive.

Another way to see the approximately constant width of the crossover is through the existence
of an approximate scaling variable [10, 61, 62]. The existence of this approximate scaling variable
is illustrated in Fig. 5, where the baryon-density-to-chemical potential ratio 𝜒𝐵

1 /(𝜇𝐵/𝑇) is plotted
as a function of 𝑇 (left panel) and as a function of 𝑇

(
1 + 𝜅2

( 𝜇𝐵

𝑇

)2
)

the curvature of the transition
line 2. Thus, Figs. 4 and 5 tell the same story: the story of a crossover transition whose temperature
depends on the chemical potential, but its width does not. What happens with the width of the
transition at larger 𝜇𝐵 is an open question.

A plausible explanation for the existence of the observed approximate scaling variable can be
the conjectured 𝑂 (4) criticality in the two-flavour chiral limit of QCD. To understand why this
is the case let me note two empirical observations: i) the ratio 𝜒𝐵

1 /(𝜇𝐵/𝑇) does collapse in the
new variable, while the second derivative 𝜒𝐵

2 does not, and ii) the renormalized chiral condensate
defined in equation (2), which is made dimensionless by division with 𝑓 4

𝜋 does collapse in the new
variable but if we make it dimensionless by dividing with 𝑇4 instead, it no longer collapses. Both
of these observations are natural if the 𝑂 (4) universal contribution to thermal free energy is large.

2The numerical value of 𝜅2 in eq. (10) and in Fig. 5 is different, because in eq. (10), the result is quoted for strangeness
neutral QCD matter, while Fig. 5 is for illustration purposes only, and uses the simpler case of zero strangeness chemical
potential 𝜇𝑆 = 0.
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Figure 5: The ratio 𝜒𝐵
1 /𝜇̂𝐵 as a function of the temperature 𝑇 (left) and the approximate scaling variable

𝑇 (1 + 𝜅𝜇̂2
𝐵
) for different values of an imaginary chemical potential-to-temperature ratio.

Using this assuption, and the universal form of the equation of state

𝑝𝑄𝐶𝐷 (𝑇, 𝑚𝑢𝑑 , 𝜇𝐵) − 𝑝𝑄𝐶𝐷 (0, 𝑚𝑢𝑑 , 𝜇𝐵) ∼ 𝑡2−𝛼G
(
ℎ/𝑡𝛽𝛿

)
, (11)

where 𝛼, 𝛽, 𝛿 are 𝑂 (4) critical exponents and G is the universal 𝑂 (4) equation of state, and
the scaling variables ℎ and 𝑡 are mapped to the QCD variables approximately ℎ ∼ 𝑚𝑢𝑑 and
𝑡 ∼ (𝑇 −𝑇𝑚𝑢𝑑→0

𝑐 )/𝑇𝑚𝑢𝑑→0
𝑐 + 𝜅2 (𝜇𝐵/𝑇)2. Simple differentiation of eq. 11 show that the observables

that do collapse as a function of the approximate scaling variable (𝑇 𝜒𝐵
1 /𝜇𝐵 and ⟨𝜓̄𝜓⟩𝑅 of equ. (2))

are exactly those that only depend on the scaling variables ℎ and 𝑡, while the observables that do not
show collapse (𝜒𝐵

2 and ⟨𝜓̄𝜓⟩𝑅 𝑇4

𝑓 4
𝜋
) are not only dependent on ℎ and 𝑡, but also 𝑇 and 𝜇𝐵 separately.

The existence of an approximate scaling variable can be used to define an alternative extrapo-
lation/resummation scheme. Technically, this is done via an implicit equation for some observable
𝐹 (to be specified later):

𝐹 (𝑇, 𝜇𝐵) = 𝐹 (𝑇 ′(𝑇, 𝜇𝐵), 𝜇𝐵 = 0),

𝑇 ′(𝑇, 𝜇𝐵) = 𝑇

(
1 + 𝜅𝐹2 (𝑇) (𝜇𝐵/𝑇)2 + 𝜅𝐹4 (𝑇) (𝜇𝐵/𝑇)4 + . . .

)
.

(12)

These equations, together with a choice for the observable 𝐹 define a resummation/extrapolation
scheme. This is a systematically improvable expansion. The Taylor coefficients of the “intermediate
temperature” 𝑇 ′(𝑇, 𝜇𝐵) are observable dependent, thus the superscipt 𝐹 in the notation of 𝜅𝐹𝑛 . This
is not a Taylor expansion for the observable 𝐹 itself. Rather, any finite order in the Taylor expansion
of 𝑇 ′(𝑇, 𝜇𝐵) generates an infinite number of Taylor coefficients for 𝐹. The validity of the expansion
is not predicated on the existence of an approximate scaling variable, only its fast convergence: i.e.,
if an approximate scaling variable exists, we expect the method to converge faster. In Ref. [61]
where the method was originally proposed, it was used for the case 𝜇𝑆 = 𝜇𝑄 = 0 with the choice
𝐹 = 𝑇 𝜒𝐵

1 /𝜇𝐵 to calculate the equation of state. Later, this resummation for the equation of state
was also performed for the case of strangness neutral matter (still with 𝜇𝑄 = 0) in [10], with a more
elaborate choice of 𝐹, which improved the convergence of the scheme at high temperatures.

One interesting application of the equation of state calculation is the calculation of isentropes:
curves of constant entropy density to baryon density ratio 𝑠/𝑛𝐵 in the 𝑇 − 𝜇𝐵 plane. Near the CEP,
they are expected to show the phenomena of critical lensing [63, 64]: the CEP pulls the isotropes
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towards itself, increasing their local density in the critical region. Fig. 6 shows preliminary
results on the isentropes from the resummation/alternative expansion scheme. While the alternative
scheme can reach larger values of 𝜇𝐵, the qualitative conclusion from the Taylor expansion [65]
and the resummation are the same: within errors, and within covered values of 𝜇𝐵, there is no
critical lensing. The largest density isentrope, with 𝑠/𝑛𝐵 = 20 roughly corresponds to the smallest
collision energy available in the RHIC Beam Energy scan in collider mode [66, 67]. In Ref. [68], a
phenomenological application of the resummation scheme of eq. (12) is presented, that shows how
to incoporate the existence of a conjectured CEP in the resummation scheme. This will certainly
be useful for future studies searching for the CEP.
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Figure 6: Isentropes of the 𝑇-𝜇𝐵 plane from the alternative expansion scheme of Refs. [10, 61]

3.5 Reweighting techinques

The Taylor and imaginary chemical potential methods both require an analytic continuation,
which is known to be numerically ill-posed. In order to avoid this ill-posedness, and go beyond the
current reach of such methods, the development of more direct simulation methods at 𝜇𝐵 > 0 is
desirable. Reweighting techniques provide an opportunity to do exactly that. Even more importantly,
such a more direct approach has the promise of generating very different data for the CEP search:
data at larger real 𝜇𝐵, closed to the critical endpoint we would like to locate.

Given a theory with field variables 𝑈, reweighting gives a general strategy to calculate ex-
pectation values in a target theory - with path integral weights 𝑤𝑡 (𝑈) and partition function
𝑍𝑡 =

∫
D𝑈𝑤𝑡 (𝑈) - by performing simulations in a different (simulated) theory - with path integral

weights 𝑤𝑠 (𝑈) and partition function 𝑍𝑠 =
∫
D𝑈𝑤𝑠 (𝑈). The ratio of the partition functions and

expectation value in the target theory are given by the following formulas:

𝑍𝑡/𝑍𝑠 = ⟨𝑤𝑡/𝑤𝑠⟩𝑠 and ⟨O⟩𝑡 = ⟨O𝑤𝑡/𝑤𝑠⟩𝑠 /⟨𝑤𝑡/𝑤𝑠⟩𝑠 (13)

where ⟨. . . ⟩𝑡 ,𝑠 denotes taking expectation value with respect to the weights in the tartget and
simulated theories respectively. Since in our case the target theory is lattice QCD at 𝜇𝐵 > 0,
the weights 𝑤𝑡 (𝑈) have wildly fluctuating phases: this is the sign problem. In addition to this
problem, generic reweighting methods also suffer from an overlap problem: the probability density
function of the reweighting factors 𝑤𝑡/𝑤𝑠 has generally a long tail, which cannot be sampled
efficiently with standard Monte Carlo methods. This overlap problem in the weights 𝑤𝑡/𝑤𝑠 is
not present if they take values in some compact space. For simplicity,let us consider the case

13
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Figure 7: Direct results (black points) versus different orders of the Taylor expansion (colored bands) for the
density-to-chemical potential ratio as a function of 𝜇̂2

𝐵
= (𝜇𝐵/𝑇)2 for two different temperatures.

when only the 𝑢 and 𝑑 quarks have a non-zero chemical potential 𝜇 = 𝜇𝑢 = 𝜇𝑑 . The most
well-known approach without an overlap problem in 𝑤𝑡/𝑤𝑠 is phase reweighting [69], where
𝑤𝑠 = 𝑤𝑃𝑄 = |det 𝑀𝑢 (𝜇𝑢 = 𝜇𝐵/3) det 𝑀𝑑 (𝜇𝑑 = 𝜇𝐵/3) | det 𝑀𝑠 (𝜇𝑠 = 0)𝑒−𝑆𝑌𝑀 . In this case the
reweighting factors are pure phases: (𝑤𝑡/𝑤𝑠)𝑃𝑄 = 𝑒𝑖 𝜃 , where 𝜃 = Arg (det 𝑀𝑢 det 𝑀𝑑). An other
approach is sign reweighting [62, 70–72], where𝑤𝑠 = 𝑤𝑆𝑄 = | Re det 𝑀𝑢 (𝜇𝑢 = 𝜇𝐵/3) det 𝑀𝑑 (𝜇𝑑 =

𝜇𝐵/3) | det 𝑀𝑠 (𝜇𝑠 = 0)𝑒−𝑆𝑌𝑀 . In this case the reweighting factors are signs (𝑤𝑡/𝑤𝑠)𝑆𝑄 = 𝜖 ≡
sign cos 𝜃 = ±1. Here I suppressed details of the discretization, including staggered rooting, when
present. For details on implementing these schemes in lattice QCD see Refs. [62, 72, 73]. The
severity of the sign problem can be quantified via the expectation value of the phases or signs
respectively. Details on the severity of the sign problem can be found in Refs. [53, 62].

Recent technical advances have made it possible to use both of these schemes for physics
applications. E.g., in Ref. [62] it was shown that the existence of an approximate scaling variable,
originally demonstrated with imaginary chemical potential simulations, can also be demonstrated
on data gathered directly at a real chemical potential. An other example is shown in Fig. 7, where
different orders of the Taylor expansion are compared with direct simulations for the density-to-
chemical potential ratio. At fourth order, the Taylor expansion gives accurate results for about
𝜇𝐵/𝑇 < 2. Going to eigths order extends this range up to at least 𝜇𝐵/𝑇 = 3. Alternatively, one can
use only the fourth order Taylor coefficients to calculate the 𝜅2 coefficient of the resummation scheme
defined in eq. 12 to also get an accurate equation of state up to up to at least 𝜇𝐵/𝑇 = 3. Thus, the
resummation scheme based on shifting sigmoid functions demonstrates much faster convergence.

An interesting technical detail in reweighting calculations is that rooted staggered fermions
(which are the most common discretization in QCD thermodynamics) introduce cut-off effects that
are non-analytic in the chemical potential [58, 74, 75]. Numerical evidence in Ref. [75] points to
an essential singuarity at 𝜇𝐵 = 0. This makes it hard to use staggered fermions to study small
𝑇 and large 𝜇𝐵 with more direct methods. This makes it desirable to study other discretizations,
that retain the cost-effectiveness of staggered fermions for QCD thermodynamics, but involve no
rooting. Minimally doubled fermions [76–80], e.g., could be an interesting alternative for this
use-case.
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4. Summary and outlook

I have discussed lattice QCD calculations of the QCD phase diagram. While we have learnt a
lot over the years, there are two questions that remain unsolved:

1. What happens to the chiral transition in the chiral limit?

2. What happens to the chiral transition at large baryochemical potentials 𝜇𝐵?

The two questions are related. Thus, the second (phenomenologically very relevant question) also
gives extra motivation to study the first (more theoretical) question. Significant progress on the first
question probably requires developments in simulations with chirally symmetric fermions on the
lattice. There is also an interesting open statistical field theory question about whether there is a new
universality class for the 𝑁 𝑓 = 3 chiral limit, or the standard lore of there being no renormalization
group fixed point for the correponsing symmetry breaking pattern is correct.

Due to the sign problem, the second question is currently mostly studied with analytic con-
tinuation methods. Current lattice results are available in a range of baryochemical potentials that
roughly overlaps with the experimental range of the RHIC Beam Energy Scan. Thus, in spite of
the difficulty of the sign problem, first-priciples theory has mostly managed to keep up with the
experimental effort. This is in part due to an increase in the available computational resources,
and in part due to the invention of new extrapolation techniques, such as the alternative expansion
scheme/resummation of Refs. [10, 61]. Continuum extrapolated lattice QCD results lead to a rather
consistent picture: a crossover transition with a temperature that is 𝜇𝐵 dependent, but with a width
that is approximately constant in 𝜇𝐵 for at least most of the range of the RHIC Beam Energy
Scan. While the state-of-the-art lattice results do reach the end of the RHIC range in collider
mode, at the largest densities, the errorbars start to increase. E.g., while there is no sign of critical
lensing in Fig. 6, the current error bars do allow for some of it for the largest densities reached
at RHIC in collider mode. Thus, results from phase II of the RHIC Beam Energy Scan should
be interesting, as they will shed some light on the position of the coveted critical endpoint. For
theory to also keep up with future experiments, where considerably larger densities will be studied,
theoretical/calculational innovations will be necessary. Such developments will be a priority for the
lattice QCD community in the coming years. One avenue for the development for novel methods is
the development of different resummation schemes for the Taylor expansion. I discussed schemes
based on shifting sigmoid functions in more detail [10, 61, 62]. Other avenues include the use of
Padé approximants [36, 59, 60] and truncated approximations of reweighting [81, 82]. More direct
reweighting methods are an other avenue that deserves further work, since they completely do away
with the need for an analytic continuation. They will become especially powerful, if reweighting
in QCD can be later combined with ideas on mitigating the sign problem itselfm, such as complex
deformations of the integration manifold of the path integral [83–89].
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