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1. Introduction

The partonic structure of hadrons plays a crucial role in mapping out their 3D image and
in describing the experimental data collected at high energy colliders such as the Large Hadron
Collider (LHC) or the Electron-Ion Collider in the US and China. The simplest quantities that
characterize such structure are the leading-twist collinear parton distribution functions (PDFs).
They are defined by collinear parton operators and are nonperturbative in nature. A lot of efforts
have been devoted to determining them from fitting to various experimental data (see, e.g., [1–4]
and references therein).

In the past decade, there have also been significant progress on extracting the PDFs from lattice
QCD (see [5–8] for a recent review) based on various proposals [9–17]. Among them, one of the
widely used options is to start from the so-called quasi-light-front (quasi-LF) correlators [6, 11, 12],
which are equal-time quark and gluon correlators defined on a Euclidean space interval. It can
be connected to the light-front (LF) correlators defining the collinear parton distributions, either
through a short-distance factorization [15] in coordinate space or through a large-momentum
factorization [6, 11, 18] in momentum space, where the latter is formulated in the framework
of large-momentum effective theory (LaMET) [6, 11, 12]. Recently, such an approach has been
extended beyond the single parton PDFs to study multiple parton distributions that reveal the
correlated partonic structure of hadrons [19, 20].

At the current stage, the calculations in LaMET have reached a level where precision control
becomes important. In order to have precise predictions for the PDFs, one needs to properly
renormalize the quasi-LF correlators calculated on the lattice so that a reliable continuum limit
can be obtained and then matched to the physical PDFs. On the one hand, the quasi-LF correlator
contains a linear power divergence arising from the Wilson line self-energy, whose renormalization
leads to an ambiguity of O(ΛQCD) due to long-range non-perturbative effects. In addition, the
perturbative hard matching kernel connecting the quasi-LF correlators to the LF correlators has
renormalon ambiguities which shall be canceled by higher-twist contributions. Both ambiguities
have to be properly handled. On the other hand, it has been shown that the appropriate perturbative
scale in LaMET matching is ∼ 2xPz with Pz being the hadron momentum and x the momentum
fraction carried by the parton [21]. Therefore, there can be potentially large logarithms of the form
lnn 4x2P2

z/µ
2 which shall be resummed by the renormalization group equation.

Recently, it has been shown how to achieve PDF predictions from quasi-LF correlators calcu-
lated on the lattice to twist-three accuracy [22], by using the similarity between a spatial Wilson
line and an infinitely heavy quark and the existing results on the pole mass of the latter to large
perturbative orders in the literature. In addition, there have also been estimates on the relevant
twist-four contributions [23, 24] in the LaMET calculation of PDFs, based on the requirement of
renormalon cancellation between different twists. Due to the cancellation requirement, the exis-
tence of renormalon ambiguities in the leading-twist expressions can be used to estimate the size
of power-suppressed corrections. Conceptually, this is similar to the estimation of the accuracy of
fixed-order perturbative results by the logarithmic scale dependence.

In the following, I’ll briefly review these procedures and their implementation, by taking the
isovetor quark PDFs as an example.
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2. Renormalons and twist-three accuracy

The quasi-LF correlator [11] used in LaMET takes the following form (for quarks)

h̃B(z,Pz,a) = 〈P |ψ̄(z)ΓW(z,0)ψ(0)|P〉, (1)

whereW(z,0) = P exp[−ig
∫ z

0 Az(z′)dz′] denotes a gauge link along the z-direction. The correlator
above has a linear divergence associated with the self-energy of the Wilson line, which can be
removed by a multiplicative renormalization factor eδm(a) |z | [25–29] with a denoting the lattice
spacing. However, there is an ambiguity in specifying the finite piece of the mass renormalization
factor δm(a). One can choose the renormalization factor either with a “short-distance mass" defined
by an infrared-regulated “pole mass” [30], or with a non-perturbatively defined mass parameter in
terms of a physical matrix element [31–33]. Different mass subtractions differ by an intrinsic
non-perturbative correction of O(ΛQCD). Thus, in addition to the usual renormalization scale
dependence arising from the renormalization of logarithmic divergences, the quasi-LF correlators
also have a scheme dependence from the renormalization of the linear divergence (labeled as
τ-scheme dependence in Ref. [22]). Such a scheme dependence is also reflected in the self
renormalization procedure proposed in [32], where one determines the ultraviolet (UV) divergences
and the renormalization factor by fitting the bare quasi-LF correlators at multiple lattice spacings to
a physics-dictated functional form. In the implementation of self renormalization, multiple sets of
parameters have been found that correspond to the same minimal χ2 fit. The freedom in choosing
the set of parameters can be regarded as a scheme dependence.

Given the ambiguity in choosing the finite term of the mass renormalization factor, the
short-distance expansion of the renormalized quasi-LF correlator must contain a twist-three non-
perturbative parameter m0(τ) ∼ O(ΛQCD) and thus becomes [22] (assume z > 0 from now on)

hR(z,Pz, µ, τ) =
(
1 + m0(τ)z

) ∞∑
k=0

Ck

(
αs(µ), µ

2z2
)
λkak+1(µ) + O(z2)

=

∞∑
k=0

[
Ck

(
αs(µ), µ

2z2
)
+ zm0(τ)

]
λkak+1(µ) + O(zαs, z2), (2)

where λ = zPz , ak are spin-k twist-2 matrix elements, and the perturbative series Ck are the
associatedWilson coefficients. The twist-three contribution is universal in the sense that itmultiplies
the leading-twist term in the same manner independent of the spin of the local operators. On the
other hand, m0(τ) does depend on the external states in which the correlator matrix elements are
taken. In the LaMET expansion, the above twist-three term translates to a linear term in the inverse
hadron momentum 1/Pz .

The parameter m0(τ) can be determined by fitting to a non-perturbative matrix element, which
can be conveniently chosen as the quasi-LF correlator at zero momentum, hR(z,Pz = 0, µ, τ), where
only the k = 0 term in the above relation contributes, and both a1 and the MS series C0(αs(µ), µ

2z2)

are known.
After fitting m0(τ), one can absorb it into an additional finite renormalization so that the

renormalization factor ∼ exp[δm(a)z] = exp[δm(a, τ)z + m0(τ)z] becomes τ-independent. The
matrix element renormalized by such a renormalization factor can then be used in the standard
LaMET matching with the twist-three ambiguity from renormalization removed.
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In practice, the determination of m0(τ) can be summarized as follows. Let hR(z,Pz = 0, µ)
denote the renormalized zero momentum matrix element in the MS scheme at scale µ. It satisfies
a renormalization group equation

∂hR(z,Pz = 0, µ)
∂ ln µ2 = γ(µ)hR(z,Pz = 0, µ) , (3)

where the anomalous dimension γ(α(µ)) of hR(z,0, µ) has been calculated up to 3-loop order for
the quasi-PDF operator [34]. When z is a perturbative distance, the above equation can be solved
by evolving from the initial scale µ0 = z−1 which is a proper scale for the correlator in coordinate
space. The solution at scale µ is then given by

hR(z,Pz = 0, µ) =hR(z,Pz = 0, z−1) exp
(∫ α(µ)

α(z−1)

γ(α′)

β(α′)
dα′

)
=hR(z,Pz = 0, z−1) exp

[
−I(z−1)

]
exp [I(µ)], (4)

where I(µ) is an analytic function of α(µ) because both γ(α) and β(α) are polynomials of α when
truncated at a certain order in perturbation theory.

Similarly, for the lattice scheme with explicit linear divergence, the matrix elements now have
the following form:

eδm(a)zhB(z,Pz = 0,a−1) = hlat(z,Pz = 0, z−1)e−I
lat(z−1)eI

lat(a−1), (5)

where hlat is the perturbation series evaluated at scale z−1 in the lattice scheme. Note that the
z-dependence is now completely factorized in both schemes. In the lattice matrix element, the mass
dependence with the linearly-divergent mass correction δm(a) has been manifestly separated out.
The z-dependence is physical, and thus should not depend on scheme choices. So one can identify
hlat(z,Pz = 0, z−1)e−I

lat(z−1) in the lattice scheme and h(z,Pz = 0, z−1) exp
[
−I(z−1)

]
in the MS

scheme. The above expressions allow one to express the lattice matrix element in terms of the MS
perturbation series

hB(z,Pz = 0,a−1) = hR(z,Pz = 0, z−1)e−I(z
−1)eI

lat(a−1)e−δm(a)z . (6)

From Eq. (6), one can write

m0(τ)z(1 + O(zΛQCD)) = ln
[
hR(z,Pz = 0, z−1)e−I(z

−1)
]

− ln
[
hB(z,Pz = 0,a−1)e−I

lat(a−1)eδm(a,τ)z
]
. (7)

This allows one to extract m0(τ) as a slope of such a quantity. Note that for a single lattice spacing,
I0 = e−I

lat(a−1) is a constant and thus is absorbed into the interception and not affecting the slope
m0(τ).

In Ref. [22], the authors fitted m0(τ) with short distance pion PDF matrix elements, and the
results are shown in Fig. 1. As shown by cyan and orange bands in the top panel in Fig. 1, the
fixed-order (NLO or NNLO) C0 introduces a large uncertainty from the variation of the scale µ
from 1 GeV to 4 GeV, corresponding to all possible relevant physics scales (2xPz) in the problem.
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After resumming the large logarithmic terms αn
s (µ) lnn(z2µ2) in C0 to reduce the µ dependence,

the fitting yields the hatched green band on the top panel, which has a strong dependence on z,
and becomes unreasonably large at z > 0.2 fm. This is an indication that there is a significant
contamination effect from unaccounted higher-order terms in twist-two C0, which has logarithmic
dependence in z. The z-dependence is altered by the truncation in αs(z−1).

The large uncertainty in the twist-three mass parameter m0 can be translated to that for light-
cone PDFs in LaMET calculations. The extracted isovector light-cone PDF is shown in the bottom
plot of Fig. 1. With the fixed order Ck , the uncertainty in m0 yields > 30% error near x ∼ 0.3.
With renormalization group improvement, significant uncertainty in the extracted PDF still exists,
shown as the hatched green band with NLO+RGR label in the same plot. These large uncertainties
indicate that improving calculations up to twist-three accuracy is crucially important for lattice
data at Pz ∼ 2 GeV. To achieve this, one also needs to understand the renormalon effect in the
perturbative Wilson coefficients, or in other words, in hR(z,Pz = 0, µ) above, which have not been
taken into account in the discussion so far.

It is well-known that the perturbative Wilson coefficients Ck(αs) =
∑

n cknαn
s are asymptotic

series because of infrared contributions at large orders, a phenomenon called infrared renormalons
(IRR) [35]. For the quasi-LF correlator, the leading IRR comes from the long-distance contributions
to the self-energy of theWilson line, making ckn grow factorially∝ n!(β0/2π)n at large-n orders [23],
where β0 = 11 − 2n f /3 (n f is the number of active quark flavors) is the first term of the QCD beta
function. This behavior is the same as the perturbation series for the “pole" mass of a heavy
quark [30, 36].

The perturbative runaway infrared contributions at large orders must be regularized, or equiv-
alently, one has to specify a way to resum the perturbative series. Different methods of resum-
mation/regularization yield results differing by the order of the minimal term in the series, at
n ∼ 2π/β0αs [37]. A simple estimation shows that this is a twist-three contribution O(zΛQCD),
a linear power in z (other renormalon poles corresponding to higher-power-z/twist terms). There-
fore, the twist-two contributions themselves are ambiguous up to higher-twist contributions, and
the twist-three parameter m0(τ) depends on the resummation/regularization method for the leading
renormalon series in Ck(αs). There have been a number of proposals for renormalon regularization
in the literature [38]. For example, one can define subtraction for infrared contributions at every
order in perturbation series. One can also calculate the series in usual MS or lattice method and
define an all-order sum through a Borel transformation. In this regard, it has been advocated to use
the principal value prescription to regulate the renormalon poles in the Borel integral [39, 40]. In
Ref. [22], the authors have taken a prescription for Ck(αs) together with the UV regularization of
the correlator as the complete τ-scheme.

To determine the renormalon ambiguity requires, in principle, calculating Ck to all orders,
which is a formidable task. Fortunately, lattice numerical calculations to perturbative large orders
have become possible for certain quantities [30, 41]. In particular, the pole mass on pure gauge
ensembles (n f = 0) has been calculated to n ∼ 20, m = µ

∑
n rnαn+1

s , and confirmed the conjecture
on the leading IR renormalon form at large n [30],

rn = Nm

(
β0
2π

)n
Γ(n + 1 + b)
Γ(1 + b)

[
1 +

c1b
b + n

+ ...

]
, (8)
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Figure 1: These plots are taken from [22]. Top: Uncertainty in m0(τ) extracted from the pion Pz = 0 matrix
element and fixed-order Wilson coefficients with and without RG resummation. The band width shows the
renormalizaiton scale µ dependence. Bottom: The uncertainties in the pion light-cone PDF extracted from
LaMET expansion with the above m0. The overlap region exhibits a darker color.

where b = β1/2β2
0 and c1 = (β

2
1 − β0β2)/(4bβ4

0) are from higher orders in the QCD beta function.
Moreover, the mass renormalon strength has been determined to be Nm(n f = 0) = 0.660(56) in
MS scheme. With dynamic fermions, Nm(n f = 3) = 0.575 has been taken in Ref. [22] using an
analytical method in Ref. [36].

Using the above knowledge on the mass renormalon, the leading renormalon contribution for
Ck after a Borel transformation reads

Ck(αs(z−1),1)PV = Nm
4π
β0

∫ ∞

0,PV
du e

− 4πu
αs (z−1)β0

1
(1 − 2u)1+b

(
1 + c1(1 − 2u) + ...

)
, (9)

where a PV prescription has been chosen for regulating poles on the Borel u-plane. The leading
renormalon resummation (LRR) result can then be defined by resumming the leading divergent
contributions to all orders at µ = z−1, while keeping the lower-order expansion of CLRR(αs) the

6
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Figure 2: These plots are taken from [22]. Top: The comparison of C0(αs(µ), z2µ2) from the fixed-order
(dotted), renormalization group resummation (dashed), and the leading renormalon resummation (solid).
Bottom: m0(τ) extracted from leading renormalon resummation with PV as an IR regulator.

same as C0(αs(µ), z2µ2),

CLRR(αs(z−1),1) = Ck(αs(z−1),1) +

[
Ck(αs(z−1),1)PV −

∑
i

αi+1
s (z

−1)ri

]
. (10)

Now CLRR(αs) contains not only the fixed-order results calculated explicitly, but also higher-order
(twist-two) perturbative terms contributing to the leading factorial growth.

The comparison of the k = 0Wilson coefficientC0(αs(µ), z2µ2) for the fixed-order (NLO+NNLO),
fixed order (NLO+NNLO) with RGR, and the LRR-improved formalism is shown in the top panel
of Fig. 2. The error bands in RGR are obtained by varying the resummation scale from 0.75z−1 to
1.5z−1, corresponding to about 30% change in the strong coupling. While there is a large difference
from NLO to NNLO in fixed-order calculations with or without renormalization group improve-
ment, the LRR results show much better convergence in the perturbative region z < 0.3 fm, and
much smaller dependence on the scale variation, indicating that NNLO term is already dominated
by the leading renormalon.

7
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The lower panel of Fig. 2 shows the LRR-improved m0 result. By including the leading
renormalon in the perturbative Wilson coefficients, there is now a clear window near z = 0.12 fm
for a constant m0(τ) = 0.161+0.025

−0.002 GeV for NLO (blue band) with much smaller uncertainty. Thus
Eq. (2) achieves the linear-z accuracy when the leading renormalon series is resummed. The NNLO
renormalon-resummed results m0(τ) = 0.164+0.016

−0.003 GeV (red band) clearly demonstrates the good
convergence of the method. The difference between the non-perturbative lattice result and the
perturbation series is well described by the linear dependence in z in the perturbatively reliable
region. This indicates that twist-three power accuracy has been reached for describing the Pz = 0
matrix element.

3. Renormalons and twist-four accuracy

To explain how the concept of renormalons can be used to get insight into the structure of
twist-four power corrections, let us consider the LaMET factorization for the quasi-PDF (which is
a Fourier transform of the quasi-LF correlator discussed previously with respect to z) [42, 43],

Q(x,Pz) =

∫ 1

−1

dy
|y |

C( xy , xPz, µF )q(y, µF ) +
1

P2
z

Q4(x,Pz) + . . . , (11)

where the factorization scale has been denoted as µF , and for brevity we do not show the dependence
on the renormalization scale. µF has to be taken of the order of |x |Pz to avoid large logarithms.
The coefficient function C(x,Pz, µF ) = δ(1 − x) + O(αs) is given by the perturbative expansion.

To understand the role of renormalons, let us assume for a moment that the factorization is
done using a hard cutoff ΛQCD � µF � Pz , i.e. the contributions with loop momenta |k | > µF
are included in the coefficient function, whereas the contributions with |k | < µF are included in the
PDF. In this scheme, the coefficient function has the following expansion at Pz →∞

C(x,Pz, µF ) = δ(1 − x) + c1αs + c2α
2
s + . . .

−
µ2
F

P2
z

D(x) + . . . , (12)

where ck = ck(x, ln P2
z/µ

2
F ) are the perturbative coefficients depending logarithmically on the scales

and the D-term represents the leading power correction. Since the l.h.s. of Eq. (11) does not depend
on µF , any such dependence should cancel on the r.h.s.. In particular, the logarithmic dependence
on the scale in ck(x, ln P2

z/µ
2
F ) is canceled by the scale-dependence of the PDF q(x, µF ). The

cancellation of the power dependence, on the other hand, must involve the twist-four contribution
Q4(x,Pz). Thus, in this factorization scheme one expects that

Q4(x,Pz, µF ) = µ
2
F

∫ 1

−1

dy
|y |

D( xy )q(y, µF ) + Q̃4(x,Pz, µF ) , (13)

where Q̃4 depends on µF at most logarithmically. The appearance of the term ∼ µ2
F can be traced to

quadratic UV divergence (in addition to the logarithmic UV divergence) of the twist-four operators
that are responsible for the power correction, in the cutoff scheme. One can prove that the cutoff
dependence ∼ µ2

F of the higher-twist operators is indeed that of Eq. (12).

8
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In practice, perturbative calculations are usually done using dimensional regularization. In
this case, power-like terms as in Eq. (12) do not appear. But the coefficients ck computed in the
MS scheme then grow factorially with the order k, inducing a renormalon ambiguity that must be
compensated by adding a non-perturbative higher–twist correction. In this way, the same picture as
in the cutoff scheme reappears in dimension regularization.

Returning to (13), we observe that the quadratic term in µF is spurious since its sole purpose
is to cancel the similar contribution to the coefficient function. Therefore, it does not contribute
to any physical observable. The idea of the renormalon model of the power corrections [44] is
that, with a replacement of µF by a suitable non-perturbative scale, this contribution reflects the
order and the functional form of actual power-suppressed contribution. Assuming this “ultraviolet
dominance” [38, 45, 46] one obtains the following model:

Q4(x,Pz, µF ) = κΛ
2
QCD

∫ 1

−1

dy
|y |

D( xy ) q(y, µF ) , (14)

with the dimensionless coefficient κ = O(1) which cannot be fixed within theory and remains a free
parameter.

To estimate the power corrections from the renormalon model, it is convenient to start from the
short distance factorization in coordinate space. The corresponding coefficient function (labeled as
H in this section) have the perturbative expansion

H = δ(1 − α) +
∞∑
k=0

hkak+1
s , as =

αs(µ)

4π
, (15)

with factorially growing coefficients hk ∼ k!.
Consider the Borel transform

B[H](w) =
∞∑
k=0

hk
k!

(
w

β0

)k
(16)

where powers of β0 = 11/3NC − 2/3n f are inserted for later convenience. The Borel image can be
used as a generating function for the fixed-order coefficients

hk = βk0

(
d

dw

)k
B[H](w)

��
w=0 . (17)

Moreover, the sum of the series can be obtained as the integral over positive values of the Borel
parameter w

H = δ(1 − α) +
1
β0

∫ ∞

0
dw e−w/(β0as )B[H](w) . (18)

As it stands, the integral is not defined because the Borel transform generally has singularities on
the integration path, known as (infrared) renormalons. One can adopt a definition of the integral
deforming the contour above or below the real axis, or as the principle value. These definitions
are arbitrary, and their difference, which is exponentially small in the coupling, must be viewed as
an intrinsic uncertainty of perturbation theory that has to be removed by adding power-suppressed
nonperturbative corrections.

9
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(a) (b) () (d)

Figure 3: This plot is taken from [23]. Bubble-chain contribution to the coefficient function. The Wilson
line factor is shown by the double dotted line.

To determine the renormalon ambiguity, one needs to know the coefficient function to all
orders in principle. Naturally, such a full all-order calculation cannot be performed. Instead, we
employ the approximation [38, 46] restricting ourselves to the perturbative series generated by the
running-coupling effects in the one-loop diagrams, i.e. using QCD coupling at the scale of the
gluon virtuality. Such contributions can be traced by computing the diagrams with the insertion of
k fermion loops in the one-loop diagram and replacing − 2

3 n f 7→ β0 =
11
3 Nc −

2
3 n f , see Fig. 3.

Using the above approximation, one obtains the following form for the Borel transform of the
coefficient function (assume Γ = γ0 in the quasi-LF correlator)

B[H](w) =
2CF

w

{[1 + α2

1 − α
−

(
2α 2F1(1,2 − w,2 + w, α) + ᾱ(1 − w2)

)
αw h0(w,X)

]
+

+ δ(ᾱ)

[
3(w2 − w − 1)
(w + 2)(2w − 1)

h0(w,X) −
3
2

]}
+ R̃(w) − 4CF ᾱ(1 + w)αw h0(w,X) , (19)

where ᾱ = 1 − α,

h0(w,X) = Xw Γ(1 − w)
Γ(2 + w)

, X =
z2µ2e5/3

4
, (20)

and the function R̃(w) is defined as the series expansion in terms of another function

R(w) = 2CF

{[1 + α2

1 − α
αwG0(w)−1

w
+ αwᾱ(2+w)G0(w)

]
+
+
δ(ᾱ)

w

[
3
2
−

2w + 3
(w + 2)(w + 1)

G0(w)

]}
,

G0(w) =
Γ(4 + 2w)

6Γ(1 − w)Γ(1 + w)Γ2(2 + w)
, (21)

such that

R(w) =
∑
n

wnRn , R̃(w) =
∑
n

wn

(n + 1)!
Rn . (22)

The Taylor expansion of the Borel transform at w = 0 gives the perturbative expansion for the
coefficient function in terms of the coupling constant.

The Borel transform above has singularities at w = 1/2,1,2,3 . . . . The singularity at w = 1/2
is generated by the contribution of large momenta in the self-energy insertions in the Wilson line
and is part of the renormalization factor

B[H]
w→1/2
=

−4CF

w − 1/2
√

X . (23)

10
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This singularity is well-known [47] and is in the one-to-one correspondence to the linear UV
divergence in the Wilson line self-energy. It can be removed when renormalizing in the ratio
scheme [48], but will be present in the hybrid [29] or self renormalization [32] and is linked to the
renormalon ambiguity discussed in the previous section.

The renormalon singularity at w = 1 is determined by

B[H](w) w→1
=
−4CF

1 − w

[
α + ᾱ ln ᾱ + αᾱ

]
X . (24)

Renormalon singularities at w = n (n = 2,3...) have a generic form

B[H](w) =
2CF

n − w

[
αnpn−1(α) +

(−1)nδ(ᾱ)
n!(n−2)!n2(2n−1)

]
Xw, (25)

where pn(α) is a polynomial of order n, e.g. p1(α) = (5α− 3)/6, p2(α) = (α
2 − 25α+ 20)/180, etc.

A singularity on the integration path in Eq. (18)means that the perturbation theory is incomplete
and the sum of the series is ill-defined. It is customary [38] to estimate the corresponding ambiguity
as

δH(w0) = −π
1
β0

e−w0/(β0as ) Res
w=w0

[
B[H](w)

]
, (26)

where w0 is the position of the singularity and Res
w=w0

[
B[H](w)

]
is the corresponding residue. Note

that e−w0/(β0as ) = (Λ2/µ2)w0 . Following the standard logic [38, 46] we assume that this ambiguity
must be canceled by adding a non-perturbative correction of the same order of magnitude.

Considering δH(1), we obtain the leading power correction to the quasi-LF correlators (λ =
zPz)

I = h(λ)
{
1 + κ(z2

Λ
2
QCD)RI(λ)

}
, (27)

where

RI(λ) =
1

h(λ)

∫ 1

0
dα (α + ᾱ ln ᾱ + αᾱ)h(αλ) , (28)

h(λ) denotes the leading-twist matrix element and κ is a number of O(1).
After taking the Fourier transformwith respect to z, one then obtains the result for the quasi-PDF

Q(x,Pz) = q(x)
{
1 +
Λ2

QCD

x2 x̄P2
z

RQ(x)
}

(29)

with

RQ(x) =
x̄

q(x)

{∫ 1

x

dy
1 − y

[
y(2y − 1)q( xy ) − q(x)

]
+ 2q(x) − xq′(x)

}
, (30)

where x̄ = 1− x and q(x) is the leading-twist PDF. Note that we have extracted the prefactor 1/(x2 x̄)
for the power correction anticipating that it is enhanced as 1/x2 and 1/(1− x) in the regions of small
x → 0 and large x → 1 Bjorken variable, respectively.
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Power corrections for the pseudo-PDF (Fourier transform with respect to λ with z fixed) can
be obtained easily as

P(x, z, µ) = q(x)
{
1 − (z2

Λ
2
QCD)θ(|x | < 1)RP(x)

}
, (31)

with

RP(x) =
1

q(x)

∫ 1

|x |

dy
y
(y + ȳ ln ȳ + yȳ)q( xy ) . (32)

4. Summary

To summarize, we have briefly reviewed the concept of renormalons and their connection to
power suppressed contributions that appear in the calculation of PDFs from lattice QCD. They are
expected to play an increasingly important role as we strive for the precise determination of the
partonic structure of hadrons in the future.
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