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1. Introduction

Lattice QCD is an extremely solid and successful theoretical framework and has recently
become essential for precision physics calculations, as it is able to provide a number of hadronic
matrix elements and Standard Model parameters with uncertainties in some cases even smaller
than one percent [1]. At this level of precision, small effects such as the electromagnetic (e.m.)
interactions of quarks and leptons, as well as the difference in mass between up and down quarks,
which are both expected to amount to O(1%) corrections, play a crucial role. In this work we
discuss the calculation of such isospin-breaking (IB) effects in the context of weak processes, in
particular of leptonic decays of pseudoscalar mesons. These processes are mediated by charged-
weak currents and hence the combination of a precise experimental determination of their decay
rates and the theoretical calculation of the relevant hadronic amplitudes, including IB effects,
can provide precise estimates of the corresponding Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements. The unitarity contraints on the CKM matrix imposed by the Standard Model offer a
unique opportunity for indirect searches of new physics. Significant deviations from unitarity could
in fact hint at contributions of new particles or interactions which are not accounted in the theoretical
calculations.

The evaluation of IB corrections to hadronic observables requires the inclusion of QED in
numerical lattice QCD calculations, posing the theoretical challenge of how to define a photon
in a finite volume with periodic boundary conditions, which are commonly employed in lattice
calculations. In fact, Gauss’ law forbids states with non-zero electric charge in a box with periodic
boundary conditions. In order to circumvent this problem, many regularizations of the lattice QED
action have been proposed, that either put contraints on the Fourier modes of the photon field, like
QEDL [2] and its infrared improvements [3], QEDTL [4] and QEDSF [5], or provide a small mass
to the photon like QEDm [6], or adopt instead different boundary conditions like QEDC [7]. For a
detailed review discussing all the above prescriptions, see ref. [8]. A different alternative approach
has also been recently developed, in which radiative corrections are determined as a convolution of
hadronic correlators with infinite-volume QED kernels [9, 10]. In this case, effects due to the finite
extent of the lattice are expected to come only from QCD hadronic matrix elements, and hence
decay exponentially as the lattice extent 𝐿 is increased. In contrast, when QED is formulated in a
finite volume with a massless photon, the long-range nature of e.m. interactions leads to power-like
finite-volume effects. In this work we will focus on lattice calculations in which QED has been
defined in a finite volume and regularized using the QEDL prescription, which consists in removing
the contributions of the spatial zero modes of the photon, and we will put particular emphasis on
the crucial role played by such power-like finite-volume corrections.

There exist two approaches currently adopted to include QED effects in lattice QCD calcu-
lations. In the all-order or “stochastic” approach QED is added directly to the lattice action, and
dedicated QCD+QED simulations are performed, with the result of including the IB corrections to
all orders (see, e.g., refs. [11–14]). In the perturbative approach, presented in refs. [15, 16] (and
often referred to as the “RM123 approach”), the lattice path-integral is expanded at first order in
the two small parameters 𝛼em and (𝑚d − 𝑚u)/ΛQCD. Being leading order corrections sufficient
for many phenomenological applications, the two small parameters are factorized out and their
coefficients can be determined directly from simulations of isosymmetric QCD, with no need to
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perform new dedicated simulations. So far, due to the computational challenge of evaluating quark
disconnected diagrams, all calculations using the perturbative method have been performed in the
electro-quenched approximation, in which sea quarks are treated as electrically neutral. Although
deviations from this approximation are expected to be small, this consitutes a major source of
systematic uncertainty and therefore work is in progress to overcome it [17].

Lattice QCD+QED is a new frontier for precise numerical calculations and many collaborations
have successfully produced results for IB corrections to different hadronic observables: the hadron
spectrum [11, 18–21], the anomalous muon 𝑔−2 [22–27] (see also refs. [28, 29]) and weak leptonic
decays [30–32]. In the latter case, additional challenges arise. In fact, when separating the
contributions to the decay rate from the exchange of virtual photons and those from the emission of
real ones, logarithmic infrared divergences appear which have to be properly treated. The strategy
for evaluating leading e.m. and strong IB effects to leptonic decay rates on the lattice has been
developed by the RM123-Southampton (RM123S) collaboration in ref. [33] and then applied by
the same group to the leptonic decay of pions and kaons into muons and neutrinos (referred to as
𝜋𝜇2 and 𝐾𝜇2, respectively) in refs. [30, 31]. More recently, the RBC/UKQCD collaboration also
computed the IB correction to the ratio of kaon and pion decay rates, Γ(𝐾𝜇2)/Γ(𝜋𝜇2), obtaining
results in agreement with RM123S, but with a larger systematic uncertainty related to finite-volume
effects. The finite-volume dependence of this observable has been thoroughly studied in the last few
years. The structure-independent logarithmic infrared divergence and the e.m. finite-volume effects
to decay amplitudes up to O(1/𝐿2) have been first computed in refs. [34, 35]. More recently, the
structure-dependent O(1/𝐿2) corrections, as well as the point-like contribution at O(1/𝐿3), have
been evaluated in ref. [36], while the functional form of the structure-dependent effects at O(1/𝐿3)
has been presented at this conference in ref. [37].

In this work, after briefly describing how to compute IB corrections to leptonic decays on the
lattice and evaluate the corresponding leading finite-volume effects, we will discuss the two existing
calculations of the ratio Γ(𝐾ℓ2)/Γ(𝜋ℓ2) performed by the RM123S and the RBC/UKQCD groups
using the QEDL regularization. We will focus on the role of finite-volume effects in the calculations
and how further studies of the correction at O(1/𝐿3) are necessary to improve the precision on
such observable. With this aim, we dedicate the rest of the work to present a new finite-volume
regularization of the QED action, which differs from QEDL in the treatment of the photon zero
mode and it is expected to reduce finite-volume effects on a number of hadronic observables.

2. QED and isospin-breaking corrections to weak decays

Let us consider the decay of a charged pseudoscalar meson, 𝑃+, into a muon-neutrino pair.
When electromagnetism is included, photons can be exchanged between quarks and leptons or
emitted by them. As mentioned above, this introduces new infrared divergences in the decay rate,
which only cancel when summing virtual (Γ0) and real (Γ1) photon contributions [38]. A practical
strategy for lattice calculations of the decay rate, including leading QED corrections, has been
proposed by RM123S in ref. [33] and consists in defining the decay rate as the sum of infrared-finite
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contributions, namely

Γ(𝑃+ → 𝜇+𝜈𝜇 [𝛾]) = lim
𝐿→∞

[
Γ0(𝐿) − Γuni

0 (𝐿)
]
+ lim
𝑚𝛾→∞

[
Γuni

0 (𝑚𝛾) + Γuni
1 (𝑚𝛾)

]
(1)

+ lim
𝐿→∞

[
Γ1(𝐿) − Γuni

1 (𝐿)
]
.

In the first bracketed term the virtual decay rate is computed on the lattice using the finite volume with
the QEDL prescription as an IR regulator, with the universal (structure-independent) logarithmic
infrared divergence removed, as well as finite volume effects up to O(1/𝐿) [34, 35]. The finite-
volume scaling of this term can be further improved by replacing Γuni

0 (𝐿) with Γ
(2)
0 (𝐿), which

includes the QEDL finite-volume corrections up to O(1/𝐿2), computed in ref. [36]. The second
term is the decay rate in the point-like approximation, which has been evaluated in perturbation
theory using a photon mass as a regulator in ref. [33]. Finally, the third term corresponds to the
structure-dependent part of the real decay rate. This contribution has been studied in refs. [39–45]
and it is relevant for decays of pions and kaons into electrons or decays of heavy mesons, while it
can be neglected in the calculations of 𝜋𝜇2 and 𝐾𝜇2. This method has been applied to two different
numerical calculations, first by the RM123S group to the rates of 𝜋𝜇2 and 𝐾𝜇2 [30, 31], and more
recently by the RBC/UKQCD collaboration to the ratio Γ(𝐾𝜇2)/Γ(𝜋𝜇2) [32]. In the following we
focus on the latter quantity and compare it between the two calculations.

For a given choice of scheme for the iso-symmetric QCD theory (𝛼em = 0, 𝑚u = 𝑚d), in which
the decay constants 𝑓𝜋 and 𝑓𝐾 are defined, one can write the ratio of 𝐾𝜇2 and 𝜋𝜇2 decay rates as

Γ(𝐾+ → 𝜇+𝜈𝜇 [𝛾])
Γ(𝜋+ → 𝜇+𝜈𝜇 [𝛾])

=
|𝑉us |2
|𝑉ud |2

𝑚𝜋

𝑚𝐾

(𝑚2
𝐾
− 𝑚2

𝜇)
(𝑚2

𝜋 − 𝑚2
𝜇)

𝑓 2
𝐾

𝑓 2
𝜋

(
1 + 𝛿𝑅𝐾 𝜋

)
+ O(𝜖2) , (2)

where 𝛿𝑅𝐾 𝜋 = 𝛿𝑅𝐾 − 𝛿𝑅𝜋 denotes the (scheme-dependent) leading IB correction and O(𝜖2) is
understood as a second-order correction in (𝛼em, (𝑚R

d − 𝑚R
u )/ΛQCD).1 As discussed in refs. [30–

32], the IB correction 𝛿𝑅𝐾 𝜋 can be obtained by computing corrections to the bare matrix elements
and to the meson masses, which can be extracted from the long-distance behaviour of suitable
Euclidean lattice correlators in the time-momentum representation. Note that 𝛿𝑅𝐾 𝜋 depends on
the the velocities of the final state leptons in the pion and kaon decays, whose absolute value is
fixed by energy-momentum conservation and injected in the lattice correlators via twisted boundary
conditions. In both calculations the RM123 perturbative method has been adopted to evaluate
QED and strong IB effects in the electro-quenched approximation. This consists, in practice, in
computing a number of connected correlation functions, with photons exchanged in all possible
ways and mass corrections inserted along all quark lines.

The lattices used in the two calculations are rather different. On the one hand, RM123S
employed ensembles with twisted mass fermions at three different lattice spacings and multiple
volumes. However, unphysical quark masses have been simulated, corresponding to pion masses
above 230 MeV, and a chiral extrapolation has been performed to reach the physical point. One

1We stress that the definition of the isospin symmetric QCD theory is scheme dependent, as is the separation of strong
and e.m. IB effects. Although differences between commonly adopted schemes are expected to be small, discussions
are ongoing for the definition of a common reference scheme, which would facilitate the comparison of lattice results
between different collaborations [46]. As discussed in ref. [32], the schemes adopted in the two calculations discussed
in this work can be considered to be equivalent.
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complication introduced by the use of an action that breaks chiral symmetry is a non-trivial mixing
of operators under renormalization when including QED corrections. This has been studied in
ref. [31], but the issue does not apply to the calculation of 𝛿𝑅𝐾 𝜋 , as the contributions from the
renormalization of the matrix elements cancel in the ratio. On the other hand, the RBC/UKQCD
calculation used the domain wall fermion action with physical quark masses. However, due to the
high computational cost of such simulation, this has been performed for the moment at a single
value of lattice spacing and volume.

The results obtained by the two collaborations are the following [31, 32]

𝛿𝑅RM123S
𝐾 𝜋 = −0.0126 (21) , 𝛿𝑅

RBC/UKQCD
𝐾 𝜋

= −0.0086 (13) (39)vol. , (3)

where the error in the first bracket is a combination of statistical and systematic uncertainties, while
for the RBC/UKQCD result we factor out the systematic error due to finite-volume effects. The
two results are in agreement with each other, as well as with a previous calculation obtained in
chiral perturbation theory, 𝛿𝑅𝜒PT

𝐾 𝜋
= −0.0112 (21) [47]. This is a noteworthy result, emphasizing

the capability of the lattice in reliably computing such observables with a precision systematically
improvable to the percent level.

The origin of the large finite-volume systematic uncertainty in the RBC/UKQCD result is
explained in ref. [32] and additional details are also given in ref. [37]. This is due to the partial
knowledge of finite-volume corrections to the decay rate at O(1/𝐿3). While the scaling in inverse
powers of 𝐿 is known for this quantity up to O(1/𝐿2), including structure-dependent contributions,
the O(1/𝐿3) term is only known in the point-like approximation. It can be shown that the structure-
dependent part receives contributions from branch-cuts in hadronic amplitudes, which are difficult
to evaluate numerically. The appearance of these contributions is a combined effect of the breaking
of spatial locality, due to the use of the QEDL action, and of rotational symmetry breaking in a finite
volume, as it will be discussed in the next section. In addition, the known point-like contribution at
O(1/𝐿3) is found to be sizeable (and with opposite sign) compared to the lower order corrections,
thus giving rise to a final large value of the systematic uncertainty. It is worth mentioning that
the systematic error assigned by RBC/UKQCD is likely over-conservative, while the RM123S one
might be slightly underestimated. With the improved understanding of finite-volume corrections to
𝛿𝑅𝐾 𝜋 since the publication of the RM123S result, an updated determination is certainly within reach
for the RM123S group. Reducing the finite-volume systematic error requires a better knowledge
of the finite-volume scaling of 𝛿𝑅𝐾 𝜋 . This can be studied with a combination of numerical and
analytical calculations, for example by repeating the calculation on a number of different volumes
and extrapolating the data to the infinite-volume limit (undoubtedly the cleanest but most expensive
approach), while trying to estimate the missing terms in the 1/𝐿 expansion. In this work we
propose an additional approach to improve the finite-volume scaling of leptonic decay rates and
other hadronic observables, which consists in a modification of the finite-volume QED action. This
new prescriptions, which we call QEDr, leads to vanishing contributions at O(1/𝐿3), promising a
substantial improvement in the precision of 𝛿𝑅𝐾 𝜋 .
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Figure 1: Visualisation of the redistribution of the spatial zero mode k = 0 over the nearest neighbouring
modes on the shell with radius 𝑅 = 1 with equal weights.

3. QEDr: an infrared improved QED regularization

The removal of the spatial zero modes from the photon propagator in the QEDL regularization
corresponds to placing a uniform charge density in the volume, such that the finite-volume Gauss’
law is respected even with a non-zero electric charge in the volume. As a result, hadronic observables
are affected by finite-volume effects at order 1/𝐿3 which, as mentioned in the previous section, are
related to branch-cuts in hadronic amplitudes and therefore difficult to estimate. We propose here a
variation of the QEDL regularization that restores the zero-mode contribution in the infinite-volume
limit and does not generate O(1/𝐿3) corrections. This proposal can be seen as a particular case
of the infrared improvement of the QEDL action introduced in ref. [3], in which a finite number
of photon momentum modes are reweighted to obtain a better finite-volume scaling of a given
observable, without altering its infinite-volume limit. While the coefficients introduced in ref. [3]
were improving finite-volume effects only in a process-dependent fashion, the new choice we present
here allows for a universal removal of momentum-independent 1/𝐿3 effects. Our proposal, which
we refer to as QEDr, consists in redistributing the zero mode, k = 0, over the set of neighbouring
modes, k ∈ S𝑅, lying on a sphere of radius 2𝜋

𝐿
𝑅, namely

S𝑅 =
{

k ∈ 2𝜋
𝐿
Z3 �� |k| = 2𝜋

𝐿
𝑅
}
. (4)

In figure 1 we show a schematic visualisation of such redistribution of the zero mode onto the
nearest neighour modes on the shell with radius 𝑅 = 1.

The infrared-improved Euclidean QEDr propagator is implemented, in practice, by adding to the
QEDL propagator the contributions of the modes k ∈ S𝑅. Denoting k = 2𝜋

𝐿
n, the QEDr propagator

in Feynman gauge reads

𝐷𝜇𝜈 (𝑘0, k) = 𝛿𝜇𝜈
1 − 𝛿k,0

𝑘2
0 + k2

[1 + ℎ(k, 𝑅)] (5)

where the first term in the sum corresponds to the QEDL propagator and

ℎ(k, 𝑅) = 𝑤(k, 𝑅) 𝛿n2,𝑅2 . (6)

The function 𝑤(k, 𝑅) denotes the weight assigned to the mode k on the shell S𝑅 and is defined
such that the sum of all weights equals one,∑︁

k∈S𝑅

𝑤(k, 𝑅) = 1 , (7)

6
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Figure 2: Contour plot of the charge density for different choices of the shell radius 𝑅.

which implies that ∑︁
k
ℎ(k, 𝑅) = 1 . (8)

Later in this section, we will demonstrate that the condition in eq. (8) is crucial for the cancellation
of the finite-volume corrections at O(1/𝐿3). In the case of an isotropic system with zero net velocity
the natural choice is to assign equal weights to the modes k ∈ S𝑅 with values 𝑤(k, 𝑅) = 1/𝑟3(𝑅2),
where the function 𝑟3(𝑅2) =

∑
k 𝛿k2,𝑅2 counts the number of representation of 𝑅2 as the sum of

3 squares. Following the definitions above, it is clear that in the QEDr regularization the electric
charge density in the volume is not uniform as in QEDL, but it is a function of the spatial coordinates
with a periodicity that depends on the radius 𝑅, as shown in figure 2.

In principle, the definition of the propagator in eq. (5) can be extended to the case of the zero
mode redistributed over multiple shells with radii 𝑹 = {𝑅1, 𝑅2, . . . } as follows

𝐷𝜇𝜈 (𝑘0, k) = 𝛿𝜇𝜈
1 − 𝛿k,0

𝑘2
0 + k2

[1 + ℎ(k, 𝑹)] , (9)

where this time
ℎ(k, 𝑹) =

∑︁
𝛼

𝜔(𝛼) ℎ(k, 𝛼) , (10)

with 𝜔(𝛼) denoting the weight of the shell |n| = 𝛼 and defined such that
∑
𝛼 𝜔(𝛼) = 1.

In the following, we will focus on the simplest implementation of QEDr, corresponding to a
redistribution of the zero mode over a single shell S𝑅 with radius 𝑅 with all the modes equally
weighted, namely with ℎ(k, 𝑅) = 𝛿n2,𝑅2/𝑟3(𝑅2). In this case, the propagator reads

𝐷𝜇𝜈 (𝑘0, k) = 𝛿𝜇𝜈
1

𝑘2
0 + k2

[
(1 − 𝛿k,0) + ℎ(k, 𝑅)

]
≡ 𝐷𝜇𝜈L (𝑘0, k) + 𝐷𝜇𝜈r (𝑘0, k) , (11)

where in the second equation we have identified the QEDL propagator and the QEDr correction.
We now turn to discuss the impact of the QEDr infrared improvement on the finite-volume

scaling of hadronic observables. We first study observables with no dependence on an external
spatial momentum. This is the case, for instance, of the e.m. corrections to hadron masses or to
the HVP contribution to the anomalous muon 𝑔−2. Then, we will discuss the more complicated
scenario of a system that depends on some external non-zero spatial momentum, like the case of IB
corrections to leptonic decays, where the decay amplitude depends on the velocity of the final-state
lepton.

7
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3.1 Momentum-independent observables

Let us consider the case of e.m. finite-volume corrections to the mass of a charged hadron.
These have been studied in details in the QEDL regularization in refs. [11, 36, 48], as well as
in QEDC [7]. We find it convenient to adopt here the notation of ref. [7], to which we refer for
further discussions on the analytical properties of the functions appearing below.

In QEDr, finite-volume corrections to a charged hadron mass can be written as

Δ𝑚2(𝐿) = Δ𝑚2
L(𝐿) + Δ𝑚2

r (𝐿) , (12)

where, similarly to eq. (11), the first term on the right hand side corresponds to the QEDL correction,
while the second term is the additional contribution from the redistributed zero mode.

The QEDL e.m. finite-volume effects can then be obtained as follows

Δ𝑚2
L(𝐿) = 𝑒

2 Δ′
k

∫
d𝑘0

2𝜋
𝑀𝜇

𝜇 (i𝑘0, k)
𝑘2

0 + k2
=
𝑒2

2
Δ′

k
𝑀𝜇

𝜇 (−|k|, k)
|k| , (13)

where Δ′
k =

[
1
𝐿3

∑
k≠0 −

∫
d3k
(2𝜋)3

]
and

𝑀𝜇
𝜇 (i𝑘0, k) =

𝑍1P(k2)
√
𝑚2 + k2 − 𝑚 − i𝑘0

+ 𝑍MP(i𝑘0, k2) (14)

is the retarded Compton tensor, split into single-particle (1P) and multi-particle (MP) contributions.
Once evaluated at (−|k|, k), it can be written as

𝑀𝜇
𝜇 (−|k|, k) = 𝑍1P(0)

|k| + M(|k|) , (15)

with M(|k|) being a regular function of |k|. Substituting |k| = 2𝜋
𝐿
|n| in eq. (13) and expanding for

large values of 𝐿, one obtains

Δ𝑚2
L(𝐿) =

𝑒2

2

[
𝑐1
𝑍1P(0)
4𝜋𝐿

+ 𝑐2
M(0)
2𝜋2𝐿2 + 𝑐0

M ′(0)
𝐿3 − 1

2𝜋2

∞∑︁
ℓ=0

(−1)ℓ 𝑐4+2ℓ

𝐿4+2ℓ M (2+2ℓ) (0)
]
, (16)

where the finite-volume coefficients

𝑐 𝑗 =

[∑︁
n≠0

−
∫

d3n
] 1
|n| 𝑗 (17)

have been introduced in ref. [48] and discussed in refs. [3, 36]. We stress that the finite-volume
correction at O(1/𝐿3) does not vanish in QEDL since 𝑐0 = −1. While the terms 𝑍1P(0) and M(0)
are universal and only depend on charge and mass of the hadron, the contribution at O(1/𝐿3) and
beyond depend also on the internal structure of the particle. As discussed in ref. [36], evaluating
the contribution denoted here as M ′(0) requires computing an integral over the branch cut of
the forward Compton amplitude, which makes the estimation of the O(1/𝐿3) correction rather
complicated. However, we can prove now that such effect is cancelled in QEDr. In fact, the

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
2
0

Isospin-breaking corrections to weak decays Matteo Di Carlo

additional contribution to the e.m. finite-volume effects to the hadron mass is obtained by following
similar steps and evaluating

Δ𝑚2
r (𝐿) = 𝑒2

∑︁
k≠0

ℎ(k, 𝑅)
∫

d𝑘0

2𝜋
𝑀𝜇

𝜇 (i𝑘0, k)
𝑘2

0 + k2
=
𝑒2

2
𝑀𝜇

𝜇 (−|p|, p)
|p|

����
|p |=2𝜋𝑅/𝐿

. (18)

Substituting now |p| = 2𝜋
𝐿
𝑅 and expanding again for large values of 𝐿 yields

Δ𝑚2
r (𝐿) =

𝑒2

2

[
𝑅−2

𝜋

𝑍1P(0)
4𝜋𝐿

+ (𝜋𝑅−1) M(0)
2𝜋2𝐿2 + M ′(0)

𝐿3 + (19)

+
∞∑︁
ℓ=0

(2𝜋𝑅)2ℓ+1

(2ℓ + 2)! 𝐿4+2ℓM
(2ℓ+2) (0) +

∞∑︁
ℓ=0

(2𝜋𝑅)2ℓ+2

(2ℓ + 3)! 𝐿5+2ℓM
(2ℓ+3) (0)

]
.

Combining this result with the QEDL correction in eq. (16) we obtain the full e.m. finite-volume
correction to the mass

Δ𝑚2(𝐿) = 𝑒2

2

[
𝑐1(𝑅)

𝑍1P(0)
4𝜋𝐿

+ 𝑐2(𝑅)
M(0)
2𝜋2𝐿2 + 𝑐0

M ′(0)
𝐿3 + (20)

− 1
2𝜋2

∞∑︁
ℓ=0

(−1)ℓ 𝑐4+2ℓ (𝑅)
𝐿4+2ℓ M (2ℓ+2) (0) +

∞∑︁
ℓ=0

𝑐5+2ℓ (𝑅)
𝐿5+2ℓ M (3+2ℓ) (0)

]
,

where

𝑐0 = 𝑐0 + 1 = 0 , 𝑐1(𝑅) = 𝑐1 +
𝑅−2

𝜋
, 𝑐2(𝑅) = 𝑐2 + 𝜋𝑅−1 ,

𝑐4+2ℓ (𝑅) = 𝑐4+2ℓ +
(−1)1−ℓ𝜋(2𝜋)2ℓ+2

(2ℓ + 2)! 𝑅1+2ℓ , (21)

𝑐5+2ℓ (𝑅) =
(2𝜋)2ℓ+2

(2ℓ + 3)!𝑅
2ℓ+2 . (22)

Some comments on these results are in order. First, we note that the coefficient associated with
the zero mode vanishes, namely 𝑐0 = 0. As anticipated below eq. (8), this is a direct consequence
of the constraint on the weights

∑
k ℎ(k, 𝑅) = 1, which characterizes QEDr among all possible

infrared improvements of the QED action [3]. We can interpret this result as follows: as the volume
increases, the Fourier space becomes denser and, in the infinite-volume limit, the redistributed
modes “reproduce” the zero-mode contribution, which in QEDL would be simply removed. Then,
we note that the other QEDL finite-volume coefficients are shifted by an amount that depends on
the radius 𝑅. For these coefficients, choosing the shell 𝑅 = 1 (|p| = 2𝜋/𝐿 and 𝑤(k, 1) = 1/6)
seems to be the optimal choice. This implementation of QEDr is the one we consider standard
and that we adopt in the rest of the work. Finally, we observe that new (but more suppressed)
finite-volume effects arise at O(1/𝐿5) and higher odd inverse powers of 𝐿. This phenomenon is
associated with the redistribution of the zero mode and to the fact that spatial locality is still broken
in QEDr, as it is in QEDL. In fact, in a local finite-volume formulation of QED, like QEDC, such
contributions would not arise [7]. Nonetheless, the emergence of these new, unknown, higher-order
finite-volume effects does not raise any practical concerns or limitations. This is because, even at
O(1/𝐿4), our knowledge of structure-dependent finite-volume effects is incomplete. The notable

9



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
2
0

Isospin-breaking corrections to weak decays Matteo Di Carlo

advantage of QEDr over QEDL is that systematic uncertainties to finite-volume effects on hadron
masses are pushed to a higher order, specifically to O(1/𝐿4). And for typical lattice extents of
𝑚𝜋𝐿 & 4, the size of such residual power-like finite-volume effects might be comparable with that
of exponentially suppressed finite-volume effects, which are commonly neglected.

In this section, we have focused on hadron masses to illustrate the impact of QEDr on observ-
ables that do not depend on an external momentum. However, similar conclusions can be drawn
for other quantities, such as the e.m. corrections to the HVP contribution to the anomalous muon
𝑔−2. The e.m. finite-volume corrections to the two-pion contribution to the HVP, computed in
QEDL within the point-like approximation and in the photon rest frame, are detailed in ref. [49] and
amount to

ΔΠ̂(𝑞2
0) =

𝑐0

(𝑚𝜋𝐿)3 Ω
(
𝑞2

0/𝑚
2
𝜋

)
+ O

( 1
𝐿4

)
, (23)

where Ω(𝑧) is a dimensionless function. From this result we deduce that QEDr finite-volume
corrections to the 𝜋𝜋 contribution to the HVP only start at O(1/𝐿4). As the inclusion of IB
corrections becomes essential for achieving high precision in lattice calculations of the muon 𝑔−2
(see ref. [28] for a recent review), the use of QEDr can be beneficial in mitigating systematic
uncertainties related to e.m. finite-volume effects.

3.2 Momentum-dependent observables

Let us study now the case of an observable that depends on an external spatial momentum.
We consider here the leptonic decay rate of a meson, which depends on the velocity vℓ = pℓ/𝜔ℓ
of the final charged lepton. As discussed in section 2, the calculation of the leading IB effects to
this quantity suffers from a large systematic uncertainty due to the only partial knowledge of its
finite-volume corrections of O(1/𝐿3). In this case, the realization of the QEDr improvement is
much less straightforward and not automatic. This is due to the appearance in the finite-volume
expansion of the decay rate of finite-volume coefficients like

𝑐 𝑗 (v) =
[∑︁

n≠0
−
∫

d3n
]

1
|n| 𝑗 (1 − v · n̂) . (24)

As shown in ref. [37], the QEDL finite-volume correction ofO(1/𝐿3) to leptonic decay rates contains
both terms proportional to 𝑐0 and terms proportional to 𝑐0(v). While the former are cancelled in
QEDr as an effect of the condition

∑
k ℎ(k, 𝑅) = 1, the latter are not, since the coefficient

𝑐0(v) = 𝑐0(v) +
∑︁

k

ℎ(k, 𝑅)
1 − v · n̂

(25)

is not necessarily zero. As studied in ref. [3], the dependence of the QEDL coefficients 𝑐 𝑗 (v) on
the direction v̂ is a direct consequence of rotational symmetry breaking on a lattice. In fact, these
coefficients can be rewritten as

𝑐 𝑗 (v) =
arctanh( |v|)

|v| 𝑐 𝑗 + 𝑓 𝑗 (v) , (26)

with the functions 𝑓 𝑗 (v) encoding direction-dependent corrections, which get stronger as |v| → 1
and vanish once averaged over the solid angle of v, namely 1

4𝜋

∫
dΩv 𝑓 𝑗 (v) = 0 . This implies that

10
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Figure 3: Angular dependence of the velocity-dependent coefficient 𝑐0 (v) for three different values of |v|.
Positive and negative values of the coefficient are coloured in blue and red, respectively, while white regions
correspond to the directions for which 𝑐0 (v) = 0. Figures are retrieved from ref. [50].

𝑐0(v) is proportional to 𝑐0, up to rotational breaking effects. Since the additional QEDr correction
in eq. (25), once averaged over the directions of v, yields

1
4𝜋

∑︁
k

∫
dΩv

ℎ(k, 𝑅)
1 − v · n̂

=
arctanh( |v|)

|v|
∑︁

k
ℎ(k, 𝑅) = arctanh( |v|)

|v| , (27)

then, considering that 𝑐0 = −1, the QEDr coefficient 𝑐0(v) is zero up to rotational breaking effects.
The angular dependence of 𝑐0(v) is shown in figure 3 for different values of |v| and for the standard
implementation of QEDr with 𝑅 = 1.2 As we see, directions always exist for which 𝑐0(v) = 0,
corresponding to the white regions in the figure. Moreover, we note that as the velocity |v| increases,
a non-trivial fractal pattern arises, which is likely related to number-theoretical properties of the
components of the vector v̂. While | min 𝑐0(v) | remains small, max 𝑐0(v) diverges as |v| → 1,
but at the same time the corresponding positive (blue) regions in figure 3 get more localized and
compensated by larger (red) regions where 𝑐0(v) is negative. This visually verifies that the angular
average of 𝑐0(v) vanishes. We can then summarize two fundamental properties of QEDr, which
hold for any value of |v|:

1. the average of 𝑐0(v) over the solid angle of the velocity is zero;
2. there always exists a direction v̂★ such that 𝑐0(v★) = 0.

We propose here two possible ways, each related to one of the properties above, to implement
the QEDr improvement and set the coefficient 𝑐0(v) to zero in a numerical lattice calculation of
momentum-dependent observables.

One simple approach, which is easily implementable, consists in selecting the velocity with
a direction v̂★ such that 𝑐0(v★) = 0. This process is facilitated by utilizing the C++ code
QedFvCoef [51], which enables a fast evaluation of velocity-dependent finite-volume coefficients,
using an auto-tuned algorithm based on that proposed in ref. [3]. Additionally, it offers a Python
binding with a suite of useful tools, including a notebook that conducts an angle scan and identifies
directions for which 𝑐0(v★) = 0.

Another possibility uses the fact that averaging over the solid angle of the velocity sets 𝑐0(v★)
to zero. In a lattice calculation, we can achieve this result by implementing a stochastic average of
the velocity directions, which are drawn randomly for each measurement. In this way, in the limit

2The pictures reported in figure 3 have been taken from A. Portelli’s talk at this conference [50] and have been generated
using a recently developed software that allows a fast evaluation of velocity-dependent finite-volume coefficients [51].
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Figure 4: Stochastic direction average of the QEDr finite-volume coefficient 𝑐0 (v) at |v| = 0.994. The figure
is retrieved from ref. [50].

of large statistics the stochastic average

〈𝑐0(v)〉v̂ =
1

𝑁meas

𝑁meas∑︁
𝑛=1

𝑐0(v𝑛) (28)

converges to zero. This behaviour is shown in figure 4, where the stochastic average is computed
for |v| = 0.994 and for an increasing number of random directions. We see that few thousands
angles are needed to reproduce the desired result, the number of samples also depending on the
size of the absolute value |v|. Further details on the numerical implementation of this procedure,
as well as proposals to improve the direction sampling will be discussed in a separate publica-
tion. While this procedure comes with a higher computational cost, its notable advantage lies in
eliminating rotational-breaking corrections not only to the coefficient 𝑐0(v) but also to all other
coefficients 𝑐 𝑗 (v).

There is, in principle, also a third way to achieve the QEDr improvement, that we briefly
mention here before closing the section. While the previous two strategies use properties of QEDr

defined in its standard implementation, with weights assigned in an isotropic way to the modes
on the first shell of radius 𝑅 = 1, one could define the QEDr action with anisotropic weights that
depend on the velocity v of the system studied. If the velocity is aligned along a lattice vector,
namely v = 𝛼x, with x = (𝑥1, 𝑥2, 𝑥3) ∈ Z3 and GCD(𝑥1, 𝑥2, 𝑥3) = 1, we identify the modes on the
shell of radius 𝑅 = |x| and assign equal weight 𝑤1 to the two modes along the direction of v and a
different weight 𝑤2 to all the others. We can then tune 𝑤1 and 𝑤2 in such a way that the following
two equations are satisfied

𝑐0(v) = 𝑐0(v) + 𝑤1

(
1

1−|v | +
1

1+|v |

)
+ 𝑤2

∑′
k

1
1−v·n̂ ≡ 0∑

k ℎ(k, 𝑅) = 2𝑤1 + (𝑟3(𝑅2) − 2) 𝑤2 ≡ 1 .
(29)

The sum
∑′

k in the first equation is over the modes not parallel to v and the second equation
guarantees that 𝑐0 = 0. Although potentially effective, the disadvantage of this implementation is
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that one needs to tune the lattice QED action for any specific velocity v. Since we are interested in
computing in the same simulation leptonic decay rates of different hadrons and hence with different
final lepton velocities, we do not employ this implementation in our numerical studies.

3.3 Ongoing numerical investigations

In order to study the properties of QEDr regularization outlined in the previous sections,
numerical investigations are ongoing. On the one hand, a study at unphysical pion masses is being
performed to compare the scaling of hadron masses and leptonic decay amplitudes with the volume
in QEDL and QEDr. Dedicated ensembles with Möbius domain wall fermions have been generated
at pion masses of around 340 MeV and a total of four ensembles are available with lattice sizes
𝐿/𝑎 = {16, 20, 24, 32}. Although the size of finite-volume effects depends on the pion mass, a
comparison of QEDL and QEDr effects is possible also away from the physical point. Different
velocities have also been simulated to test numerically the improvement in choosing a special
direction such that 𝑐0(v★) = 0, to be compared with a “naive” one. On the other hand, parallel
tests of the stochastic direction average are under study on a physical point domain wall fermions
ensemble at a lattice spacing different from the one used in ref. [32], in the context of a large scale
calculation of IB corrections to decay rates of 𝜋, 𝐾 , 𝐷 and 𝐷𝑠 mesons into muons and neutrinos.
This calculation will also allow, in the future, to reduce systematic uncertainties on 𝛿𝑅𝐾 𝜋 associated
with discretization effects. Further details on these investigations and on the ensembles used will
be given in separate publications.

4. Conclusions

In this work we have discussed the current status of lattice calculations of IB corrections to
weak decays, focusing on the two existing calculations of leptonic decay rates of pions and kaons
into muons. Progress is also being made on other weak processes, and a summary of recent works
in the context of kaon decays can be found in ref. [52]. Both calculations discussed in this work have
been performed using the RM123S strategy, where the infrared divergences in the virtual and real
decay rates are regularized by the introduction of an infrared cutoff. The virtual corrections to the
decay rate require a non perturbative evaluation on the lattice and therefore the finite volume with
the QEDL prescription for the photon action is used as an infrared regulator. The removal of the
spatial zero modes of the photon in the QEDL action generates finite-volume corrections atO(1/𝐿3),
which would be otherwise absent in a local theory like QEDC. While corrections to lower orders are
known, the O(1/𝐿3) contribution is only understood in the point-like approximation, ignoring the
internal structure of the decaying meson. Such partial knowledge of finite-volume corrections can
generate large systematic uncertainties, as observed in ref. [32]. In this work, we have introduced
a novel approach to improve the finite-volume scaling of IB corrections in leptonic decay rates and
other hadronic observables. This approach consists in a different treatment of the photon modes
in the finite-volume QED action, that we call QEDr. Instead of removing the spatial zero modes
of the photon, k = 0, these are redistributed over neighbouring modes on a shell of given radius
|k| = 2𝜋

𝐿
𝑅. This strategy eliminates the O(1/𝐿3) correction, shifting the systematic uncertainty to

a higher order. While this improvement occurs automatically for hadronic observables independent
of external spatial momenta, such as hadron masses or the HVP contribution to the muon 𝑔−2,
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it doesn’t apply to momentum-dependent observables like leptonic decay rates. In this case, the
breaking of rotational symmetry in a finite volume makes the cancellation of the terms at O(1/𝐿3)
more intricate. Two methods are proposed to implement the infrared improvement in a lattice
calculation. Both methods are currently under study to test numerically the differences between
QEDL and QEDr prescriptions and the results will be discussed in forthcoming publications. Given
that implementing the QEDr action is a straightforward modification of the QEDL prescription, we
anticipate this new method could significantly contribute to reducing systematic uncertainties in
various calculations of IB corrections.
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