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given to advances in multigrid solvers, fourier acceleration and field transformation approaches to
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1. Introduction

Efficient algorithms are central to research in lattice gauge theory carried out around the world.
Over several decades now gains from algorithmic research and innovation have been at very least
comparable to decades of exponential growth in computing power under Moore’s law.

The generation of gauge configurations importance samples from up to 1010 degrees of freedom
using Markov chain Monte Carlo (MCMC), typically performed using some variant of Metropolis-
Rosenbuth-Rosenbluth-Teller-Teller algorithm[2]. These algorithms notably emerging in high en-
ergy physics and are now used broadly across much of science. The first computer MCMC
simulations were programmed and performed by Ariana Rosenbluth and Augusta Teller on the
“MANIAC” computer at Los Alamos, in scientific computing work that predated the first program-
ming languages and compilers. It is unfortunate that four key authors are often dropped in the
common usage names “Metropolis” or “Metropolis-Hastings” algorithms. The algorithms were
revolutionary as they show how to sample a high dimensional space from an arbitrary probability
distribution. New challenges are emerging however, as simulation parameters have moved on from
the inclusion of of Fermions and the reduction of quark masses to direct simulation at the physical.
Now, further computing power is largely invested in increasingly fine resolution simulations with the
introduction of a new facet to the dynamics of lattice simulations: covering a significantly greater
dynamic range of length scales in a single simulations. Both solver and gauge evolution algorithms
suffer from critical slowing down which necessarily arises as the continuum limit is taken.

The structure of this review is as follows: a background review of the state of the art and and
issues with contemporary lattice algorithms will be given in section 2 and 3. Recent developments
in the area of gauge evolution algorithms are reviewed in section 4, and recent developments in the
area of Fermion solver algorithms are reviewed in section 5.

Throughout, and following the brief of the organising committee, particular attention will
be paid to the interplay between algorithms and computer architecture. High end computing is
increasingly dominated by Graphics Processor Units (GPUs) and the recent trends in computer
architecture can be summarised as follows:

• Peak floating point performance is increasing rapidly, particularly for large matrix multipli-
cation and reduced precision operations.

• Hardware is highly parallel: large amounts of fine grain work are required for good perfor-
mance.

• Memory organisation is complex: small local memory (such as GPU memory) can be much
faster than large globally addressable memory.

• Intranode interconnects are quite efficient, particularly those between GPU’s in the same
computing node.

• Internode interconnect is an increasing bottleneck for parallel calculation.

These trends present both challenges, but also opportunities for new hardware sympathetic algo-
rithms designed to exploit these features.
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2. Gauge configuration sampling and critical slowing down

The most practical forms of simulations with dynamical Fermions make use of some form of
hybrid Monte Carlo (HMC) algorithm developed in the late 1980’s[3]. It is recently common for
HMC to be used in machine learning, where is synonymously labelled “Hamiltonian Monte Carlo”.
The path integral for Euclidean lattice field theory is augmented with an auxiliary Gaussian integral
over additional “momentum” degrees of freedom with the same dimension as the Lie algebra
of the gauge group. These degrees of freedom are sample jointly with the gauge fields, merely
contributing an overall factor to the partition function. The Metropolis proposal for joint sampling
is composed of a Gaussian momentum draw, and an evolution in a fictitious “Monte Carlo time” at
(up to integration errors) constant joint probability. Compared to say, Langevin algorithms[4], this
allows for large(r) changes in the gauge field to be made with good acceptance probability, while
the Metropolis accept/reject step, along with use of a reversible and area preserving molecular
dynamics integration algorithm, ensures the algorithm is exact at non-zero integrator step size.

The Grassman Gaussian integral for Fermions yields the determinant of Dirac operator, and for
two degenerate flavours this may be replaced by a complex Gaussian integral of the inverse of the
squared operator, and is then amenable to numerical integration. Thus the QCD partition function
involving a gauge action 𝑆𝐺 and two flavour pseudofermion for Dirac operator 𝑀 can be cast as,

𝑍 =

∫
𝑑𝜋

∫
𝑑𝜙

∫
𝑑𝑈 𝑒−

𝜋2
2 𝑒−𝑆𝐺 [𝑈 ]𝑒−𝜙∗ (𝑀†𝑀 )−1𝜙 =

∫
𝑑𝜋

∫
𝑑𝜙

∫
𝑑𝑈 𝑒−

𝜋2
2 𝑒−𝑆𝑄𝐶𝐷 [𝑈,𝜙] .

(1)
The HMC Markov transition consists of,

1. Draw gaussian momenta 𝜋 and pseudofermion 𝜙 as gaussian 𝜂 = 𝑀−1𝜙

2. Inner molecular dynamics integration at constant Hamiltonian (i.e. log likelihood):

𝐻 =
𝜋2

2
+ 𝑆𝐺 [𝑈] + 𝜙∗(𝑀†𝑀)−1𝜙. (2)

3. Metropolis acceptance-reject step.

Detailed balance is assured if the molecular dynamics integrator is symplectic (area preserving)
and reversible. If the process is also ergodic the target distribution becomes the asymptotic fixed
point of the Markov process. Importantly, while the tail of Gaussian distribution makes the process
formally ergodic, this may not practically be the case in a bounded amount of simulation time. The
molecular dynamics equations of motion under ¤𝑈 = 𝑖𝜋𝑈, are easily derived via:

¤𝐻 = 0 = 𝜋
[
¤𝜋 + 𝑖𝑈 ·

(
∇𝑈𝑆𝑄𝐶𝐷

)
TA

]
, (3)

Where TA means the traceless anti-hermitian projection, and a finite timestep is performed via
𝑈 (𝑡 + 𝑑𝑡) = 𝑒𝑖 𝜋𝑑𝑡𝑈 (𝑡). The force terms ∇𝑈𝑆𝑄𝐶𝐷 require the inversion of 𝑀†𝑀 at each timestep
of evolution to evaluate the molecular dynamics force. Odd numbers of Fermion flavors can
be handled by rational approximation via the rational hybrid Monte Carlo algorithm[5–7], albeit
requiring positivity of the real eigenvalues which may not always be satisfied for certain lattice
Fermion actions[8]. In the case of domain wall Fermions an exact one flavour algorithm[9, 10] may

3
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be used. Exact algorithms are advantageous[11], but bring a penalty that the cost to maintain a good
acceptance rate increases with lattice volume. For a fairly typical modern lattice of 963 × 192 there
are O(1010) degrees of freedom, and we require to conserve the HMC Hamiltonian to an accuracy
of as much as one part in 1010. This adverse volume scaling leads to several schools of thought
on the asymptotic volume dependence of HMC, with variously advocacy of inexact algorithms[12]
which formally need a step size extrapolation, and also the use of stochastic molecular dynamics to
reduce sensitivity to force spikes[13] in large volumes. However, the vast majority of contemporary
QCD simulation is performed with some variant of HMC at this time.

2.1 Determinant factorisation

The Fermion determinant is estimated stochastically, and different estimates of the Fermion
force can be more or less efficient, yielding different costs and sizes of noise components. A
significant element of cost reduction for dynamical fermions has involved various forms of de-
terminant factorisation into multiple (and ideally computationally cheaper) factors whose product
reconstructs the full determinant. The most common of these is Hasenbusch mass precondition-
ing[14, 15], replacing a single two flavour pseudofermion determinant at a light quark mass with
multiple determinant ratios with intermediate, and gradually increased quark masses and which are
each treated with independent pseudofermion integrals.

det 𝐷†𝐷 (𝑚𝑢𝑑) = det
𝐷†𝐷 (𝑚𝑢𝑑)
𝐷†𝐷 (𝑚ℎ)

det 𝐷†𝐷 (𝑚ℎ)

The forces for nearby masses are reduced, and in the case of a Fermion action with an additive mass
term clearly probing only the lowest eigenvalue modes of the system. The bulk of the fermion force
is in the denser higher eigenvalue region while, the multiple larger quark masses used are relatively
cheap to compute.

A second, common form of determinant splitting is used in domain decomposed HMC
(DDHMC)[16–18]: namely coordinate space Schur factorisation into subdomain cells. DDHMC
encouragingly imposes locality on much of the pseudofermion action with boundary determinants of
a Schur complement. A Fermion operator may be factored around hyper-cuboidal cells partitioning
the lattice into two colors of cell in a checkerboarded fashion:(

𝐷Ω 𝐷𝜕

𝐷 �̄� 𝐷Ω̄

)
=

(
1 𝐷𝜕𝐷

−1
Ω̄

0 1

) (
𝐷Ω − 𝐷𝜕𝐷

−1
Ω̄
𝐷 �̄� 0

0 𝐷Ω̄

) (
1 0

𝐷−1
Ω̄
𝐷 �̄� 1

)
. (4)

det 𝐷 = det 𝐷Ω det 𝐷Ω̄ det
{
1 − 𝐷−1

Ω 𝐷𝜕𝐷
−1
Ω̄
𝐷 �̄�

}
,

The subdomain determinants are purely local, maintaining Dirichlet boundary conditions at the cell
boundaries while the boundary determinant can be integrated on a coarser timestep if the forces can
be kept bounded. The forces may kept limited, to a degree, by spatial separation of “active” links
from the boundary.

Domain decomposition is attractive in two ways. From a computing perspective breaks the
pseudofermion action into strictly local component that involves no communication between do-
mains and ring fences the non-locality in a boundary determinant whose force sizes are in principle

4
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controllable by physically separating updated links whose “force” is evaluated with respect to a
determinant ratio that deviates from unity due only to terms at the boundary between domains.

A third form of determinant splitting is known as the n-roots trick[19], where n-pseudofermions
are introduced each estimating the n-th root of the determinant by rational approximation (with a
corresponding force reduction as this is closer to unity)

det 𝐷 =

(
det 𝐷

1
𝑛

)𝑛
Each factor is not intrinsically of particularly lower cost, however, de Forcrand and Keegan recently
observed with staggered Fermions that the use of block solvers can reduce cost giving an overall
benefit[20].

2.2 Critical slowing down of the HMC algorithms

For hybrid Monte Carlo, the problem of critical slowing down can be easily seen in the case
of free scalar fields[21, 22]. In gauge theories, in the free limit the transverse physical momentum
modes behave as decoupled harmonic oscillators with a period in molecular dynamics time that is
dependent on the momentum (angular wavenumber) 𝑘[23],

𝜔𝑘 =

√︂
𝛽

6
𝑘.

Since the angular frequency in molecular dynamics time is strongly dependent on the virtuality of a
mode, there is a large dynamic range in the size of forces per mode, diverging in the ultraviolet and
requiring both timestep reduction. Further there is no common integration trajectory length that
will simultaneously maximally decorrelate all lengthscales in the sampled field. This gives rise to
a generalised critical slowing down as the continuum limit is taken, associated with the mutiscale
dynamics.

2.2.1 Topological tunneling

It is further the case that topologically indeterminate configurations will receive a diverg-
ing action penalty as the continuum limit is taken due to the gauge action of a non-smooth
configuation[24, 25]. This has been observed empirically to result in topological freezing in
practical simulations, where depending on the gauge and Fermion action simulations with inverse
lattice spacings between 3 and 4 GeV have been seen to become practically non-ergodic with frozen
topology, and thus demonstrable non-ergodicity[24–27]. The interpretation and response to this
fulfill a basic requirement for correctness of a sampling algorithm has been varied and debatable
largely because the only clean solution would be for it not to happen.

It has been recognised that changing the periodic gauge boundary conditions in typical lattice
calculations to being open in the time direction will allow the ends to “flap” and in principle for
topological charge density to flow in and out of the lattice[28]. However, this change of boundary
condition also changes the meaning of global topology on the lattice as a surface term. While this
may fix the symptom, it is possible that there is a generalised critical slowing down and that other
observables may not be similarly be “fixed”. The symptom as an indicator of pathology has been
modified such that it can no longer show the pathology: the cure addresses topological freezing by

5
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making the ends of the lattice “warm”, but it does not necessarily preclude the presence of other
long autocorrelation modes that remain unaddressed.

There is some evidence[29] that generalised slowing down of low-noise long distance ob-
servables may in fact occur with Wilson flowed energy densities also slowing down. With open
boundary conditions both local topological charge activity and energy densities must be observed
away from the modified boundary. The scope for variance reduction from volume averaging in
valence Fermionic correlation is somewhat impaired with open boundary conditions as observables
should not approach the boundaries, and the temporal extents increased. Especially in analyses
where eigenvector deflation and volume averaging of low modes are used (with an 𝑂 (𝑉2) cost), the
increase in lattice volume can be prohibitive.

For these and other reasons, it would be more ideal to address topological freezing by algorith-
mic improvement without modifying the boundary conditions. The problem of topology tunneling
may be sufficiently distinct in nature from a generalised critical slowing down of sampling within
a topological sector that algoritmic solutions may in fact be distinct and complementary. New,
and potentially complementary, ideas addressing topological sampling and fourier acceleration will
addressed in section 4.3 and section 4. This is a point that may be important to keep in mind
when using or investigating critical slowing down in low dimensional proxy models which have a
topological index, but have simpler dynamics than QCD.

3. Critical slowing down of Fermion solvers

In Fermion Krylov solver algorithms, critical slowing down is dictated by the domain in the
complex plane overwhich a Krylov solver polynomial must accurately reproduce the reciprocal
of each eigenvalue of the matrix. In the case of Hermitian solver algorithms, critical slowing
down is dictated by the condition number, 𝜅, as the ratio of the highest to smallest eigenvalues.
Krylov solvers select the best solution (under some metric) in the space spanned by polynomials
of the matrix applied to the right hand side that is being solved, and the growth of this domain of
approximation causes growth in the number of solver iterations and loss of algorithmic efficiency.

In the case of conjugate gradient on the squared operator, a sketch of critical slowing down
may be performed for Wilson Fermions with a free field analysis, 𝜅 = 64

𝑎2𝑚𝑢𝑑
. A minimax analysis

based on Chebyshev polynomials [30] leads to a worst case bound on the residual reduction per
iteration of

𝜎 =

√
𝑘 − 1

√
𝑘 + 1

. (5)

This bound will be saturated in the large volume limit where the spectrum becomes dense. An
estimate for the number of iterations required to solve to a given residual reduction tolerance Tol is
then,

𝑛 = (− log Tol)
√
𝜅

2
∼ (− log Tol) 4

𝑎𝑚𝑢𝑑

,

and thus diverges as the continuum limit is taken at fixed physical quark mass.
For Wilson and Wilson-clover Fermions, multigrid algorithms have addressed this critical

slowing down[31–39], at least for calculation of valence propagators. The approach is also success-
ful for twisted mass fermions[40–42], however challenges remain significant for staggered[43–45]

6
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and domain wall Fermion/chiral Fermion discretizations[46–50]. Multigrid algorithms will be
discussed in more detail in section 5.

There remains potential for substantial benefit from reducing the set up cost of multigrid
algorithms, even for the Wilson Fermion discretization, in order to fully realize the same benefit for
gauge configuration generation [13, 51]. An alternative that has been widely used includes the use of
both standard eigenvector deflation and also use of a multigrid compressed local coherence Lanczos
for both staggered and domain wall fermions[52]. These are algorithmically less exciting and more
brute force than multigrid, having a cost of𝑂 (𝑉2) in terms of both computation and storage, but can
be very effective particularly when combined with all-mode-averaging [53, 54] and the all-to-all
volume averaging approach[55]. Efficient volume averaging in the low mode space gives additional
statistical advantages not necessarily present using multigrid for certain calculations.

3.1 USQCD SciDAC-5 project

The USQCD collaboration has recently embarked on a five year funded programme to develop
multiscale algorithms required to exploit the opportunities affored to high energy physics (HEP) by
multiple, new exascale computer systems. The aim is to directly impact the four dimensional QCD
HEP simulations being undertaken by USQCD, recognising that these are currently predominantly
performed using the domain wall and staggered Fermion actions. Three areas of work were identi-
fied: firstly the development of domain wall and staggered Fermion multigrid approaches with the
aim to develop supremacy over existing (multigrid) eigenvector deflation methods. In this effort the
HEP domain scientists are working with leading mathemtical and computer science researchers in
the SciDAC FastMath institute. In particular, Wilson, domain wall and staggered fermion discreti-
sations have been implemented in the PETSc PDE solver package, exposing lattice gauge theory
problems to a broader scientific community. Secondly the development of transformational HMC
algorithms, displaying some form of successful Fourier acceleration and addressing critical slowing
down, pursuing multiple possible direction including field transformation HMC[56], gauge fixed
fourier accelerated HMC[23, 57] and Riemannian manifold HMC[58, 59]. Finally, the develop-
ment and adoption of domain decomposed HMC evolution for DWF and staggered formulations
with the aim of reducing the sensitivity of our sampling algorithms to computer communication
performance[60]. In the long term it will expose our unique problems to a significantly broader
community of algorithmic experts in a programme of joint research. Some results of the SciDAC
effort will be reported in this review, while the idea that algorithmic research effort accompany the
world wide investment in supercomputing is important to realising the full benefit of the computing.

4. Acceleration of HMC

Gauge invariant Fourier acceleration of HMC[61] was introduced to address critical slowing
down, taking the Fourier analysis point of view appropriate to the ultraviolet limit discussed in
section 2. Riemannian Manifold HMC[62] (RMHMC) is an independently developed generalisa-
tion, incorporating a generalised field dependent metric function 𝐻 [𝑈], weighting the conjugate
momentum distribution. The introduction of a symplectic implicit integrator was an important key

7
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improvement over the earlier proposal[61]. The HMC integral is re-written as∫
𝑑𝜋𝑈

∫
𝑑𝜋𝜙

∫
𝑑𝜙

∫
𝑑𝑈 𝑒−

𝜋𝑢𝐻𝜋𝑢
2 𝑒−

𝜋𝜙𝐻−1 𝜋𝜙

2 𝑒−𝑆𝑄𝐶𝐷 [𝑈 ]𝑒−𝜙∗𝜙,

where the gauge momenta 𝜋𝑈 are spectrally colored by a functional 𝐻 [𝑈] and the required Jacobian
factor is cancelled with an additional, auxiliary Gaussian integral. Chulwoo Jung, following earlier
work by Guido Cossu has applied RMHMC to four dimensional QCD simulations demonstrating
that long distance quantities decorrelate faster with RMHMC, when measured in units Fermion
force evaluations[58, 59]. The functional 𝐻 [𝑢] was originally[61] a simple low pass filter of
the gauge Laplacian operator, but has been updated [59] to use arbitrary rational functions that
can be shaped to anti-correlate the RMHMC metric with the measured force per eigen-mode of the
Laplacian and help reduce integration errors. However, the implicit integrator on the gauge timestep
is considerably more expensive, and a gain in execution time has not yet been demonstrated. Further
work is required to understand whether this is a software implementation limitation that might be
addressed with optimisation (or be computer architecture dependent), or if this requires further
algorithmic improvement to become translate into an execution time gain for QCD.

0 2 4 6 8 10
Fermion steps

0

5e-06

1e-05

1.5e-05

2e-05

d
E

(1
6
)

HMC(0.1x10)

g_x3_2(0.03x10) δE(16) vs Fermion steps 

32
3
x64 2+1+1f 1/a ~4Gev

 0.58

 0.582

 0.584

 0.586

 0.588

 0.59

 0.592

 0.594

 0  20  40  60  80  100  120

Stout plaquette FT-HMC 

reference ensemble

Figure 1: Left: Fourier acceleration of HMC can differentially accelerate the decorrelation of infrared
distance observables such as the Wilson flowed energy 𝐸 (16) in RMHMC[59], when measured against the
number of Fermion integration timesteps. Right: Field transformed HMC evolution with one a single step
of stout-like flow in 2+1f DWF evolution, demonstrating evolution with the inclusion of Fermions by the
USQCD SciDAC-5 project.

An alternate form of Fourier acceleration involves an approximately fixed (soft covariant)
gauge, in the gauge fixed fourier accelerated HMC presented by Yikai Huo[23, 57]. Since the
gauge is (stochastically) fixed, this approach can make use of fast fourier transform for the Fourier
acceleration of the momentum distribution.

4.1 Flowed HMC algorithms

There has been a significant growth in activity loosely based on Luscher’s Wilson flowed HMC
algorithm[26]. This loosely can be viewed as being divided into two classes of approach. Complex
flows into the deep infra-red, and even all the way to the trivial strong coupling limit, are being
constructed in a way that can be machine learned producing generative/trivialising maps. Machine
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learning based lattice approaches[63–84] were reviewed separately[1]. In this review we consider
predominantly simple flows, targeting the UV region and retaining a momentum based local update
with field transformation FT-HMC. These directions take the view that it might be substantially
easier to map QCD to QCD at nearby couplings than to trivialise all the way to strong coupling
limit.

In this usage, the flowed algorithm can be thought of as a UV smearing function 𝑈 (𝑉) that
gives tunable Fourier acceleration but very much incomplete trivialisation as a form of change of
variables in the path integral:∫

𝑑𝑈𝑒−𝑆 [𝑈 ] =

∫
𝑑𝑉

����𝑑𝑈𝑑𝑉 ���� 𝑒−𝑆 [𝑈 (𝑉 ) ] .

Whereas RMHMC and GFFAHMC change the momentum distribution to “avoid pushing too hard”
in UV degrees of freedom, the FTHMC approach is to retain gaussian momenta but introduce a
change of variables that differentially “gears” UV and IR modes between the HMC integration
variable 𝑉 and the physical gauge field 𝑈. In order to be practical, this change of variables must
be both cheap and have a cheaply computable Jacobian. Transformations targeting the UV region
can be more local and so cheaper, but may enable a Fourier acceleration gain. While the original
Luscher proposal used a continuous Wilson Flow, the SciDAC USQCD project is retaining a discrete
flow step, similar to Stout smearing, but with 2𝑁𝑑 colored subsets of the links updated one after the
other to retain a computable Jacobian with stout parameter 𝜌 = 0.1.

This was first demonstrated as quenched FT-HMC and using a general set of Wilson loops
[56]. It has been reimplemented for the plaquette flow in Grid[85, 86], and is now running in four
dimensional QCD with dynamical Fermions for the first time. The algorithm is under tuning in the
USQCD SciDAC project. An example plaquette log is shown reproducing the reference HMC 2+1f
plaquette in figure 1 for 𝐿𝑠 = 16 Domain wall fermions with the Iwasaki gauge action on a 163 ×48,
𝛽 = 2.13, 𝑚𝑢𝑑 = 0.01, 𝑚𝑠 = 0.04 2+1 flavour ensemble. This made use of TWQCD’s exact
one flavor algorithm for the strange quark[9, 10]. The software was developed under USQCD’s
SciDAC-5 Workpackage, and was run on AMD GPUs on the ORNL Frontier computer. The
field transformation overhead is significant but at around 35%, but sub-dominant compared to the
Fermion force. The FT-HMC overhead is significantly more scalable than the Fermion solvers since
the costly elements of the Jacobian force are trivially parallel.

It remains to be seen whether any (or all) of the Fourier acceleration approaches to HMC
(RMHMC, FTHMC, GFFAHMC) lead to a net simulation time speed up, however there are
clear indications that these methods can in principle address the underlying critical slowing down
mechanism given the RMHMC results fig 1. In the case of FTHMC cost overheads are at least
close to being small (even at large Fermion mass) making these algorithms encouraging.

4.2 Trivialising flows

Machine learning sampling algorithms are reviewed elsewhere in this conference[1]. However,
some comments here may be appropriate. We might expect poor volume and dimensionality
scaling for learned proposals, such as machine learned or generative flows, if an attempt is made
to fully trivialize the theory, arising from the volume dependence discussion in section 2. A fully
trivialized generative algorithm: turning random seeds into gauge configurations and obviating the

9
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need for costly sampling and data files is perhaps rather optimistic. The volume dependence may
either manifest itself as exponentially poor acceptance rates or small effective sample size, unless
subvolumes of only limited size are being updated.

A conventional Markov update makes a local proposal in state space, and while this leads
to autocorrelation of configurations, the reason for this choice is powerful: having discovered at
significant cost the likeliest regions of a very high dimensional state space the algorithm naturally
tries to explore this region without giving up this knowledge. Fortuneately it may be sufficient to
drive QCD sampling with a more local flow that resembles UV filtering to address critical slowing
down, and retain the sequential proposal in Markov state space of HMC.

More complex and learned flows than simple small Wilson loops flow may be advantageous
even in such partial trivialisation. Volume scaling could be addressed if updates/or substitutions
on subvolumes of limited size are used to maintain acceptance. Since the (pseudo) Fermion action
is non-local, effective use of such methods will likely have to mastering some form of Fermion
determinant domain decomposition as an important element[75].

4.3 Parallel tempering and topological tunneling

Parallel tempering, also known as replica exchange Monte Carlo, has been successful in
addressing critical slowing down in numerous statistical systems[87–90]. The idea is to jointly
sample multiple ensembles, including proposals of configuration swapping between ensembles,
with sufficiently nearby parameters (masses, temperatures or couplings) that a non-zero cross
acceptance may be likely. However early attempted uses in QCD it suffered from poor cross-
acceptance probability for physical systems, despite attempts at action matching[90].

Since strong coupling simulations to do not develop the problems of ergodicity that result
in frozen topology and other critical slowing down, it is clear that parallel tempering or some
other form of communication between strong and weak coupling simulations can drive topological
sampling, and the problem is “only” finding an algorithm of sufficient efficiency. There has
been a significant recent effort developing parallel tempered boundary conditions enabling the
unconstrained topological sampling of open boundary conditions in the 𝐶𝑃(𝑁 − 1) model[91–
93] and in quenched 𝑆𝑈 (𝑁) gauge theory[94–96], with impressive improvements to topological
sampling without changing they physical boundary condition, fig 2. The extension of this to the
dynamical fermion case, with the non-local pseudofermion action is non-trivial but appears to
clearly be possible using techniques such as domain decomposition and it appears these directions
may finally provide a clean solution to the problem of global topological freezing in the near future.
Results were presented extending this approach to twisted boundary conditions[97].

It was been pointed out in this conference the crossing probability could likely be enhanced by
introducing a (machine learned) field transformation and Jacobian when proposing replica switching
ensembles in parallel tempering[69]. Further it was proposed that this could also be performed on
subvolumes of the lattice in defect-repair replica exchange (DR-REX). The idea that subvolumes of
size appropriate to a typical physical instanton may be swapped appears intuitively attractive. The
proposals directly addresses concerns about both volume scaling and action parameter differences
that have hampered the historical applications of parallel tempering in QCD simulation.

Further, work in the 2D Schwinger model addressing the need to include non-local pseud-
ofermion action was presented, using a well motivated domain decomposition scheme[75] in a
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heirarchical swapping scheme. This approach seems to include many ingredients required for
successful treatment of both Fermions and good volume scaling.

Recent methods also connecting to stronger coupling as a heat bath to drive improved sampling
include the use of parallel tempered metadynamics [98], fig 2, and out of equilibrium simulation[99].
An approach called the decimation map was introduced in 2D quenched 𝑈 (1) to integrate out a
subset of link degrees of freedom[100] and produce an effective action, with large acceleration of
topological degrees of freedom.

0 10000 20000 30000 40000 50000
Monte Carlo time

-2

0

2

Q
c

V = 164, β = 1.25, DBW2 action

1HMC

1HB+4OR

PT-MetaD (4stout)

Figure 2: Left: SU(6) pure gauge evolution with parallel tempered boundary conditions[96]. Right:
Parallel tempered metadynamics simulation with quenched DBW2 gauge action evolution[98]. In both
these algorithms, a topological sampling problem has fixed in quenched 4D simualtion without changing the
physical boundary condition representing the ideal solution to the problem (c.f. sec 2.2.1).
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Figure 3: Left: Hierarchical domain decomposed, flowed parallel tempering with fermions in 2D Schwinger
model[75]. This approach includes many ingredients required for successful treatment of both Fermions and
good volume scaling, and so is very encouraging. Right: Decimation map accelerates topological sampling
in 2D quenched 𝑈 (1)[100].

4.4 Multi-level integration

A substantial recent effort has been undertaken in the direction of multilevel integration of
four dimensional 𝑆𝑈 (𝑁) gauge theory[101], with the inclusion of Fermions[102] and progression
to demonstration in hadronic correlation functions[103] and the phenomenologically important
and timely calculation of the hadronic vacuum polarization[104]. The approach (with fermions)
uses elements from the domain decomposed HMC. The lattice is broken into subdomains Λ0, Λ2,
and an intermediate domain Λ1. A first pass sampling is performed with 𝑁1 samples, and these
are then held frozen in the in interstitial domain Λ1. For each of these samples, 𝑁2 samples are
independently from each of Λ0 and Λ2 with the other links held fixed, and a composite set of
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𝑁 = 𝑁1 × 𝑁2
2 gauge configurations may be formed that is quadratic in the cost 𝑁2. The action on

each composite configuration can be estimated and reweighted adapting elements of the domain
decomposed HMC to handle the fermion determinant with the reweighting factors bounded by the
width of the interstitial domain Λ1.

The approach requires the same quadratic enlargement of 𝑁1 × 𝑁2
2 valence measurements, and

is most amenable to Wilson-type fermion actions for which multigrid methods are highly efficient,
while the approach is presently somewhat less attractive for domain wall and staggered formulations
and calculations using all-to-all methods based on eigenvector deflation.

In this conference, multilevel integration results were shown demonstrating exponential reduc-
tion of signal to noise for the quenched gluebal spectrum [115], demonstrating the potential of these
approaches.

4.5 Master field simulation

An approach to calculation dubbed master field simulation has recently been advocated[13,
105–107]. The proposal observes firstly that in a sufficiently large volume variance of observables
is reduced in line with the volume, an observation known for years as volume averaging, but
specifically that when carefully treated the correlation of observables under translation can be used
to infer statistical variance. Thus with an equilibrated configuration in a sufficiently large volume
in principle statistical averaging is no-longer required. This rigorizes heuristic arguments that have
been made for a long time about a configuration of macroscopic size. The second observation is
that sensitivity global topology, an issue cutting across many contemporary QCD simulations, is
vastly reduced if 𝑚𝜋𝐿 ∼ 25.

Several algorithmic directions have been taken, including a switch from HMC to Stochastic
Molecular Dynamics, to address integrator stability. The challenge, is of course, equilibrating the
lattice in a bounded time and with sufficient systematic control. There is a certain protection in
normal MCMC against non-equilibration because the variance of the data falls as 1√

𝑁
while the

bias from non-equilibration falls as 1√
𝑁

in the sample size. The direction, however is in principle a
good one for modern exascale computers which weak scale well but do not strong scale. It is very
likely that the spirit of the approach will manifest itself in future simulations with lower trajectory
counts and very much larger lattice volumes, combined with error estimation making use of the
spatial correlation of observables.

4.6 Domain decomposition

The DDHMC algorithm has for some time been used, and optimised for CPU architectures
with the subdomains sized to suit a CPU cache memory, and delivered very high floating point
performance for QCD on suitable architectures[110]. The small cell IR regulates Dirichlet solve
and limits the cost. DDHMC has historically been used for two degenerate Wilson light flavours
[110–114], The “boundary” determinant is projected (P�̄�) to exterior boundary of a subdomain,

𝑅 = P�̄� − P�̄�𝐷−1
Ω 𝐷𝜕𝐷

−1
Ω̄
𝐷 �̄� 𝑅−1 = P̂�̄� − P̂�̄�𝐷−1�̂� �̄�.

This would require a nested solver if used in a rational approximation, and so the strange quark
determinant cannot be handled.

12
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A recent proposal has been to use a form of DDHMC with large cells, tuned to the largest
subvolume that is natural to process with an multi-GPU exascale node[60]. This gains from
communication avoidance in systems with large floating point throughput but relatively limited
interconnect performance, and also aligns with the master field idea of substantially larger physical
volumes but shorter ensembles. The infra-red protection of subdomain solver cost is reduced
with large cells, but is partly compensated by a correspondingly reduced force from the boundary
determinant. With such a large domain, broader inactive zones are possible, especially in a master
field simulation, enabling larger force suppression. The perturbative massless zero momentum two
point function is proportional 𝑡−3 suggesting the force suppression will fall at short distances faster
than indicated by a pion mass estimate.

The authors remove the boundary projector in the pseudofermion, and rather (writing �̃� as the
Dirichlet operator) use a determinant ratio four dimensional pseudofermion, rewriting:

det
{
1 − 𝐷−1

Ω 𝐷𝜕𝐷
−1
Ω̄
𝐷 �̄�

}
=

det 𝐷
det �̃�

.

This introduces a (noiser) four dimensional pseudofermion estimator of the 2 flavour boundary
determinant, as

𝑆2 𝑓 = 𝜙†𝐷dirichlet(𝐷†𝐷)−1𝐷†
dirichlet𝜙,

but importantly is in a form where one can now take fractional powers. Here, the RHMC n-roots
trick applied to the boundary determinant reduced forces substantially:

𝑆𝐵1 𝑓 = 𝜙
†
1(𝐷

†
dirichlet𝐷dirichlet)

1
4 (𝐷†𝐷)− 1

2 (𝐷†
dirichlet𝐷dirichlet)

1
4 𝜙1,

Figure 4, and also enables domain decomposition for odd flavours (i.e. the strange quark). Using
iteration counts from a DWF physical quarm mass evolution, the SciDAC project estimates the speed
up as a function of the ratio of the cost of communicating Dirac operator to the non-communicating
Dirac operator, figure 4.
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Figure 4: Left: DDHMC boundary determinant forces within a two domain simulation, with different
estimators of the determinant. The 4D pseudofermion approach is noiser than the boundary projected
pseudofermion, but these forces are reduced if a 1+1f approach is taken using the n-roots trick. Domain
decomposition with odd 𝑛𝐹 is enabled. Right: Projected speed up is estimated as a function of a ratio of the
communicating Dirac operator to the non-communicating Dirac operator.
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5. Multigrid and solver algorithms

Multigrid approaches in Lattice field theory have been transformative for calculations with
Wilson, clover and twisted mass fermion actions. The key idea is to introduce two complementary
preconditioners for the highest and lowest ends of the spectrum. The low modes are handled
in a preconditioner that approximately captures much of the low mode degrees of freedom and
repeatedly reduce these elements in the residual in an outer Krylov solver. So long as the composite
preconditioned system is well conditioned the solver converges rapidly.

The observation that many low modes are locally similar has been made in various ways,
namely as the weak approximation property[108] also called local coherence[31]. The basic idea is
that in some way a number of vectors are generated that lie within the space spanned by the lowest
modes. These are subsequenty chopped into many disjoint hyper-cuboidal subvectors with some
blocking factor. The span of these sub-block vectors is vastly bigger than the span of the original
vector set, and we empirically find can approximately contain the complete set of lowest modes due
to the observation of local coherence. Since eigenvalues are gauge invariant but eigenvectors are
covariant, the obvious way to generate these vectors and so “define” a local averaging in a block is by
using the covariant Dirac operator itself to filter out the near null space of the operator. “Important”
basis vectors 𝜙𝑘 (𝑥) lying in the near null space are typically generated by repeated application of
an approximate inverse of the matrix to a random vector, perhaps using the first multigrid solver to
improve it’s own subspace, and more generally can be thought of a spectral filtering problem. Once
obtained, these vectors are obtained, they are restricted to disjoint blocks 𝑏 and orthonormalised.
The span of these block vectors 𝜙𝑏

𝑘
(𝑥) is much larger than the span of the 𝜙𝑘 (𝑥), and due to local

coherence includes many low eigenmodes as a subspace. The sharp edges however introduce high
mode spectral leakage when a coarse grid correction is applied and the composite preconditioner
performs best if fine-grid post-smoothing is included. Coarse degrees of freedom defined by inner
product with defining a projector to this subspace 𝑆, and it’s complement 𝑆.

𝑃𝑆 =
∑︁
𝑘,𝑏

|𝜙𝑏
𝑘⟩⟨𝜙

𝑏
𝑘 | ; 𝑃�̄� = 1 − 𝑃𝑆 (6)

A faithful representation of the Dirac matrix may beformed within the subspace spanned by these
|𝜙𝑏

𝑘
⟩ by calculating all non-zero matrix elements of the operator.

𝑀 =

(
𝑀�̄��̄� 𝑀𝑆�̄�

𝑀�̄�𝑆 𝑀𝑆𝑆

)
=

(
𝑃�̄�𝑀𝑃�̄� 𝑃𝑆𝑀𝑃�̄�

𝑃�̄�𝑀𝑃𝑆 𝑃𝑆𝑀𝑃𝑆

)
(7)

The coarse grid matrix is also known as the little Dirac operator,

𝐴𝑎𝑏
𝑗𝑘 = ⟨𝜙𝑎

𝑗 |𝑀 |𝜙𝑏
𝑘⟩ ; (𝑀𝑆𝑆) = 𝐴𝑎𝑏

𝑖 𝑗 |𝜙𝑎
𝑖 ⟩⟨𝜙𝑏

𝑗 |. (8)

and the subspace inverse can be solved by Krylov methods. It is important to note that 𝐴 inherits a
sparse structure from 𝑀 because well separated blocks do not connect through 𝑀 .

In the case of Wilson, clover and twisted mass Fermions the Dirac operator is one-hop and
spectrally amenable to invert with non-Hermitian Krylov solver algorithms, such as GCR and
BiCGstab. The five dimensional matrix of Mobius and Domain wall Fermions have a spectrum that
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completely encloses the origin in the complex plain due to the large negative Wilson mass term.
In the infinite volume limit, this spectrum is dense and a Krylov solver must use a polynomial to
approximate 1/𝑧 over this domain of the spectrum. Thus[50] there is an integral one can perform
on any possible Krylov polynomial that differs from the true solution so that these must differ. This
manifests itself in very slow convergence (of order the system size). The observation is commonly
stated as non-hermitian Krylov solvers having a “half plane condition”[109] such that all eigenvalues
should lie in one half of the complex plane.

The consequence of this is that, to date, only four approaches to Domain Wall Fermions have
had any measure of success: squaring the operator and coarsening a 2-hop (unpreconditioned
squared matrix)[46]; or 4-hop (red-black preconditioned squared operator)[47]; and restricting the
action to the 𝑐 = 0 subspace of Mobius and coarsening the hermitian indefinite operator (with real
spectrum) Γ5𝑅5𝐷𝑑𝑤 𝑓 [48, 50]; and finally coarsening both the Pauli Villars and the Domain wall
operator and solving the combination 𝐷 (𝑚 = 1)†𝐷 (𝑚 = 𝑚𝑢𝑑) in a non-Hermitian preconditioned
system that successfully transforms the spectrum to a half plane[49].

HISQ fermions include a three hop Naik term. Fortunately, if the cell size is at least 34 this does
not imply more than one hop in the coarse space. Significant progress has been made with Kahler
Dirac preconditioning [44, 45], however further research continues under the SciDAC-5 project
to make a multigrid that becomes the method of choice for staggered valence analysis compared
to (say) eigenvector deflation. An additive Schwartz preconditioner was introduced for staggered
Fermions at this conference[117].

Under SciDAC-5 the Grid software package[85, 86] has been updated to support 1-hop, 2-hop
and 4-hop coarsening schemes connecting a general coarse matrix stencil ranging from displace-
ments (−1,−1,−1,−1) to (1, 1, 1, 1) for up to 33 = 81 points in the stencil. This is performed
using a “ghost zone” halo exchange of depth one, and the communication cost does not particularly
grow with the stencil size. When the number of basis vectors is large the volume of data in matrix
elements 𝐴𝑖 𝑗 is much greater than the volume of data in a coarse vector and the cost of applying the
coarse operator is dominated by the cost of fetching these coefficient matrices. The coarse operator
implementation in Grid has therefore been updated to support application to multiple right hand
sides concurrently. Further, there are relatively new, convenient and well optimised machine learn-
ing targeted “batched BLAS GEMM” routines for performing a list of many general matrix-matrix
multiplications. Software interfaces are available under CUDA, HIP, and SYCL interfaces easing
portability across modern GPUs. The arithmetic for a single displacement in the stencil of the
coarse operator can be posed as a batched GEMM call,

𝐶𝑁𝑏𝑎𝑠𝑖𝑠×𝑁𝑟ℎ𝑠
(𝑥) = 𝐶𝑁𝑏𝑎𝑠𝑖𝑠×𝑁𝑟ℎ𝑠

(𝑥) + 𝐴
𝑝

𝑁𝑏𝑎𝑠𝑖𝑠×𝑁𝑏𝑎𝑠𝑖𝑠
(𝑥) × 𝐵𝑁𝑏𝑎𝑠𝑖𝑠×𝑁𝑟ℎ𝑠

(𝑥 + 𝛿𝑝),

and it is relatively easy to obtain O(24) Tflop/s per node in double precision on the Frontier
supercomputer (for example). By using these interfaces, access is given to tensor multiplication
hardware with significantly increased peak and actual floating point throughput. The performance
is good because the matrix ranks are significantly larger than arises with 𝑁𝑐 = 3 fine grid operations.
It is wise for Lattice software to take the opportunity to use machine learning targeted hardware
when appropriate.

The SciDAC project’s multiple right hand side version of HDCG[47] currently gives a factor
of around five fold gain over on 483 at physical quark masses with domain wall fermions. This is
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projected to rise to nearer fifteen fold when a coarse grid deflation bottleneck is also implemented
using batched GEMM, and the algorithm is intended to accelerate the calculation of the hadronic
vacuum polarisation on volumes that are too large for eigenvector deflation to be tractable. Flexible
stencil patterns (9 point, 33 point and 81 point) are supported to enable coarsening of a number of
Fermion operators (and products of them[49]). Fast subspace setup using chebyshev polynomial
filters[48] is being investigated.

A neural network based multigrid was presented [81, 118, 119]. This uses a covariant (called
equivariant) parallel transport layer to build a large stencil operator in a neural network, figure 5. The
space of multilayer networks contains a Krylov polynomial of a coarse grid operator as subspace,
so this can at some level be view as a generalisation or superset of conventional lattice coarse
grid corrections. However, from another perspective their neural network idea replaces an iterative
Krylov or polynomial of a coarse grid operator designed to represent the Dirac operator, with a
larger coarse grid object trained to directly approximate the inverse of the Dirac operator. On small
volumes the method works well from an algorithmic perspective, with both covariant high and low
mode preconditioners demonstrating efficacy and also reduced cost transfer of set up cost across
gauge configurations. It will be interesting to see if the approach scales to larger volumes and light
quark masses with a gain in time to solution.
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Figure 5: Left: Gauge equivariant neural networks are trained[81] with parallel transport stencil layers to
directly approximate the inverse of the Dirac operator on a coarse grid. This differs from conventional lattice
multigrid where the operator itself is approximated and an iterative inversion of the approximation is used in
the coarse grid correction. Right: Elimination of Fermionic critical slowing down on a Wilson-clover test
system[81].

6. Conclusions

The author is pleased to comment that there are a significant number of promising directions
being pursued by the field. Firstly, the recent development of (quenched) parallel tempered boundary
conditions[91–96] (supplemented by related defect-repair replica exchange[69] or local updates
[75]) offer a path to resolving global topological freezing. Possibly combined with some form of
Fourier acceleration or flowed HMC there are routes that may plausibly address critical slowing
down in gauge evolution. Clearly continued investment algorithmic research is required and very
much worthwhile. The current focus of the field on trivialisation may be more ambitious than is
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required to solve our problems. It is surely easier to “match” the distribution of gauge fields in an
evolution at the weakest coupling for which we ergodically sample to an even weaker coupling than
to trivialise all the way to the strong coupling limit. The locality and cost of the corresponding flow
is likely favourable and the author does not believe that the volume scaling of effective sample sizes
will make entirely dropping HMC based evolution a likely outcome. New multigid approaches
are being studied for domain wall and staggered fermions, while new approaches to use covariant
neural networks to directly approximate the coarse space inverse, and avoid , have been proposed.
In multigrid, it has been established that multiple right-hand-side solvers can reduce the cost of
the course space in multigrid substantially and align the arithmetic operations in a large part of
QCD calculations with the hardware that has emerged for machine learning, delivering very high
performance.
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