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1. Introduction

The Standard Model of particle physics has the fascinating property that each of the five different
fermion representations of the gauge group 𝑆𝑈 (3) × 𝑆𝑈 (2) × 𝑈 (1) comes in three copies, the
generations [1–5]:
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The species labels 𝑢, 𝑐, 𝑡, 𝑑, 𝑠, 𝑏, 𝑒, 𝜇, 𝜏 are called flavors. The ′ indicates the use of the gauge basis.
In the absence of flavor-violating interactions, we would have a 𝑈 (3)5 global flavor symmetry. In
the Standard Model, the only origin of flavor symmetry violation (and CP violation) is the Yukawa
interaction of the fermions with the Higgs field 𝜙 [4, 6]:
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When 𝜙 acquires its vacuum expectation value ⟨𝜙⟩ = (0, 𝑣/
√
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fermion mass terms. In the quark sector, the unitary field transformations that diagonalize the mass
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do not cancel in the charged current coupling to the𝑊 field,
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giving rise to the unitary Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix

𝑉 =
©«
𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏

𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏

𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏

ª®®¬ . (5)

After eliminating unobservable phase factors, 𝑉 can be written in terms of four parameters.

Some of the fundamental questions in flavor physics are:

• What is the origin of the three generations?

• What is the origin of the hierarchies in the fermion masses and mixing matrices?
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• Are there other sources of flavor-violating interactions and CP violation beyond the Standard
Model?

In most of the more fundamental theories that have been proposed to address the deficiencies of the
Standard Model, the answer to the third question is “yes”. The precision study of flavor-changing
processes is therefore a powerful tool for discovering new physics. Lattice-QCD calculations play
an essential role in this effort, as discussed in the following.

2. Main processes used to determine the CKM parameters

An insightful parametrization of the CKM matrix was proposed by Lincoln Wolfenstein 40 years
before this Lattice conference [7]. This parametrization is based on the observation that 𝑉 is close
to the identity matrix. Among the off-diagonal elements, 𝑉𝑢𝑠 was already well determined to
be close to 0.22, and Wolfenstein estimated 𝑉𝑐𝑏 ≈ 0.06 from the 𝐵 meson lifetime that had just
been measured at the PEP storage ring [8]. This hierarchy suggested an expansion in powers of a
parameter 𝜆, where 𝑉𝑢𝑠 is of first order and 𝑉𝑐𝑏 is of second order. Writing 𝑉𝑢𝑠 = 𝜆 and 𝑉𝑐𝑏 = 𝐴𝜆2

and imposing unitarity gives the two-parameter approximation

𝑉 =
©«

1 − 1
2𝜆

2 𝜆 0
−𝜆 1 − 1

2𝜆
2 𝐴𝜆2

0 −𝐴𝜆2 1

ª®®¬ + O(𝜆3). (6)

At higher orders, two additional parameters, denoted as 𝜌 and 𝜂, are needed. Imposing unitarity
yields the form

𝑉 =
©«

1 − 1
2𝜆

2 𝜆 𝐴𝜆3(𝜌 − 𝑖𝜂)
−𝜆 1 − 1

2𝜆
2 𝐴𝜆2

𝐴𝜆3(1 − 𝜌 − 𝑖𝜂) −𝐴𝜆2 1

ª®®¬ + O(𝜆4). (7)

In 1983, only upper limits on 𝜌 and 𝜂 were available [7], and there has been a lot of progress
since then. In the next few subsections, I will discuss the current status of determinations of the
CKM parameters and the relevant inputs from lattice QCD, following the hierarchy encoded in the
Wolfenstein parametrization.

2.1 Determination of 𝝀

The exact definition of this Wolfenstein parameter is 𝜆 =
|𝑉𝑢𝑠 |√

|𝑉𝑢𝑑 |2+|𝑉𝑢𝑠 |2
[9]. Assuming the CKM

unitarity relation |𝑉𝑢𝑑 |2 + |𝑉𝑢𝑠 |2 + |𝑉𝑢𝑏 |2 = 1 and neglecting the very small |𝑉𝑢𝑏 |2, a determination
of |𝑉𝑢𝑑 | alone already gives us |𝑉𝑢𝑠 | as well, and hence 𝜆. The most precise direct result for |𝑉𝑢𝑑 |
comes from the study of superallowed 0+ → 0+ nuclear 𝛽 decays, which are pure vector transitions
and therefore fairly insensitive to nuclear/nucleon structure, yielding [10]

|𝑉𝑢𝑑 | = 0.97373(11)exp. (9)RC(27)NS. (8)

This result alone would give 𝜆 = 0.2277(13). But is the unitarity relation actually satisfied?

3
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Figure 1: A schematic diagram of kaon semileptonic decay in the Standard Model.

We also have the following experimental results for kaon decays [10]:

Γ(𝐾± → 𝜇±𝜈[𝛾])
Γ(𝜋± → 𝜇±𝜈[𝛾]) = 1.3367(28), (9)

dΓ
d𝑞2 (𝐾 → 𝜋ℓ𝜈[𝛾]) ⇒

non-lattice theory
𝑓+(𝐾 → 𝜋, 𝑞2 = 0) |𝑉𝑢𝑠 | = 0.21635(38) (3). (10)

Here, 𝑞 is the 4-momentum transfer, defined as shown in Fig. 1. To get |𝑉𝑢𝑠/𝑉𝑢𝑑 | and |𝑉𝑢𝑠 | from
these results, we need lattice-QCD calculations of the ratio of decay constants 𝑓𝐾±/ 𝑓𝜋± and of the
form factor 𝑓+(𝐾 → 𝜋, 𝑞2 = 0); these quantities parametrize the QCD matrix elements

⟨0| �̄�𝛾𝜇𝛾5𝑑 |𝜋− (𝑝)⟩ = 𝑖𝑝𝜇 𝑓𝜋− , (11)
⟨0| �̄�𝛾𝜇𝛾5𝑠 |𝐾− (𝑝)⟩ = 𝑖𝑝𝜇 𝑓𝐾− , (12)

⟨𝜋+(𝑝′) | �̄�𝛾𝜇𝑠 |�̄�0(𝑝)⟩ =

[
(𝑝 + 𝑝′)𝜇 −

𝑚2
𝐾
− 𝑚2

𝜋

𝑞2 𝑞𝜇

]
𝑓+(𝐾 → 𝜋, 𝑞2)

+
𝑚2
𝐾
− 𝑚2

𝜋

𝑞2 𝑞𝜇 𝑓0(𝐾 → 𝜋, 𝑞2). (13)

As shown in Fig. 2, lattice calculations of 𝑓𝐾±/ 𝑓𝜋± and 𝑓+(𝐾 → 𝜋, 𝑞2 = 0) have reached impressive
precision, resulting in Flavour Lattice Averaging Group (FLAG) averages with uncertainties of
approximately 0.2% [11, 12]. Note that the decay rates measured by the experiments are fully
photon-inclusive. These QED corrections can be calculated in chiral perturbation theory or on
the lattice, as done for the leptonic decays in Ref. [13]. Using the latter, the FLAG determination
of ( |𝑉𝑢𝑠 |, |𝑉𝑢𝑑 |) from lattice calculations with 𝑁 𝑓 = 2 + 1 + 1 dynamical quark flavors, shown as
the red ellipse in Fig. 2, is in significant tension with CKM unitarity and with the result for |𝑉𝑢𝑑 |
from nuclear beta decays. It is interesting to note that there are viable new-physics models that can
resolve these tensions; for example, TeV-scale vector-like quarks can introduce small right-handed
couplings that will do the job and can also explain the𝑊-boson-mass anomaly [14].

At this conference, Takeshi Yamazaki presented a new preliminary result for 𝑓+(𝐾 → 𝜋, 𝑞2 = 0)
from calculations on impressively large lattices of size greater than (10 fm)4 for three different lattice
spacings and with physical pion masses [15]. The corresponding value for |𝑉𝑢𝑠 | is shown in yellow
in Fig. 2 and would bring the ( |𝑉𝑢𝑠 |, |𝑉𝑢𝑑 |) combination into better agreement with unitarity and
with |𝑉𝑢𝑑 | from nuclear beta decays. Another possible way to determine |𝑉𝑢𝑠 | and |𝑉𝑢𝑑 | is though
inclusive hadronic 𝜏 decays. Antonio Evangelista presented the first fully nonperturbative lattice
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Figure 2: Summary of lattice results for the ratio of kaon and pion decay constants (left), and of both lattice
and non-lattice results for the kaon semileptonic form factor at 𝑞2 = 0 (right) by FLAG [11, 12].

unitarity

T. Yamazaki et al. f (0)

A. Evangelista et al.
inclusive hadronic tau decay rate

+

Figure 3: Constraints in the |𝑉𝑢𝑠 |-|𝑉𝑢𝑑 | plane from leptonic and semileptonic meson decays (red, green, and
yellow), nuclear 𝛽 decays (blue), and inclusive hadronic 𝜏 decays [11, 12, 15, 16].

calculation of the inclusive 𝜏 decay rate in the �̄�𝑑 flavor channel using spectral reconstruction [16],
resulting in a |𝑉𝑢𝑑 | value with 0.4% uncertainty that is also shown in Fig. 2. While this result is
not competitive with the extremely precise determination from nuclear beta decays, the method can
also be applied in the �̄�𝑠 flavor channel where it will likely be competitive with the meson decays.
Further work related to |𝑉𝑢𝑑 | and |𝑉𝑢𝑠 | shown at this conference includes a calculation of 𝑓𝜋 and
𝑓𝐾 presented by Zack Hall [17] and investigations of QED corrections presented by Norman Christ
[18], Antonin Portelli [19], Nils Hermansson Truedsson [20], and Jun-sik Yoo [21]. A separate
plenary talk, given by Matteo Di Carlo, was devoted to the topic of QED corrections [22].
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Fermilab/MILC [26] HPQCD [27] JLQCD [28]
𝑢, 𝑑, 𝑠, (𝑐)-quark action AsqTad (2+1) HISQ (2+1+1) domain wall (2+1)
𝑏-quark action Fermilab clover HISQ domain wall
𝐵-meson mass 𝑚kin ≈ 𝑚phys 𝑚 ≲ 0.93 𝑚phys 𝑚 ≲ 0.74 𝑚phys

𝑚𝜋 (MeV) 180 - 560∗ 135 - 329∗ 230 - 500
𝑎 (fm) 0.045 - 0.15 0.044 - 0.090 0.044 - 0.080
#(source-sink separations) 2 (𝑇 , 𝑇+1) 3 4

∗These are the masses of the lightest pion (taste 𝛾5)

Table 1: Lattice calculations of the 𝐵 → 𝐷∗ form factors at nonzero recoil.

2.2 Determination of 𝑨

The exact definition of the Wolfenstein parameter 𝐴 is given by 𝐴𝜆2 = 𝜆
|𝑉𝑢𝑠 | |𝑉𝑐𝑏 | [9]. The next task

is therefore to determine |𝑉𝑐𝑏 |. The most important processes currently used to determine |𝑉𝑐𝑏 | are
semileptonic 𝐵 (𝑠) meson decays:

• Inclusive 𝐵 → 𝑋𝑐ℓ𝜈 (ℓ = 𝑒, 𝜇; BaBar, Belle, Belle II, and older experiments),

• Exclusive 𝐵 → 𝐷ℓ𝜈 (ℓ = 𝑒, 𝜇; BaBar, Belle, Belle II, and older experiments),

• Exclusive 𝐵 → 𝐷∗ℓ𝜈 (ℓ = 𝑒, 𝜇; BaBar, Belle, Belle II, and older experiments),

• Exclusive 𝐵𝑠 → 𝐷𝑠𝜇𝜈 (LCHb),

• Exclusive 𝐵𝑠 → 𝐷∗
𝑠𝜇𝜈 (LCHb).

The exclusive determinations use form factors from lattice QCD. The most precise inclusive de-
terminations use the heavy-quark/operator-product expansion in powers of 1/𝑚𝑏 and 𝛼𝑠, where
hadronic matrix elements of Δ𝐵 = 0 matrix elements are fitted to experimental data [23]; these
calculations use lattice input for 𝑚𝑏, 𝑚𝑐, 𝛼𝑠. There is also substantial progress with direct lattice
calculations of inclusive rates. This was covered thoroughly in the Lattice 2022 plenary talks by
Takashi Kaneko [24] and John Bulava [25].

In 2023, two new lattice calculations of the 𝐵 → 𝐷∗ form factors were published, by the
HPQCD [27] and JLQCD [28] collaborations. Like the 2021 Fermilab/MILC calculation [26],
these works provide the full kinematic dependence of the vector and axial-vector form factors (past
calculations for 𝐵 → 𝐷∗ were performed only at the zero-recoil point, where 𝑞2 = 𝑞2

max and
𝑤 = 𝑣 · 𝑣′ = 1, meaning that experimental data had to be extrapolated to that point in order to
extract |𝑉𝑐𝑏 |). Table 1 shows a comparison of the parameters of the three calculations. Notably,
the HPQCD and JLQCD calculations use the same “fully relativistic” lattice action for the 𝑏 quark
as used for the light, strange, and charm quarks, which simplifies the renormalization but requires
extrapolations from unphysically light 𝑏-quark masses up to the physical value.

Comparisons of the 𝐵 → 𝐷∗ℓ𝜈 decay observables predicted using the lattice calculations in
the Standard Model to experimental measurements [29, 30] are shown in Figs. 4 and 5. There
is good agreement between the predictions using the JLQCD form factors and the measurements.
The Fermilab/MILC and HPQCD calculations predict a somewhat steeper slope with respect to 𝑤
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Figure 4: Comparison of lattice predictions [26–28] and experimental results [29, 30] for the combination
of form factors that appears in the 𝐵 → 𝐷∗ℓ𝜈 differential decay rate. The black and green curves are from
BGL fits to the experimental data [plot by Alejandro Vaquero].

for the combination of form factors that appears in the differential decay rate. In addition, there
are deviations between the SM predictions and measurements of the angular distributions, most
significantly for HPQCD. Improved lattice calculations and new measurements by Belle II should
help clarify the situation in the future.

A summary of results for |𝑉𝑐𝑏 | is shown in Fig. 6. The values from 𝐵 → 𝐷∗ℓ𝜈 using combined
fits to the lattice and experimental data performed by the three different lattice collaborations are
consistent with each other and still significantly below the inclusive values [31, 32]. Resolving
this long-standing exclusive-inclusive discrepancy is of critical importance for flavor physics, since
the uncertainty of the Wolfenstein parameter 𝐴 is the dominant source of uncertainty in Standard-
Model predictions for many flavor-changing neutral-current processes. As is also shown in Fig. 6,
extracting |𝑉𝑐𝑏 | from the total rate measured in experiment and predicted by HPQCD’s form factors
instead of the combined fit to the differential distribution gives a much higher value of |𝑉𝑐𝑏 | (albeit
with larger uncertainties); this is due to the discrepancy in the predicted slope.

At this conference, Andrew Lytle presented preliminary results for the 𝐵𝑠 → 𝐷𝑠 form factors
using the fully relativistic all-HISQ approach from the Fermilab/MILC collaboration [41], and
Benjamin Choi and Seungyeob Jwa from the LANL-SWME collaboration reported on their progress
toward a calculation of the 𝐵 → 𝐷∗ form factors using the Oktay-Kronfeld action for the heavy
quarks on the MILC HISQ ensembles [42, 43]. Aurora Melis presented a lattice determination
of the susceptibilities that enter in dispersive bounds on 𝑏 → 𝑐 form factors [44]. Alessandro
Barone showed a comparison of the Chebyshev and Backus-Gilbert reconstruction methods applied

7
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Figure 5: Comparison of lattice predictions [26–28] and experimental results [29, 30] for the 𝐵 → 𝐷∗ℓ𝜈

decay rate differential with respect to 𝑤 = 𝑣 · 𝑣′ (top left plot) and with respect to the decay angles (other three
plots). The black and green curves are from BGL fits to the experimental data [plots by Alejandro Vaquero].
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Figure 6: Comparison of selected results for |𝑉𝑐𝑏 | as of July 2023: Inclusive, M. Bordone et al. [31];
Inclusive, F. Bernlochner et al. [32] (the first extraction using 𝑞2 moments); 𝐵 → 𝐷ℓ𝜈, FLAG [11] using form
factors from Fermilab/MILC [33] and HPQCD [34] and experimental data from Refs. [35, 36]; 𝐵 → 𝐷∗ℓ𝜈

using form factors from Fermilab/MILC [26] and experimental data from Refs. [29, 30], 𝐵 (𝑠) → 𝐷∗
(𝑠)ℓ𝜈

using form factors from HPQCD [27] and experimental data from Refs. [30, 37]; 𝐵 → 𝐷∗ℓ𝜈 using form
factors from JLQCD [28] and experimental data from Ref. [30]; 𝐵𝑠 → 𝐷

(∗)
𝑠 𝜇𝜈, LHCb [37, 38] using form

factors from HPQCD [39, 40].
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to inclusive 𝐵𝑠 → 𝑋𝑐ℓ𝜈 decays, demonstrating that these methods yield consistent results [45].
Ryan Kellerman reported on a study of finite-volume effects in the Chebyshev approach [46].

2.3 Determination of �̄� and �̄�

The remaining two Wolfenstein parameters are 𝜌 and 𝜂, or, to ensure exact unitarity, �̄� and 𝜂 [9]:

𝑉∗
𝑢𝑏 = 𝐴𝜆

3(𝜌 + 𝑖𝜂) =
√

1 − 𝐴2𝜆4
√

1 − 𝜆2 [1 − 𝐴2𝜆4( �̄� + 𝑖𝜂)]
𝐴𝜆3( �̄� + 𝑖𝜂). (14)

Also note that �̄� + 𝑖𝜂 = −
𝑉𝑢𝑑𝑉

∗
𝑢𝑏

𝑉𝑐𝑑𝑉
∗
𝑐𝑏

, and the orthogonality of the first and third columns of the CKM

matrix, 𝑉𝑢𝑑𝑉∗
𝑢𝑏

+ 𝑉𝑐𝑑𝑉∗
𝑐𝑏

+ 𝑉𝑡𝑑𝑉∗
𝑡𝑏

= 0, can be represented as a triangle in the complex plane with
apex �̄� + 𝑖𝜂 as shown in Fig. 7.

Figure 7: The triangle, in the complex plane, representing the orthogonality of the first and third columns
of the CKM matrix.

2.3.1 Determination of |𝑽𝒖𝒃 |

The magnitude |𝑉𝑢𝑏 | = 𝐴𝜆3
√︁
𝜌2 + 𝜂2 can be determined from 𝑏-hadron semileptonic decays.

The most important processes currently used to determine |𝑉𝑢𝑏 | are

• Inclusive 𝐵 → 𝑋𝑢ℓ𝜈 (ℓ = 𝑒, 𝜇; BaBar, Belle, Belle II, and older experiments)

• Exclusive 𝐵 → 𝜋ℓ𝜈 (ℓ = 𝑒, 𝜇; BaBar, Belle, Belle II, and older experiments)

• Exclusive 𝐵 → 𝜌ℓ𝜈 and 𝐵 → 𝜔ℓ𝜈 (ℓ = 𝑒, 𝜇; BaBar, Belle, Belle II, and older experiments,
still using light-cone sum rules)

• Exclusive 𝐵𝑠 → 𝐾𝜇𝜈 (LCHb)

• Exclusive Λ𝑏 → 𝑝𝜇�̄� (LCHb)

• Exclusive 𝐵 → 𝜏𝜈 (BaBar, Belle, Belle II, and older experiments)

The inclusive determination of |𝑉𝑢𝑏 | is more difficult compared to |𝑉𝑐𝑏 | due to the large 𝑏 → 𝑐ℓ�̄�

background. Cutting away this contribution with a requirement on the lepton energy leaves only
the endpoint region with 2𝐸ℓ/𝑚𝑏 ∼ 1, where the local HQE breaks down. In this region, one needs
to use a light-cone OPE, such that the HQE parameters are replaced by nonlocal matrix elements,
the so-called shape functions [23]. The exclusive determinations using 𝐵 → 𝜋ℓ𝜈, 𝐵𝑠 → 𝐾𝜇𝜈,
Λ𝑏 → 𝑝𝜇�̄�, 𝐵 → 𝜏𝜈 use form factors and the 𝐵 decay constant from lattice QCD. Calculating the
𝐵 → 𝜌 and 𝐵 → 𝜔 form factors in lattice QCD in a rigorous way is more complicated because the 𝜌

9
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Figure 8: The mapping of the complex 𝑞2 plane to the unit disk in the complex 𝑧 plane through Eq. (15);
see Ref. [58] for explanations. Note that Refs. [51, 59] denote 𝑡+ by 𝑡∗ and 𝑡th by 𝑡+.

and 𝜔 are resonances that are unstable under the strong interactions. As a two-body resonance, the
𝜌 is more tractable than the 𝜔 and work is already underway to calculate the 𝐵 → 𝜌(→ 𝜋𝜋)ℓ𝜈 form
factors in lattice QCD using the Lellouch-Lüscher method [47, 48], as shown in Luka Leskovec’s
plenary talk [49].

In 2023, there have been updates on the 𝐵 → 𝜋 and 𝐵𝑠 → 𝐾 form factors from lattice QCD.
For 𝐵 → 𝜋, FLAG updated the average of lattice results by including the 2022 JLQCD results [50]
in their fit. The JLQCD calculation is the first to use the fully relativistic approach (with Möbius
domain-wall fermions in this case) and was already reviewed at Lattice 2022 [24]. For 𝐵𝑠 → 𝐾 ,
the RBC/UKQCD collaboration published an improved calculation [51, 52] that supersedes their
2015 results [53], and I will discuss a preliminary update of the FLAG average below. Some of the
plots in the following will show the form factors as a function of the variable 𝑧, which is defined as

𝑧(𝑞2) =
√︁
𝑡+ − 𝑞2 − √

𝑡+ − 𝑡0√︁
𝑡+ − 𝑞2 + √

𝑡+ − 𝑡0
, (15)

where 𝑡+ and 𝑡0 are constants. The properties of this change of variable are illustrated in Fig. 8.
Furthermore, some of the plots show 𝐵(𝑞2) 𝑓 (𝑞2) instead of 𝑓 (𝑞2), where 𝐵(𝑞2) = (1−𝑚2

pole/𝑞
2).

The effect of including the 2022 JLQCD results [50] in the FLAG average of 𝐵 → 𝜋 form
factors is shown in Fig. 9 [11, 12]. The updated BCL fit has a large 𝜒2/d.o.f. caused by slight
tensions between the results from the different collaborations; in particular in the slopes of 𝑓0, which
are very constrained due to strong correlations between the data points. The uncertainties of the fit
parameters have therefore been rescaled by

√︁
𝜒2/d.o.f.. Overall, the uncertainty of the 𝑧-expansion

parameters 𝑎0,+
0 has increased, while the uncertainty of 𝑎0

1, 𝑎+1,2 has decreased. The result for |𝑉𝑢𝑏 |
extracted from a combined fit of the lattice results and the BaBar [54, 55] and Belle [56, 57] data
has changed from 3.74(17) × 10−3 to 3.64(16) × 10−3 [11, 12].

Coming to the 𝐵𝑠 → 𝐾 form factors, the new 2023 calculation by RBC/UKQCD [51, 52] uses
𝑁 𝑓 = 2+1 domain-wall fermions, RHQ (a.k.a. Columbia) anisotropic-clover 𝑏 quarks, and “mostly
nonperturbative” renormalization like the 2015 calculation [53]. The new calculation includes one
additional ensemble with a third, finer lattice spacing that also has a lower pion mass than the other
ensembles, uses updated scale setting and updated tuning of 𝑚𝑠 and of the RHQ parameters, and
uses a different form-factor basis for the chiral-continuum extrapolations. These extrapolations use
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HPQCD 06 2+1 Asqtad, NRQCD 𝑏 (not included in fit)
FNAL/MILC 15 2+1 Asqtad, Fermilab 𝑏
RBC/UKQCD 15 2+1 DWF, RHQ 𝑏

JLQCD 22 2+1 DWF, DWF 𝑏
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All uncertainties rescaled by

√︁
𝜒2/dof

Figure 9: The effect of including the 2022 JLQCD results [50] in the FLAG average of 𝐵 → 𝜋 form factors
[11, 12].

the fit functions [51]

𝑓
𝐵𝑠→𝐾
𝑋

(𝑀𝜋 , 𝐸𝐾 , 𝑎
2)

=
Λ

𝐸𝐾 + Δ𝑋

[
𝑐𝑋,0

(
1 + 𝛿 𝑓 (𝑀

𝑠
𝜋) − 𝛿 𝑓 (𝑀

𝑝
𝜋 )

(4𝜋 𝑓𝜋)2

)
+ 𝑐𝑋,1

Δ𝑀2
𝜋

Λ2 + 𝑐𝑋,2
𝐸𝐾

Λ
+ 𝑐𝑋,3

𝐸2
𝐾

Λ2 + 𝑐𝑋,4(𝑎Λ)2

]
,

(16)

where the first factor describes the pole from a �̄�𝑢 bound state coupling to the weak current. The
quantum numbers of this bound state are 𝐽𝑃 = 1− for the form factor 𝑓+ and 𝐽𝑃 = 0+ for the
form factor 𝑓0, so that Δ+ = −42.1 MeV and Δ0 = 263 MeV [51]. In the new RBC/UKQCD
calculation, as well as in the 2014 HPQCD calculation [60], the chiral/continuum extrapolations
were performed in this basis. In contrast, in the 2015 RBC/UKQCD calculation, as well as in the
2019 Fermilab/MILC calculation [61], the extrapolations were performed for 𝑓⊥ and 𝑓∥ , each of
which are linear combinations of 𝑓+ and 𝑓0, while still using the pole factor as in Eq. (16) with
Δ⊥ = Δ+ and Δ∥ = Δ0; the justification for this choice was that 𝑓⊥ is dominated by 𝑓+ and 𝑓∥ by
𝑓0. The authors of the new RBC/UKQCD paper [51] compared both prescriptions and found a
significant dependence on this basis choice in the final results for 𝑓0, as shown here in Fig. 10.

Figure 11 shows the effect of replacing the 2015 RBC/UKQCD results by the 2023 RBC/UKQCD
results in the FLAG average of 𝐵𝑠 → 𝐾 form factors. The upward shift in the RBC/UKQCD results
for 𝑓0 leads to an increased tension between the lattice results from the different collaborations for
this form factor. The increase in the scale factor

√︁
𝜒2/d.o.f. leads to an overall increase in the

uncertainty of Γ (𝐵𝑠→𝐾𝜇𝜈)
|𝑉𝑢𝑏 |2

calculated from the FLAG fit. The discrepancies in 𝑓0 indicate that the
uncertainties have been underestimated by at least some of the collaborations. It is possible that
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f+  from f  and f
f0 from f  and f

Figure 10: Results for the 𝐵𝑠 → 𝐾 form factors from chiral/continuum extrapolations performed directly for
𝑓+ and 𝑓0, compared to results obtained by performing the extrapolations for 𝑓⊥ and 𝑓∥ and then converting
to 𝑓+ and 𝑓0 [51].

other sources of error besides the problem with extrapolating 𝑓⊥ and 𝑓∥ discussed above (which
applies to the Fermilab/MILC results only), such as insufficiently controlled excited-state contami-
nation, also contribute to the tension. Excited-state contamination can affect multiple steps of the
analysis; it appears to have caused order-10% biases in the 𝐵𝑠 kinetic-mass determinations in the
tuning of the RHQ parameters by RBC/UKQCD, as discussed in Ref. [62].

A summary of |𝑉𝑢𝑏 | results is shown in Fig. 12. Note that the result from 𝐵𝑠 → 𝐾𝜇𝜈,
RBC/UKQCD 2023 is based on secondary extrapolations of the form factors to the full 𝑞2 range
using a novel approach with unitarity bounds [59, 63], taking into account that the dispersive integral
ranges only over an arc of the unit circle (in the 𝑧 plane) instead of the full circle for this process
[58]. However, these secondary extrapolations were not used in generating the inputs [51] to the
FLAG fits in Fig. 11, and the FLAG fits also do not include unitarity bounds.

Several groups reported on their progress with new calculations of 𝑏 → 𝑢 semileptonic form
factors at this conference. Protick Mohanta discussed JLQCD’s study of the 𝐵𝑠 → 𝐾 form factors
using the Möbius domain-wall action for all quarks [72]. Andrew Lytle from the Fermilab/MILC
collaboration presented preliminary results for the same form factors using an all-HISQ approach
[41], while Hwancheol Jeong reported on Fermilab/MILC’s calculation of the 𝐵 → 𝜋 and 𝐵𝑠 → 𝐾

form factors using HISQ light quarks and Fermilab 𝑏 quarks [73]. I gave an update on a next-
generation determination of the Λ𝑏 → 𝑝 form factors with domain-wall light quarks and RHQ 𝑏

quarks [62]. Luka Leskovec presented preliminary results for the 𝐵 → 𝜋𝜋 (𝐼 = 1, 𝐿 = 1) vector form
factor at a heavier-than physical pion mass [49]. Rainer Sommer discussed an approach for 𝑏-physics
calculations on the lattice based on interpolations between relativistic and static computations and
the step-scaling method [74], generalizing earlier work [75] to the case of semileptonic form factors
and other observables. Alessandro Conigli presented preliminary numerical results for the 𝑏-quark
mass and 𝐵 (∗) -meson decay constants using this approach [76].
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Figure 11: The effect of replacing the 2015 RBC/UKQCD results [53] by the 2023 RBC/UKQCD results
[51] in the FLAG average [11] of 𝐵𝑠 → 𝐾 form factors.

2.5 3.0 3.5 4.0 4.5

|Vub|/10−3

inclusive, PDG 2023

B → π`ν FLAG 2023

Bs → Kµν RBC/UKQCD 2023

Bs → Kµν my average

Λb → pµν̄

B → ρ`ν (LCSR)

B → ω`ν (LCSR)

Figure 12: Comparison of selected results for |𝑉𝑢𝑏 | as of July 2023: from inclusive semileptonic 𝐵 decays
[64], from 𝐵 → 𝜋ℓ𝜈 [12] using form factors of Refs. [50, 53, 65] and experimental data from Refs. [54–57],
from 𝐵𝑠 → 𝐾𝜇𝜈 using the form factors of Ref. [51], from 𝐵𝑠 → 𝐾𝜇𝜈 using my update of the FLAG
average of the 𝐵𝑠 → 𝐾 form factors, from Λ𝑏 → 𝑝𝜇�̄� [66] using the form factors of Ref. [67], and from
𝐵 → 𝜌ℓ𝜈, 𝐵 → 𝜔ℓ𝜈 [68] using form factors from light-cone sum rules [69]. Here, the determinations from
𝐵𝑠 → 𝐾𝜇𝜈 use the ratios B(𝐵𝑠 → 𝐾𝜇𝜈)/B(𝐵𝑠 → 𝐷𝑠𝜇𝜈) and B(𝐵𝑠 → 𝐷𝑠𝜇𝜈)/B(𝐵 → 𝐷𝜇𝜈) from LHCb
[37, 70] combined with B(𝐵 → 𝐷𝜇𝜈) from PDG [71], and the determination from Λ𝑏 → 𝑝𝜇�̄� uses the ratio
B(Λ𝑏 → 𝑝𝜇�̄�)/B(Λ𝑏 → Λ𝑐𝜇�̄�) from LHCb [66] and |𝑉𝑐𝑏 | = 40.8(1.4) × 10−3 from PDG [64].
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• 𝛼 from 𝐶𝑃 violation in e.g. 𝐵0 (𝐵0 ) →
𝜋𝜋, 𝜋𝜌, 𝜌𝜌

• 𝛽 from 𝐶𝑃 violation in e.g. 𝐵0 (𝐵0 ) →
𝐽/𝜓𝐾𝑆

• 𝛾 from 𝐶𝑃 violation in e.g. 𝐵− →
𝐷0 (𝐷0 ) (→ 𝑓 )𝐾−

• Δ𝑚𝑑 ,
Δ𝑚𝑑

Δ𝑚𝑠
: 𝐵0/𝐵0, 𝐵0

𝑠/𝐵0
𝑠 mixing mass

differences – uses hadronic matrix elements
from lattice QCD

• 𝜖𝐾 : indirect 𝐶𝑃 violation in the neutral
kaon system – uses hadronic matrix elements
from lattice QCD

• 𝜖 ′
𝐾

(not shown): direct 𝐶𝑃 violation in the
neutral kaon system – uses hadronic matrix
elements from lattice QCD

Figure 13: Constraints on the Wolfenstein parameters �̄� and 𝜂. Figure from UTfit [77] (see also Ref. [78]
for a similar analysis by the CKMfitter Group).

2.3.2 Other constraints on the Wolfenstein parameters �̄� and �̄�

The determinations of |𝑉𝑢𝑏 | discussed in the previous section set the length of the left side of the
unitarity triangle and constrain the apex to lie within the yellow ring in Fig. 13. We will now discuss
the other constraints shown in the figure.

The determinations of the angles 𝛼, 𝛽, and 𝛾 are based from CP-violation measurements
in nonleptonic decays, where all necessary combinations of hadronic matrix elements can be
determined by fitting experimental data.

The length of the right side of the triangle is constrained by the 𝐵0
(𝑠) -𝐵

0
(𝑠) oscillation frequencies,

which have been measured very precisely to be [79, 80]

Δ𝑚𝑑 = 0.5065(19) ps−1,

Δ𝑚𝑠 = 17.765(6) ps−1. (17)

Examples of diagrams contributing to 𝐵0
𝑠-𝐵0

𝑠 mixing in the Standard Model are shown in Fig. 14.
The hadronic matrix elements currently taken from lattice QCD to relate the oscillation frequencies
to the CKM parameters are

⟨𝐵0
𝑞 |𝑂Δ𝐵=2

𝑞 |𝐵0
𝑞⟩ =

8
3
𝑓 2
𝐵𝑞
𝑚2
𝐵𝑞
𝐵𝐵𝑞 , where 𝑂Δ𝐵=2

𝑞 = [�̄�𝛾𝜇 (1 − 𝛾5)𝑞] [�̄�𝛾𝜇 (1 − 𝛾5)𝑞] . (18)

The kaon CP violation parameters 𝜖𝐾 (indirect) and 𝜖 ′
𝐾

(direct) are related to the ratios of
𝐾 → 𝜋𝜋 amplitudes through [81]

𝐴(𝐾0
𝐿
→ 𝜋+𝜋−)

𝐴(𝐾0
𝑆
→ 𝜋+𝜋−)

≈ 𝜖𝐾 + 𝜖 ′𝐾 ,
𝐴(𝐾0

𝐿
→ 𝜋0𝜋0)

𝐴(𝐾0
𝑆
→ 𝜋0𝜋0)

≈ 𝜖𝐾 − 2𝜖 ′𝐾 . (19)
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Figure 14: Examples of diagrams contributing to 𝐵0
𝑠-𝐵0

𝑠 mixing in the Standard Model.

The measured values of these parameters are [81]

𝜖𝐾 = 2.228(11) × 10−3,

Re(𝜖 ′𝐾/𝜖𝐾 ) = 1.66(23) × 10−3. (20)

The hadronic matrix elements currently taken from lattice QCD for the Standard-Model calculation
of 𝜖𝐾 and 𝜖 ′

𝐾
(and hence to constrain the CKM parameters using these observables) are

⟨𝜋𝜋 |𝑂Δ𝑆=1
𝑖 |𝐾0⟩ (21)

for seven different four-quark operators 𝑂Δ𝑆=1
𝑖

and

⟨𝐾0 |𝑂Δ𝑆=2 |𝐾0⟩ = 8
3
𝑓 2
𝐾𝑚

2
𝐾𝐵𝐾 , where 𝑂Δ𝑆=2 = [𝑠𝛾𝜇 (1 − 𝛾5)𝑑] [𝑠𝛾𝜇 (1 − 𝛾5)𝑑] . (22)

The kaon CP-violation parameters also receive contributions from nonlocal two-current matrix ele-
ments; the UTfit collaboration [77] currently takes these matrix elements from a chiral-perturbation-
theory calculation [82], but they can, in principle, also be calculated in lattice QCD [83–86].

It is worth noting that a major source of uncertainty in the Standard-Model predictions of 𝜖𝐾
andΔ𝑚𝑑 , and hence in the uncertainties of the corresponding constraints on �̄� and 𝜂 (and constraints
on new physics), is the uncertainty of the Wolfenstein parameter 𝐴, i.e., the uncertainty of |𝑉𝑐𝑏 |
[87, 88].

A summary of lattice results for the renormalization-group-independent versions [11] of the bag
parameters defined in Eqs. (18) and (22) is shown in Fig. 15. No new complete lattice results for the
kaon bag parameter have been published since 2016. A major challenge and source of systematic
uncertainty in lattice calculations of four-quark-operator matrix elements is the renormalization
and matching, and it is good to see progress in this area at this conference, as discussed later.
The 𝐾 → (𝜋𝜋)𝐼=2 and 𝐾 → (𝜋𝜋)𝐼=0 matrix elements were computed in Ref.s [89] and [90],
respectively. The combination of the isospin-2 and isospin-0 amplitudes give the Standard-Model
prediction Re(𝜖 ′

𝐾
/𝜖𝐾 )SM = 2.17(26) (62) (50) × 10−3 [90]. In these calculations, another big

challenge is the precise determination of the 𝜋𝜋 finite-volume spectrum and the corresponding
Lellouch-Lüscher factors. Reference [90] used so-called 𝐺-parity boundary conditions to obtain
physical kinematics.

At this conference, Justus Tobias Tsang presented an ongoing new calculation of the 𝐵0
𝑠-𝐵0

𝑠

mixing matrix elements using a domain-wall action for all quarks and RI/sMOM renormalization
[91]. The calculation uses both RBC/UKQCD and JLQCD ensembles. Matthew Black discussed
how the gradient flow and short-flow-time expansion can be used to renormalize four-quark op-
erators, including both the Δ𝐵 = 2 operators relevant for neutral-meson mixing and the Δ𝐵 = 0
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Figure 15: FLAG summary of lattice results for the 𝐵, 𝐵𝑠 , and 𝐾 meson renormalization-group-independent
bag parameters [11].

operators relevant for the theory of heavy-hadron lifetimes [92]. Joshua Lin presented a position-
space renormalization scheme for Δ𝐵 = 2 and Δ𝐵 = 0 four-quark operators in HQET and reported
on progress with the matching from this scheme to MS at order 𝛼𝑠 [93]. Riccardo Marinelli pre-
sented a nonperturbative calculation of the renormalization-group running of the complete basis of
Δ𝑆 = 2 four-quark operators in the chirally rotated Schrödinger functional in the region of energies
between the 𝑊 mass and the switching scale of 4 GeV; this running is traditionally done pertur-
batively, and the new method can eliminate the associated uncertainty [94]. Weonjong Lee gave
an update on the Standard-Model prediction for 𝜖𝐾 using lattice inputs, where a significant tension
with the experimental value is observed when using |𝑉𝑐𝑏 | from exclusive decays, and this tension
disappears when using the inclusively determined |𝑉𝑐𝑏 | instead [87]. Masaaki Tomii presented a
new RBC/UKQCD calculation of the 𝐾 → 𝜋𝜋 matrix elements with periodic instead of 𝐺-parity
boundary conditions, using the variational method to extract the matrix elements for excited 𝜋𝜋
finite-volume states to cover the energy region around the physical kinematic point [95, 96].

2.4 Global fit of the Wolfenstein parameters

To conclude this part, I quote the final results for all four Wolfenstein parameters from a global fit
to the observables discussed in the previous sections. The 2022 Standard-Model fit by UTfit gives
[77]

𝜆 = 0.22519(83),
𝐴 = 0.828(11),
�̄� = 0.161(10),
𝜂 = 0.347(10), (23)

which corresponds to the CKM matrix elements
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©«
𝑉𝑢𝑑 𝑉𝑢𝑠 𝑉𝑢𝑏

𝑉𝑐𝑑 𝑉𝑐𝑠 𝑉𝑐𝑏

𝑉𝑡𝑑 𝑉𝑡𝑠 𝑉𝑡𝑏

ª®®¬
=

©«
0.97431(19) 0.22517(81) 0.003715(93) 𝑒−𝑖 (65.1(1.3) )◦

−0.22503(83) 𝑒+𝑖 (0.0351(1) )◦ 0.97345(20) 𝑒−𝑖 (0.00187(5) )◦ 0.0420(5)
0.00859(11) 𝑒−𝑖 (22.4(7) )◦ −0.04128(46) 𝑒+𝑖 (1.05(3) )◦ 0.999111(20)

ª®®¬ .
(24)

See also Refs. [78, 97, 98] for a similar analysis by the CKMfitter Group.

3. Selected further processes in quark flavor physics

3.1 Tests of lepton-flavor universality in 𝒃 → 𝒄ℓ�̄� decays

In the Standard Model, the different generations of leptons couple to 𝑊 bosons with the same
strength, and it is interesting to search for deviations from this lepton-flavor universality. Important
observables for such tests are the ratios

𝑅(𝐻𝑐) =
Γ(𝐻𝑏 → 𝐻𝑐𝜏𝜈)
Γ(𝐻𝑏 → 𝐻𝑐ℓ𝜈)

, (25)

where 𝐻𝑏 denotes a bottom hadron, 𝐻𝑐 a charm hadron, and ℓ an electron or muon. The SM
predictions of 𝑅(𝐻𝑐) depend on the 𝐻𝑏 → 𝐻𝑐 form factors, some of which were already discussed
in Sec. 2.2. A comparison of experimental measurements and SM predictions using form factors
from lattice QCD is shown in Fig. 16. For 𝑅(𝐷∗), the pure SM predictions that do not rely on
experimental information on the 𝐵 → 𝐷∗ℓ𝜈 decay distribution became available only relatively
recently [26–28]. The measurements of 𝑅(𝐻𝑐) with mesons show hints for excesses with respect
to the SM predictions; these hints were first seen in 2012 [99] and many possible new-physics
explanations have been proposed. In contrast, the recent LHCb result for the baryon-decay ratio
𝑅(Λ𝑐) [100] has a central value below the SM prediction [67]. No common explanation of the
measured values of all ratios within 2𝜎 using heavy new physics is possible [101].

3.2 Direct determinations of |𝑽𝒄𝒅 | and |𝑽𝒄𝒔 |

With |𝑉𝑐𝑑 | and |𝑉𝑐𝑠 | predicted precisely by the global fit (without inputs from charm decays) as
shown in Eq. (24), it is interesting to check whether direct determinations are compatible with these
values. Experimental data are more precise for semileptonic 𝐷 (𝑠) decays compared to leptonic
𝐷 (𝑠) decays. In the past, leptonic decays nevertheless gave the most precise |𝑉𝑐𝑠 | and |𝑉𝑐𝑑 | because
lattice results for decay constants are more precise than for form factors. Recently, lattice results for
𝐷 (𝑠) semileptonic decays have reached high precision [111, 112], and semileptonic decays currently
yield the most precise direct |𝑉𝑐𝑠 | and |𝑉𝑐𝑑 | determinations (but there are some tensions with older
lattice results as discussed below).

In the year leading up to the Lattice conference, the Fermilab/MILC collaboration published
a new calculation of the 𝐷 → 𝜋 and 𝐷 (𝑠) → 𝐾 form factors using the 𝑁 𝑓 = 2 + 1 + 1 all-HISQ
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Figure 16: Comparison of lattice-only SM predictions (blue points with error bars) and experimental
measurements (red lines with error bands) of the ratios 𝑅(𝐻𝑐). For 𝑅(𝐷), the SM prediction from FLAG
[11] uses the average of form factors from Fermilab/MILC [33] and HPQCD [34]; the experimental value is
the HFLAV average [102] of measurement by BaBar [99], Belle [103, 104], and LHCb [105]. For 𝑅(𝐷∗),
the SM predictions are from Fermilab/MILC [26], HPQCD [27], and JLQCD [28], and the experimental
value is the HFLAV average [102] of measurements by BaBar [99], Belle [103, 104, 106], Belle II [107],
and LHCb [105, 108]. For 𝑅(𝐽/𝜓), the SM prediction is from HPQCD [109] and the measurement from
LHCb [110]. For 𝑅(Λ𝑐), the SM prediction is from Detmold, Lehner, and Meinel [67] and the measurement
is from LHCb [100].

approach [112]. A comparison of these results with the ones from HPQCD [111] and ETMC
[113] is shown in Fig. 17. Good agreement is seen for the form factor 𝑓+(𝐷 → 𝐾) that is most
relevant for the 𝐷 → 𝐾ℓ𝜈 decay rate between Fermilab/MILC and HPQCD, while for 𝑓0(𝐷 → 𝐾),
there appears to be a small but statistically significant tension between the Fermilab/MILC and
HPQCD results. Compared to the older ETMC results that are based on computations with the
twisted-mass and Osterwalder-Seiler actions [113], the Fermilab/MILC results for all form factors
are higher in the high-𝑞2 region, most dramatically for 𝑓+(𝐷 → 𝜋). Even though this kinematic
region contributes less to the decay rate than the low-𝑞2 region, it would be good to understand the
origin of this large discrepancy.

The Fermilab/MILC collaboration also investigated the dependence of the form-factor results
on the choice of basis used for the chiral and continuum extrapolation (cf. Sec. 2.3.1), as shown
in Fig. 18. Similarly to the findings for 𝐵𝑠 → 𝐾 by RBC/UKQCD [51], doing the extrapolation
directly for 𝑓0 gives slightly higher values for this form factor compared to constructing 𝑓0 from the
extrapolated 𝑓⊥ and 𝑓∥ (I thank Andreas Jüttner for pointing this out to me).

A comparison of the most recent direct |𝑉𝑐𝑑 | and |𝑉𝑐𝑠 | determinations with the values predicted
by the global CKM fit using unitarity is shown in Fig. 19. The results from the semileptonic decays
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Figure 17: Comparison of Fermilab/MILC’s new results for the 𝐷 → 𝐾 and 𝐷 → 𝜋 form factors [112] to
previous results from HPQCD [111] and ETMC [113]. Figure from Ref. [112].

Figure 18: Dependence of the Fermilab/MILC 𝐷 → 𝜋 form-factor results on the choice of basis for the
chiral-continuum extrapolations [112]. Figure modified from Ref. [112]; I added the magnification box.

are consistent with unitarity within 1-2𝜎.
The 𝑐 → 𝑠ℓ+𝜈 transition can also be observed in baryon decays. In 2023, the BESIII collab-

oration published a combined analysis of the Λ𝑐 → Λ𝑒+𝜈 and Λ𝑐 → Λ𝜇+𝜈 differential branching
fractions and angular distributions [123], updating their 2022 analysis of Λ𝑐 → Λ𝑒+𝜈 only [124].
The results are compared to the SM predictions using lattice QCD [122] in Fig. 20. From the
total rates, the result |𝑉𝑐𝑠 | = 0.937 ± 0.014B ± 0.024LQCD ± 0.007𝜏Λ𝑐 is obtained [123], where the
uncertainty from the lattice calculation of the form factors now dominates. In addition, BESIII
fitted a simplified form-factor parametrization to the Λ𝑐 → Λ(→ 𝑝𝜋)ℓ+𝜈 angular distributions, as
shown in the lower panels in Fig. 20. Compared to my lattice-QCD predictions [122], the BESIII
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Figure 19: Comparison of direct |𝑉𝑐𝑑 | and |𝑉𝑐𝑠 | determinations from meson decays and neutrino scattering
[11, 71, 112] with the values predicted by the global CKM fit using unitarity [77]. The experimental data for
the semileptonic decays are from BaBar [114, 115], CLEO [116], and BES III [117–121]. Figure modified
from Ref. [112]; I removed the blue bands and added the orange unitarity bands. In addition to what is shown
here, there are also |𝑉𝑐𝑠 | results from Λ𝑐 → Λℓ𝜈, most recently |𝑉𝑐𝑠 | = 0.937(29) [122, 123].

fit yields slightly steeper slopes for the vector form factors and less steep slopes for the axial-vector
form factors (there is also a recent independent lattice calculation of theΛ𝑐 → Λ form factors [125],
but it used only a single 𝑁 𝑓 = 2 ensemble on a 163 × 32 lattice with 𝑎 ≈ 0.16 fm, 𝑚𝜋 ≈ 550 MeV).

At this conference, Callum Farrell presented preliminary lattice-QCD results for another charm-
baryon semileptonic decay, Ξ𝑐 → Ξℓ+𝜈 [126]. The calculation points toward a branching fraction
in the Standard Model that is substantially higher than the current experimental results, and also
higher than predicted by a previous lattice calculation [127]. Davide Giusti presented a lattice
calculation of the structure-dependent form factors in the radiative leptonic decays 𝐷𝑠 → ℓ𝜈𝛾

[128, 129]. Ryan Kellermann reported on a study of finite-volume effects in a lattice determination
of the inclusive 𝐷𝑠 → 𝑋𝑠ℓ𝜈 rate [46]. Antonin Portelli discussed the occurrence of finite-volume
collinear divergences in the QED𝐿 treatment of electromagnetic corrections to 𝐷 (𝑠) leptonic decays
[19]. Justus Kuhlmann [130] presented an exploration of stabilized Wilson fermions [131] for
charm physics.

3.3 Rare 𝒃 → 𝒔ℓ+ℓ− decays

Decays of 𝑏-hadrons involving the transition 𝑏 → 𝑠ℓ+ℓ− are among the most important modes
used to search for physics beyond the Standard Model [132], and there have been significant new
developments since Lattice 2022 that I will discuss further below. At hadronic energy scales,
𝑏 → 𝑠ℓ+ℓ− decays are described by the weak effective Hamiltonian [133]

Heff = −4𝐺𝐹√
2
𝑉𝑡𝑏𝑉

∗
𝑡𝑠

∑︁
𝑖

𝐶𝑖𝑂𝑖 , (26)
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Figure 20: Upper five panels: BESIII binned measurements and fits of the Λ𝑐 → Λ𝑒+𝜈 and Λ𝑐 → Λ𝜇+𝜈

differential decay rates, lepton-side forward-backward asymmetries, and hadron-side forward-backward
asymmetries [123], compared to Standard-Model predictions (only central values shown) using form factors
from lattice QCD [122]. Lower four panels: the form-factor parametrization fitted to the BESIII Λ𝑐 → Λ(→
𝑝𝜋)ℓ+𝜈 angular-distribution data [123] compared to the predictions from lattice QCD [122]. All plots from
Ref. [123].

where the most important operators are

𝑂1 = 𝑐𝑏𝛾𝜇𝑏𝑎𝐿 𝑠𝑎𝛾𝜇𝑐
𝑏
𝐿 ,

𝑂2 = 𝑐𝑎𝛾𝜇𝑏𝑎𝐿 𝑠𝑏𝛾𝜇𝑐
𝑏
𝐿 ,

𝑂7 = (𝑒 𝑚𝑏)/(16𝜋2) 𝑠𝜎𝜇𝜈𝑏𝑅 𝐹
(e.m.)
𝜇𝜈 ,

𝑂9ℓ = 𝑒2/(16𝜋2) 𝑠𝛾𝜇𝑏𝐿 ℓ̄𝛾𝜇ℓ,

𝑂10ℓ = 𝑒2/(16𝜋2) 𝑠𝛾𝜇𝑏𝐿 ℓ̄𝛾𝜇𝛾5ℓ. (27)

The SM values of the Wilson coefficients, evaluated using EOS [134] in the MS scheme and
at 𝜇 = 4.2 GeV, are 𝐶1 ≈ −0.288, 𝐶2 ≈ 1.010, 𝐶7 ≈ −0.336, 𝐶9ℓ ≈ 4.275, 𝐶10ℓ ≈ −4.160
(independent of the lepton flavor ℓ).
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Figure 21: Diagrams illustrating the contributions from different weak effective operators to the �̄�0 →
�̄�∗0ℓ+ℓ− amplitude.

The way in which the above operators contribute to, for example, the �̄�0 → �̄�∗0ℓ+ℓ− decay
amplitude is illustrated in Fig. 21. For a generic decay 𝐻𝑏 → 𝐻𝑠ℓ

+ℓ−, evaluating the contributions
from 𝑂7, 𝑂9, 𝑂10 requires the hadronic matrix elements ⟨𝐻𝑠 (𝑝′) | 𝑠Γ𝑏 |𝐻𝑏 (𝑝)⟩ that correspond to
the local form factors and have been calculated using lattice QCD for several different combinations
of 𝐻𝑏 and 𝐻𝑠 hadrons [139, 140, 154, 156, 158–160]. Note that some of the 𝐻𝑠 considered
are unstable under the strong interactions [𝐾∗, 𝜙, Λ∗(1520)], and the calculations published to
date neglected this property. Going beyond this approximation with the proper Lellouch-Lüscher
approach [48] is needed and feasible for the 𝐵 → 𝐾∗(→ 𝐾𝜋) form factors [49]. For the 𝐵𝑠 → 𝜙

form factors with the much narrower 𝜙, I think it is worth doing new calculations even with the
simple single-hadron treatment.

The operators 𝑂1,...,6, 𝑂8 contribute through matrix elements with an additional nonlocal
insertion of the quark electromagnetic current: in Minkowski spacetime,∫

d4𝑥 𝑒𝑖𝑞 ·𝑥 ⟨𝐻𝑠 (𝑝′) | T 𝑂𝑖 (0) 𝐽𝜇e.m. (𝑥) |𝐻𝑏 (𝑝)⟩. (28)

Computing these matrix elements is very challenging for Euclidean lattice QCD (see Ref. [161]
for first steps), and they are currently instead being approximated in the continuum using a local
operator-product expansion (OPE) at high 𝑞2 [162, 163] and QCD factorization or a light-cone OPE
at low 𝑞2 [164, 165]. This usually means staying away from the region with 𝑞2 ∼ 𝑚2

𝐽/𝜓,𝜓′ , where
the matrix elements of 𝑂1,2 are enhanced dramatically though the charmonium resonances, but
recent work using dispersion relations has also taken advantage of the experimental measurements
of B(𝐻𝑏 → 𝐻𝑠 𝐽/𝜓 (′) ) [166, 167].

There has been substantial excitement about 𝑏 → 𝑠ℓ+ℓ− decays since 2013, when devi-
ations between measurements and SM predictions were first seen in �̄�0 → �̄�∗0𝜇+𝜇− at both
low 𝑞2 [168] and high 𝑞2 [144] (also for �̄�0

𝑠 → 𝜙𝜇+𝜇− [144] and �̄� → �̄�𝜇+𝜇− [169]) that
can be explained by a negative shift in the Wilson coefficient 𝐶9𝜇. These deviations, with
a general trend of branching fractions below the SM predictions, persist to date, as shown
in Fig. 22. Moreover, LHCb measurements [170–175] of muon-versus-electron ratios such as
𝑅𝐾 ≡

∫ 6 GeV2

1 GeV2
dB(𝐵+→𝐾+𝜇+𝜇− )

d𝑞2 d𝑞2/
∫ 6 GeV2

1 GeV2
dB(𝐵+→𝐾+𝑒+𝑒− )

d𝑞2 d𝑞2 gave values below the theoretically
clean SM predictions equal to 1+O(10−3), consistent with the scenario𝐶9𝜇 < 𝐶

SM
9 and𝐶9𝑒 = 𝐶

SM
9 .

The big news from December 2022 [149] is that the LHCb results for these ratios had an uncon-
trolled systematic error (hadrons misidentified as electrons), and the corrected LHCb analysis gives
𝑅𝐾 (∗) consistent with unity. It is important to note, however, that dB(𝐵→𝐾 (∗) 𝜇+𝜇− )

d𝑞2 is unchanged and
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Figure 22: Selected experimental results for 𝑏 → 𝑠ℓ+ℓ− decays compared to SM predictions: the �̄�0 →
�̄�∗0𝜇+𝜇− angular observable 𝑃′

5 [135] (SM prediction from Refs. [136, 137]), the �̄�0 → �̄�∗0𝜇+𝜇− differential
branching fraction [138] (SM prediction from Refs. [69, 139, 140]), the �̄�0

𝑠 → 𝜙𝜇+𝜇− differential branching
fraction [141] (SM predictions from Refs. [69, 140, 142–144]), the �̄� → �̄�ℓ+ℓ− differential branching
fractions for both ℓ = 𝜇 and ℓ = 𝑒 (plot by Patrick Koppenburg with experimental results from Refs. [145–150]
and SM prediction from Ref. [151]), the Λ𝑏 → Λ𝜇+𝜇− differential branching fraction (my plot with LHCb
data from [152], with an updated normalization as discussed in Ref. [153] and SM prediction from [154]),
and the Λ𝑏 → Λ∗ (1520)𝜇+𝜇− differential branching fraction [155] (SM predictions from Refs. [156, 157]; I
removed the quark-model predictions from the figure).

23



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
2
6

Quark flavor physics with lattice QCD Stefan Meinel

dB(𝐵→𝐾 (∗)𝑒+𝑒− )
d𝑞2 has moved lower, farther away from SM predictions. As a result, a new-physics

scenario with both 𝐶9𝜇 < 𝐶
SM
9 and 𝐶9𝑒 < 𝐶

SM
9 is now favored by global fits (see, e.g., Ref. [176]);

viable models with this effect are discussed, for example, in Ref. [177]. These findings critically
depend on QCD calculations, and improving these calculations is therefore now more important
than ever.

On that note, at this conference, progress with new lattice-QCD calculations of 𝑏 → 𝑠 form
factors was reported by Hwancheol Jeong for 𝐵 → 𝐾 , using using HISQ light quarks and Fermilab
𝑏 quarks [73], and by me for Λ𝑏 → Λ, using domain-wall light quarks and RHQ 𝑏 quarks [62].

3.4 Rare kaon and hyperon decays

Rare decays of strange hadrons also provide powerful constraints on physics beyond the
Standard Model [178]. For some decay modes, theory predictions are far more precise than current
experimental results, while for others, the situation is the opposite. Theoretically cleanest are the
dineutrino modes 𝐾𝐿 → 𝜋0�̄�𝜈 and 𝐾+ → 𝜋+�̄�𝜈 [179, 180], for which the QCD uncertainties
of the SM predictions of the decay rates are 1.5% and 4% respectively [178], while the current
experimental results are [181]

B(𝐾𝐿 → 𝜋0�̄�𝜈) < 3.0 × 10−9 (90% CL) (29)

and [182]
B(𝐾+ → 𝜋+�̄�𝜈) = (10.6+4.0

−3.4 |stat ± 0.9|syst) × 10−11. (30)

The 4% QCD uncertainty in the SM prediction of B(𝐾+ → 𝜋+�̄�𝜈) is dominated by the contribution
from nonlocal hadronic matrix elements, which can be calculated with lattice QCD [183] and will
become more relevant as the experimental precision improves in the future.

Some of the experimental results for charged-lepton modes are [71]

B(𝐾+ → 𝜋+𝑒+𝑒−) = 3.00(9) × 10−7,

B(𝐾+ → 𝜋+𝜇+𝜇−) = 9.17(14) × 10−8,

B(Σ+ → 𝑝+𝜇+𝜇−) = 2.4+1.7
−1.3 × 10−8. (31)

The SM predictions for these processes are dominated by nonlocal hadronic matrix elements, which
can, in principle, be calculated on the lattice [184, 185]. The current lattice results still have
uncertainties larger than the central values of the experimental measurements (see Ref. [186] for a
discussion of future prospects).

Another interesting rare kaon decay is 𝐾𝐿 → 𝜇+𝜇−. Here, diagrams with exchanges of
two weak bosons as well as diagrams with one weak boson and two photons (see Fig. 23) are
important. The contribution of the former has a 5% QCD uncertainty, mainly from the diagrams
with charm quarks [187]. The absorptive part of the two-photon contribution, which nearly saturates
the SM prediction of B(𝐾𝐿 → 𝜇+𝜇−), can be obtained with high precision from the measured
B(𝐾𝐿 → 𝛾𝛾), but the remaining dispersive part of the two-photon contribution is of comparable
magnitude to the two-weak-boson contribution [187] and, while very challenging, is a possible
target for lattice-QCD calculations [188]. A first step in this direction, a lattice-QCD calculation of
𝜋0 → 𝑒+𝑒−, was recently completed [189].
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Figure 23: Examples of diagrams contributing to 𝐾𝐿 → 𝜇+𝜇− in the Standard Model.

At this conference, En-Hung Chao discussed a framework to compute the two-photon con-
tribution to 𝐾𝐿 → 𝜇+𝜇− (which requires identifying and subtracting unwanted contributions that
appear with Euclidean time) and presented preliminary numerical results for the quark-connected
diagrams [190]. Bai-Long Hoid reviewed the application of the continuum, dispersive approach to
𝜋0 → 𝑒+𝑒− and 𝐾𝐿 → 𝜇+𝜇− and its relation to lattice QCD [191]. Raoul Hodgson gave an update
[192] on the exploratory lattice calculation [185] of the rare hyperon decay Σ+ → 𝑝ℓ+ℓ−. Amarjit
Soni presented an overview of rare kaon decays and emphasized the role of 𝐾0 → 𝜋0ℓ+ℓ− [193].

3.5 CP violation in charm decays

CP violation in charm decays was discovered in 2019 by LHCb, with the time-averaged result [194]

Δ𝐴𝐶𝑃 = 𝐴𝐶𝑃 (𝐾+𝐾−) − 𝐴𝐶𝑃 (𝜋+𝜋−) = (−15.4 ± 2.9) × 10−4, (32)

where

𝐴𝐶𝑃 ( 𝑓 ; 𝑡) =
Γ(𝐷0(𝑡) → 𝑓 ) − Γ(𝐷0(𝑡) → 𝑓 )
Γ(𝐷0(𝑡) → 𝑓 ) + Γ(𝐷0(𝑡) → 𝑓 )

. (33)

The time-dependent analysis shows that Δ𝐴𝐶𝑃 is dominated by direct CP violation. More recently,
LHCb also determined the individual asymmetries [195]. It is an open question whether the result
(32) is compatible with the Standard Model or a signal of new physics, because theoretical predic-
tions for Δ𝐴𝐶𝑃 vary substantially depending on the methods used to estimate the nonperturbative
QCD contributions. For example,

Δ𝐴SM
𝐶𝑃 ≈ 2 × 10−4 [196],

Δ𝐴SM
𝐶𝑃 ≈ −4 × 10−4 [197],

Δ𝐴SM
𝐶𝑃 ≈ −16 × 10−4 [198]. (34)

A lattice-QCD calculation of the relevant 𝐷 → 𝜋𝜋 and 𝐷 → 𝐾�̄� amplitudes is therefore an
important long-term goal. This is even more challenging than 𝐾 → 𝜋𝜋 due to the several coupled
channels (including 𝜋𝜋𝜋𝜋) that need to be considered to understand the finite-volume final states in
the 𝐷-meson energy region for physical quark masses. A necessary first step was the generalization
of the Lellouch-Lüscher approach to coupled two-body channels [199].

At this conference, Maxwell Hansen presented a pilot lattice study of hadronic 𝐷 decays using
stabilized Wilson fermions [200]. This work considers 𝐷 → 𝐾𝜋 at the 𝑆𝑈 (3) flavor-symmetric
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point, which avoids power-divergent operator mixing otherwise present with Wilson fermions and
allows the use of the single-channel Lellouch-Lüscher factor. He showed preliminary results for the
renormalization of the four-quark operators and for the finite-volume spectra and the corresponding
scattering phase shifts.

4. Conclusions

Quark flavor physics is exciting and may lead to the discovery of physics beyond the Standard
Model. We already see interesting deviations between measurements and SM predictions that have
inspired substantial model-building work and demonstrate possible routes to discovery. Lattice-
QCD calculations are essential for quark flavor physics. There has been excellent progress, and
we need to continue and expand this work to make the best use of existing precise measurements
and to keep up with the expected experimental progress (see, e.g., Refs. [178, 201]) in the coming
years. It is very valuable to have multiple calculations from different groups with different methods.
Tensions between some of the lattice results for semileptonic form factors have emerged, indicating
that uncertainties were underestimated in some cases. Thankfully, many new calculations with
improved methods are already underway.
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