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1. Introduction

Gauge theories are fundamental in the field of high-energy physics (HEP), and they play a
crucial role in addressing several key problems including quantum chromodynamics, electroweak
unification, Higgs mechanism and even physics beyond the standard model. Discretizing gauge
theories on a spacetime lattice leads to lattice filed theories enabling powerful numerical simula-
tions of complex physical systems that cannot be solved analytically. Consequently, tremendous
advancements have been achieved in developing classical hardware and algorithms, Markov Chain
Monte Carlo (MCMC) technique being one of the most popular one. Despite the great success
of classical numerical methods, several problems become intractable under certain important pa-
rameter regimes due to the so-called sign problem. Recent theoretical studies have proposed that
these obstacles can be circumvented by utilizing quantum algorithms [1, 2]. For example, several
resource-efficient quantum algorithms for (1+1), (2+1) and (3+1) dimensional gauge theories have
been developed [3–10]. However, only proof-of-principle demonstrations have been made so far
for the case of (1+1) [11–15] and (2+1) [16] using currently available Noisy Intermediate-Scale
Quantum (NISQ) devices [17]. Significant improvements need to be made on both quantum hard-
ware and control schemes to realize the ambitious goal of computing (3+1) dimensional phenomena
using a quantum computer.

The Superconducting Quantum Materials and Systems (SQMS) center, led by Fermilab, is
dedicated to bring transformational advancements in the field of quantum computing and sensing.
Its core objective is to address the decoherence challenges inherent in current quantum devices,
paving the way for enhanced quantum processors and sensors. Central to this initiative is the
development of three-dimensional (3D) superconducting cavity-based digital quantum computing
systems within the SQMS center aimed to solve important HEP problems. These systems, utilizing
3D superconducting radio-frequency (SRF) cavities originally designed for accelerator physics,
present distinct advantages over conventional 2D superconducting devices. Firstly, the fundamental
mode of the 3D cavities boasts lifetimes surpassing two seconds, rendering them exceptional for
storing and manipulating quantum information [18]. Secondly, efficient control and readout schemes
significantly reduce cryogenic and room-temperature hardware overhead. Lastly, the inherent access
to large Hilbert spaces provides the potential for direct encoding of "qudits," offering advantages in
simulations compared to the conventional two-level (qubit) encoding [19].

This proceeding is organized as follows. In Sec. 2 we briefly review superconducting circuits,
in particular, the circuit quantum electrodynamics (cQED) architecture for transmon qubits. In Sec.
3, we introduce the 3D SRF quantum computing system and discuss recent experimental progress
in Sec. 4, followed by concluding remarks in Sec. 5.

2. Superconducting circuits

In the dynamic landscape of quantum computing, superconducting circuits operating at mil-
likelvin temperatures have emerged as a leading candidate, offering a promising avenue for con-
structing a scalable framework. Fabricated through conventional nanolithographic techniques and
controlled by microwave frequency signals, these circuits have witnessed remarkable advancements
over the past 25 years including enhanced coherence times, high-fidelity measurements, and precise
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Figure 1: The Josephson junction. (a) A JJ is formed by a thin insulating layer sandwiched between two
superconductors. It is represented by a cross in a circuit diagram. (b) A scanning electron micrograph
highlighting the overlap of two metals forming the JJ. (c) A SQUID loop is formed by connecting two JJs
using superconducting wires.

manipulation [20]. In the following sections we discuss the major aspects of superconducting
circuits.

2.1 The Josephson junction

At the heart of superconducting circuits, lies a component called Josephson junction (JJ). It
is composed of a thin insulating layer (typically made of some oxide) sandwiched between two
superconducting material and represented with cross as illustrated in Fig. 1(a). A scanning electron
micrograph of a JJ is shown in Fig. 1(b). The JJs are governed by the following Josephson relations,

𝐼 = 𝐼0 sin 𝛿, (1a)
𝑉 = 𝜑0 ¤𝛿, (1b)

where, the current flowing through the junction 𝐼 depends on the critical current 𝐼0 and the super-
conducting phase difference 𝛿 across the junction. The voltage 𝑉 across the junction is set by the
time derivative of 𝛿, where 𝜑0 = ℏ/(2𝑒) is the reduced flux quantum, with ℏ being the reduced
Planck constant. It can be shown that the inductance 𝐿𝐽 of the JJ depends on the current flowing
through it as,

𝐿𝐽 =
𝜑0√︃
𝐼2
0 − 𝐼2

, (2)

where 𝐿𝐽0 = 𝜑0/𝐼0 is the minimum inductance of the junction. As a result the JJ acts like a
nonlinear lossless inductor when cooled below its superconducting transition temperature. The
maximum inductance of a JJ can further be tuned by replacing a single junction by two junctions
connected in a loop (see Fig. 1(c)) and threading a magnetic flux 𝜙ext through it. This structure is
known as Superconducting Quantum Interference Device or SQuID loop providing a flux-dependent
inductance

𝐿𝐽 (𝜙ext) =
𝜑0√︃
𝐼2
0 − 𝐼2

1
cos 𝜙ext

. (3)
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Figure 2: A transmon qubit. (a) A transmon is constructed by shunting a JJ using a large capacitor. (b) The
cosinusoidal potential gives rise to unequally spaced energy eigenstates. The bottom two levels can thus be
selectively addressed forming an effective qubit. (c) An optical image of a typical transmon qubit.

Traditionally, the JJ has been formed through Al-Al2O3-Al trilayer. However, recent studies are
exploring other materials to make the JJ resilient against quasi-particles (broken Cooper pairs) or
small magnetic fields [21, 22].

2.2 The Transmon qubit

A generic superconducting circuit takes shape through the utilization of superconducting
metallic films, typically composed of materials such as Aluminum, Niobium, or Tantalum. These
films are patterned on a substrate, commonly silicon or sapphire. Employing (optical and electron-
beam) nanolithographic techniques, the designed patterns give rise to various electrical components,
including linear inductors, linear capacitors, transmission lines, and Josephson junctions. These
components are strategically interconnected in different geometries and with diverse parameters
to forge resonators, which can exhibit both linear and nonlinear behaviors. As elucidated in the
preceding section, the nonlinearity primarily stems from the Josephson junction.

Among the myriad superconducting circuits employed as qubits, the transmon [23] stands out
as one of the most widely adopted globally due to its simple geometry, reproducible performance,
good coherence times, ease of control, and precise readout. At its core, a transmon in its simplest
form comprises a single Josephson junction with inductance 𝐿𝐽0 shunted by a large capacitor with
capacitance 𝐶𝐽 as depicted in Fig. 2(a). Due to the nonlinearity introduced by the JJ, the potential
energy takes on a cosinusoidal (periodic) nature, deviating from the parabolic form observed in a
harmonic oscillator. This nonlinearity results in unevenly spaced energy eigenstates, as illustrated
in Fig. 2(b). The lowest transition frequency, denoted as 𝜔01, between the ground state and the first
excited state is approximately determined by

𝜔01 ≃ 1
√
𝐿𝐽0𝐶𝐽

− 𝐸𝐶 , (4)

where 𝐸𝐶 = 𝑒2/(2𝐶𝐽 ) represents the charging energy. The second transition energy, 𝜔12 = 𝜔01+𝜂,
differs from the first by the anharmonicity 𝜂 ≃ −𝐸𝐶 . Typically, an anharmonicity value of 𝜂 ∼ −250
MHz proves adequate to selectively address the 𝜔01 transition, even in the presence of multiple
low-lying levels. Consequently, the ability to operate in isolation on the bottom two energy levels of
the transmon circuit facilitates the creation of an effective qubit. Introducing a SQUID in place of
the single junction further allows for tunability of the qubit frequency 𝜔01 through the application

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
2
7

Qudit-based quantum computing with SRF cavities at Fermilab Tanay Roy

(a)
Transmon Cavity

Frequency

R
ef

le
ct

ed
 p

ha
se

Counts(b)

0

1

0

1

θm0

θm1

χ

Figure 3: The circuit QED architecture. (a) A transmon is dispersively coupled to a linear cavity. The
state of the transmon can be measured by interrogating the cavity with a microwave drive at its resonance
frequency. (b) The frequency of the cavity changes by the dispersive shift 𝜒 when the qubit jumps from its
ground state |0⟩ to the excited state |1⟩. Consequently, the cavity develops a qubit state-dependent response
which leads to distinguishable signals for the two qubit states.

of an external magnetic field 𝜙ext. Figure 2(c) shows an optical image of a transmon circuit with
two metallic pads connected by a SQUID loop.

The device parameters for a transmon are typically selected to ensure that the qubit frequency
𝜔01/2𝜋 falls within the range of 3 to 6 GHz, and the anharmonicity lies between 150 and 300
MHz. This specific choice of 𝜔01 introduces an additional requirement related to the operating
temperature. It is essential to guarantee that the thermal energy of the device is significantly smaller
than the energy associated with a photon at the transition frequency. In essence, if the physical
temperature 𝑇tmon satisfies the condition 𝑘𝐵𝑇tmon ≪ ℏ𝜔01, where 𝑘𝐵 is the Boltzmann constant,
the qubit predominantly begins in its ground state |0⟩. This necessity mandates that transmon
qubits be operated at temperatures (around 10 mK) much lower than the superconducting transition
temperature 𝑇𝑐.

2.3 The circuit QED architecture

Cavity Quantum Electrodynamics (Cavity-QED) involves examining the interaction between
a single atom and the electromagnetic field of a Fabry-Perot cavity. Circuit QED (cQED) is the
circuit-based realization of this concept [20, 24], where a superconducting qubit, often referred to
as an artificial atom, interacts with a superconducting resonator fabricated either in a planar on-chip
geometry or within a 3D waveguide cavity. The basic circuit diagram of a cQED setup is illustrated
in Fig. 3(a). This system is aptly described by the Jaynes-Cummings Hamiltonian

𝐻 = −ℏ𝜔01
2

𝜎𝑧 + ℏ𝜔𝑐

(
𝑎†𝑎 + 1

2

)
+ ℏ𝑔(𝑎𝜎+ + 𝑎†𝜎−), (5)

comprising three terms. The first term, involving the Pauli-Z operator, represents the qubit, while the
second term denotes the cavity energy with a resonance frequency 𝜔𝑐, and the third term describes
the qubit-cavity interaction under the rotating-wave approximation, wherein energy non-conserving
terms are excluded. In this context, 𝑔 stands for the exchange coupling strength between the qubit
and the cavity, 𝑎 (𝑎†) denotes the cavity annihilation (creation) operator, and 𝜎± = (𝜎𝑥 ∓ 𝑖𝜎𝑦)/2
represents the qubit raising and lowering operators. The term 𝑎†𝑎 is called the photon number
operator whose eigenvalue is 𝑛 for Fock state |𝑛⟩, i.e. 𝑎†𝑎 |𝑛⟩ = 𝑛 |𝑛⟩. The non-diagonal Hamiltonian
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in Eq. (5) becomes diagonalizable when the qubit-cavity detuning |Δ| = |𝜔01 − 𝜔𝑐 | ≫ 𝑔. In this
dispersive approximation, where there is no actual photon exchange between the qubit and the
cavity, the Jaynes-Cummings Hamiltonian reduces to

𝐻 = −ℏ𝜔01
2

𝜎𝑧 + ℏ

(
𝜔𝑐 −

𝜒

2
𝜎𝑧

) (
𝑎†𝑎 + 1

2

)
, (6)

with 𝜒 ≈ 2𝑔2/Δ termed as the dispersive shift. The coefficient of 𝑎†𝑎 in Eq. (6) determines the
cavity’s resonance frequency, which now exhibits two values separated by 𝜒 depending on the
eigenvalue of 𝜎𝑧 (= ±1). Consequently, the cavity manifests two distinct responses conditioned
on the state of the qubit, as illustrated in Fig 3(b). This characteristic is employed for qubit
measurement, a topic elaborated in the following section.

2.4 Qubit measurements

The dispersive interaction described in Eq. (6) facilitates a quantum non-demolition mea-
surement of the qubit. This is achievable because the qubit-cavity interaction term (∝ 𝜎𝑧𝑎

†𝑎)
commutes with the bare qubit Hamiltonian (∝ 𝜎𝑧). Consequently, the qubit’s eigenstate becomes
a simultaneous eigenstate of the measurement operator. When the cavity is energized, the coherent
state becomes entangled with the qubit’s state, and the measurement apparatus gauges the leaked
coherent state either through reflection or transmission. In Fig. 3(b), the phase response of the
cavity is depicted when the qubit is in its ground or excited state. If the qubit is perfectly entangled
with the cavity, detecting the coherent state in one of the two possible phase values (𝜃𝑚0/𝑚1) results
in the qubit being projected into the corresponding eigenstate. This operation is termed a strong
measurement, where the qubit’s wavefunction is said to collapse to either |0⟩ or |1⟩. However, per-
fect projection requires the coherent states corresponding to the qubit states to be perfectly resolved,
which in practice means a well-resolved phase response (in general complex signal) of the scattered
signal (see Fig. 3(b)). The resolvability depends on several factors including the dispersive shift 𝜒,
cavity’s linewidth, power of the probe signal, losses in the measurement chain and integration time
of the output signal.

The cavity employed for qubit state measurement is referred to as the readout cavity or readout
resonator, and it can be constructed in either a 2D or 3D geometry. Typical 2D structures encompass
𝜆/2, 𝜆/4 coplanar-waveguide or stripline configurations, or lumped-element resonators [25]. On
the other hand, prevalent 3D cavities involve rectangular or coaxial geometries. Additionally, the
cavity functions as a filter, positioned between the qubit and the environment, playing a pivotal role
in shielding the qubit from environmental noise.

2.5 Decoherence

To manipulate a qubit effectively, it must be coupled to the environment to enable interaction
with external signals. However, this coupling introduces undesirable noise, leading to the loss
of quantum information through a process known as decoherence. Decoherence manifests in two
forms: relaxation and dephasing. In the relaxation process, when a qubit is initially prepared in
its excited state, it eventually loses a photon and transitions to the ground state. The characteristic
time scale of this relaxation is denoted as the T1 time, typically around 100 𝜇s for typical transmon
qubits in modern processors, corresponding to quality factors in the order of a few million.
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Dephasing noise induces the loss of coherence in a superposition state |𝜓⟩ = 𝑐0 |0⟩ + 𝑐1 |1⟩,
arising from fluctuations in qubit frequency due to various factors, including charge noise, flux
noise, and shot noise. The dephasing time constant T𝜙 for transmon qubits is generally below 100
𝜇s. For the effective operation of a quantum computer, it is crucial to complete all calculations
within the T1 and T𝜙 times to minimize error accumulation.

3. Superconducting cavities for quantum computing

Three-dimensional superconducting cavities typically exhibit significantly higher quality fac-
tors compared to their two-dimensional counterparts. As a result, numerous research groups are
investigating the potential of storing and processing quantum information using 3D cavities [25–29],
capitalizing on their extended lifetimes. At Fermilab, there is active exploration into the utiliza-
tion of TESLA-shaped superconducting radio-frequency cavities, initially designed for accelerator
physics, which currently hold the record for the highest quality factor at microwave frequencies [18].

3.1 Advantages of SRF cavities

Several advantages arise when using 3D SRF cavities compared to 2D transmon circuits for
quantum information storage, with the primary advantage being enhanced coherence properties.
While extensive efforts are dedicated to improving the T1 of transmon qubits toward the millisecond
range [30–32], TESLA-shaped SRF cavities have already demonstrated relaxation times exceeding
300 ms for 5 GHz resonators at dilution temperatures (∼ 10 mK) [18]. This three-order-of-magnitude
improvement in lifetimes positions SRF cavities as significantly superior quantum memory devices.
Additionally, the inherent linearity of the cavity architecture contributes to much longer T𝜙 times.

The second advantage arises from the large accessible Hilbert space of a single mode in SRF
cavities, which operate as linear oscillators. These cavities have an infinite number of energy
eigenstates, known as Fock levels (see Fig. 4(a)). The T1 time corresponds to the lifetime of a
coherent state or the Fock level |1⟩. The lifetime of the 𝑛-th Fock level is given by T(𝑛)

1 = T(1)
1 /𝑛.

Consequently, the Fock level |100⟩ should have a lifetime longer than 3 ms, a significantly larger
number compared to modern transmons. This opens avenues for using SRF cavities as qudits—𝑑-
dimensional quantum objects—rather than confining to just two levels for qubits. Several theoretical
studies have highlighted the advantages of directly encoding HEP problems into qudits, requiring
fewer operations [33–36] and potentially better noise tolerance [37, 38]. While one could argue
for using transmons as qudits [39–41], there are two major issues. First, a transmon has only a
few bounded energy eigenstates, and charge noise grows exponentially with Fock number, severely
impacting dephasing time [23]. Consequently, practical control beyond 4 levels (Fock |0⟩ through
|3⟩) of a transmon becomes challenging. SRF cavities on the other hand do not suffer from similar
dephasing issues.

The third advantage stems from the simplicity of control and readout. Traditional 2D architec-
tures with transmons use a linear chain or planar geometry with nearest-neighbor coupling to scale
up, and the Hilbert space grows exponentially as 2𝑁 , where 𝑁 is the number of qubits. Typically,
these systems need one or two input lines per qubit, one readout line for one to seven qubits, and
additional input lines for tunable inter-qubit couplers. Clearly, the number of room temperature
and cryogenic electrical components increases linearly with the number of qubits. In contrast, one
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Figure 4: The SRF qudit architecture. (a) A linear resonator has a parabolic potential giving rise to infinitely
many equally spaced energy eigenstates. (b) A transmon qubit is dispersively coupled to two linear resonators.
The high-Q storage cavity holds the quantum information for a long time. The low-Q readout cavity is used
to measure the state of the qubit.

𝑑-dimensional mode effectively encodes log2 𝑑 qubits, requiring just one input and output line to
control that many qubits (discussed in detail later). Scaling up can be achieved by constructing
multimode cavities, again without needing additional cryogenic lines or control hardware and with
the benefit of obtaining 𝑑𝑁 -dimensional Hilbert space.

3.2 Qudit control

A harmonic oscillator possesses an infinite number of evenly spaced energy eigenstates (see
Fig. 4(a)). When a microwave drive is applied at the resonance frequency, it simply generates a
coherent state, which is a classical state and can be expressed as

|𝛼⟩ = 𝑒−|𝛼 |
2/2

∞∑︁
𝑛=0

𝛼𝑛

√
𝑛!

|𝑛⟩ , (7)

where |𝛼 |2 represents the average number photons in the coherent state |𝛼⟩. This kind of classical
drive that creates one coherent state from another (including the ground state |0⟩) is called the
displacement operation. Thus, controlling individual Fock levels directly is not possible without
the assistance of some nonlinear component. We employ the Jaynes-Cummings Hamiltonian for
executing quantum operations (also known as gates) and for preparing non-classical states inside
the cavity. A simplified circuit diagram is depicted in Fig. 4(b), illustrating a high-Q storage cavity
(with resonance frequency 𝜔𝑠) coupled with a transmon. This coupling enables the execution of
quantum gates on the storage, holding quantum information in its 3D electromagnetic field. The
transmon is also linked to a resonator for the readout of both the transmon and the storage. Focusing
on the storage and transmon (with 𝜔01 = 𝜔𝑞) interaction, similar to Eq. (6), the Hamiltonian can
be written as

𝐻𝑠 = ℏ𝜔𝑠

(
𝑏†𝑏 + 1

2

)
− ℏ(𝜔𝑞 + 𝜒𝑠𝑏

†𝑏)𝜎𝑧

2
, (8)

where, 𝑏 (𝑏†) is the annihilation (creation) operator for the storage mode and 𝜒𝑠 is the dispersive
shift between the transmon and the storage. Henceforth, we will use |𝑔⟩ and |𝑒⟩ to represent the
ground and first excited states of the transmon respectively and treat it as a qubit.
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Unlike Eq. (6), the dispersive interaction term ℏ𝜒𝑠𝑏
†𝑏𝜎𝑧/2 is combined with the qubit term

in Eq. (8). Therefore, the second term implies that the qubit’s frequency depends on the photon
number of the storage mode. For instance, the qubit frequency 𝜔

(0)
𝑞 = 𝜔𝑞 when the storage is in its

ground state |0⟩ changes to 𝜔
(1)
𝑞 = 𝜔𝑞 + 𝜒𝑠 when the storage is excited to |1⟩. In general, if there

are 𝑛 photons in the storage, the effective qubit frequency is given by

𝜔
(𝑛)
𝑞 = 𝜔𝑞 + 𝑛𝜒𝑠 . (9)

If the qubit’s linewidth is much smaller than 𝜒𝑠, these frequencies become well-resolved and can
be employed to execute non-classical operations on the storage mode’s state, a process known as
Selective Number-dependent Arbitrary Phase (SNAP) gate [42, 43].

To understand the working principle of a SNAP gate, consider a superposition state
∑𝑑

𝑘=0 𝑐𝑘 |𝑘⟩
in the storage along with the qubit being in its ground state |𝑔⟩. The joint state of the storage and
qubit can be expressed as

|𝜓⟩ =
𝑑∑︁

𝑘=0
𝑐𝑘 |𝑘⟩ ⊗ |𝑔⟩ , (10)

with
∑𝑑

𝑘=0 |𝑐𝑘 |2 = 1. Now, if we apply a full 2𝜋 rotation on the qubit conditioned on having 𝑛

photons in the storage by applying a microwave drive at 𝜔𝑞 + 𝑛𝜒𝑆 , the basis component |𝑛⟩ obtains
a phase kick-back resulting in

|𝜓′⟩ =
(∑︁
𝑘≠𝑛

𝑐𝑘 |𝑘⟩ − 𝑐𝑛 |𝑛⟩
)
⊗ |𝑔⟩ . (11)

In general, by splitting the 2𝜋 rotation into two 𝜋 pulses and adjusting the relative phase of the
second 𝜋 pulse, arbitrary phase can be imparted on any basis component. The final state after a
typical SNAP operation is given by��𝜓 𝑓

〉
=

(
𝑑∑︁

𝑘=0
𝑐𝑘𝑒

𝑖 𝜃𝑘 |𝑘⟩
)
⊗ |𝑔⟩ . (12)

It is noteworthy that the final state is a product state, with the qubit returning to its initial state |𝑔⟩ ,
thereby completing the gate operation. A general SNAP gate 𝑆 can thus be expressed as

𝑆( ®𝜃) =
𝑑∑︁

𝑘=0
𝑒𝑖 𝜃𝑘 |𝑘⟩ ⟨𝑘 | , 𝜃𝑘 ∈ [0, 2𝜋], (13)

with ®𝜃 = {𝜃0, 𝜃1, · · · , 𝜃𝑑}. The SNAP gates, in conjunction with the displacement gate �̂� (𝛼) =

𝑒𝛼𝑏
†−𝛼∗𝑏, constitute a universal gate set. Consequently, any arbitrary unitary operation can be

achieved through the alternating application of SNAP and displacement gates. It is important to
note that the driving strength for a SNAP gate should be much smaller than 𝜒𝑠 to make it conditional.
A general rule of thumb is to use a pulse length of 𝜋/(10𝜒𝑠) which theoretically reduces the coherent
error due to off-resonant driving to 1%. On the contrary, the displacement should be much faster
and broadband to make it independent of the state of the qubit. An alternative universal gate set
is formed by echoed-conditional gate and single qubit rotations, which are tailored for the systems
where the dispersvie shift 𝜒𝑠 is much smaller than the linewidth of the qubit [44].
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Figure 5: Ideal Wigner tomography (top panel) and corresponding Fock state occupation probability (bottom
panel) for (a) the ground state |0⟩, (b) a coherent state (𝛼 = 1) with an average photon number �̄� = 1, and (c)
the Fock state |1⟩. Note that the populations are distributed across multiple Fock states for the coherent state.

3.3 Qudit measurement

To determine the population of the basis components, a strategy akin to the SNAP gate
operation can be employed. Instead of applying a 2𝜋 rotation, a 𝜋 pulse on the qubit conditioned on
the presence of 𝑛 photons in the storage can be applied. The resultant state following this operation
is given by

|𝜓′⟩ =
∑︁
𝑘≠𝑛

𝑐𝑘 |𝑘⟩ ⊗ |𝑔⟩ + 𝑐𝑛 |𝑛⟩ ⊗ |𝑒⟩ , (14)

forming an entangled state between the storage and the qubit. Subsequently, if the qubit is measured
using the readout resonator (refer to Fig. 4(b)), it collapses to |𝑒⟩ with a probability |𝑐𝑛 |2, while
concurrently, the cavity is projected to |𝑛⟩. By repeating the measurements a large number of times
after applying the conditional 𝜋 pulses on the same initial state, the relative weights can also be
obtained.

A complete characterization of the state is achievable through Wigner tomography [45], a
technique that gauges the parity of the state following displacements with varying amplitudes and
phases. The parity operator, denoted as Π̂, is defined by

Π̂ = 𝑒𝑖 𝜋𝑏
†𝑏, (15)

where it yields an eigenvalue of 1 (-1) when the photon count in the storage is even (odd). Imple-
menting the parity operator involves a Ramsey-type experiment on the qubit. In this procedure, a
𝜋/2 pulse is applied to the qubit, initializing it along the equator of the Bloch sphere. Following
a wait period of 𝜋/𝜒𝑠, another 𝜋/2 pulse with an opposite phase is applied. If the storage has an
even (odd) number of photons, the qubit ends up in the ground (excited) state, which is determined
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using the readout resonator. Ideal Wigner tomography for select cavity states is illustrated in Fig. 5,
where a negative value of the Wigner function in the tomography signifies a non-classical state.

4. Experimental results

As a first step towards building a universal qudit-based quantum computer we successfully inte-
grated a 3D transmon into a TESLA shaped SRF cavity and performed basic characterizations [25].

4.1 The system

The quantum information is stored in the fundamental mode (TM01) of a TESLA-shaped 3D
superconducting cavity, as illustrated in Fig. 6(a) [25, 46]. This SRF cavity comprises an elliptical
resonator flanked by two cylindrical sections known as beampipes. Reflection or transmission
measurements can be conducted by introducing antennas through the beampipes. The ancilla
transmon is strategically positioned from one side, nearly reaching the center of the cavity to optimize
electromagnetic interaction. Typically, we employ 3 or 5 GHz TESLA cavities constructed from
Niobium, featuring elliptical sections typically a few centimeters in diameter. The transmon (see
Fig. 6(b)) is fabricated on a silicon or sapphire substrate, utilizing various superconducting materials
such as Aluminum, Niobium, or Tantalum to create the capacitor pads, while the Josephson junction
is commonly made from Aluminum. The transmon’s frequency ranges from 4 to 6 GHz. For the
transmon readout, a higher harmonic (TM11) of the cavity is employed.

(b)(a)

Transmon

Antenna

Antenna Elliptical cavity

Beampipe

Beampipe

Chip

200 µm

4 
cm

Junction
area

Capacitor
pads

Figure 6: The transmon-cavity system. (a) The SRF cavity is made using Niobium. A transmon qubit is
inserted through the beampipe so that it can strongly interact with the high-Q TM01 mode. The antennas are
used to deliver and collect RF signals. The readout of the transmon is performed using the TM11 mode. (b)
Typical geometry of the transmon (not to scale) consisting of two capacitor pads and a Josephson junction.
The transmon is fabricated on a silicon or sapphire substrate.

4.2 Measurement setup

The cryogenic wiring configuration is delineated in Fig. 7. In a modern commercial dilution
refrigerator, there are typically five stages, each operating at different temperatures. The innermost
stage, often referred to as the base plate or mixing chamber plate, achieves the lowest temperature
at around 10 mK. Attenuators on the input lines play a dual role by reducing blackbody radiation
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Figure 7: Cryogenic wiring of the setup. The pulses for the transmon qubit and storage are sent through
a single RF line. Readout of the qubit is performed in reflection. The boxes represent thermal shields at
specified temperatures.

originating from room temperature electronics outside the fridge and aiding in thermalizing the input
lines to their respective fridge stages. Copper-body attenuators, situated closer to the device under
test, exhibit superior thermal conductivity compared to their stainless-steel counterparts. Band-pass
filters serve to block extraneous signals outside the frequency zone of interest, while low-pass filters
reflect signals at frequencies exceeding the cut-off value. Infrared filters are strategically placed to
obstruct high-energy radiation that could potentially break Cooper pairs.

A single input line is designated for sending pulses to the transmon and storage, while a
separate RF line conveys readout pulses for measuring the transmon’s state. The reflected signal
at the readout frequency is directed toward the output line through a circulator. Two isolators,
which are essentially circulators with one port terminated by a 50 Ω resistor, are introduced on the
output line to shield the device from incoming radiation along the output line. Before exiting the
fridge, the output signal undergoes amplification via a cryogenic high electron mobility transistor
(HEMT). Typically, one or two additional room-temperature amplifiers are employed on the output
line before data digitization. Microwave pulses are typically generated using an arbitrary waveform

12
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Figure 8: Qubit spectroscopy as a function of varying driving strengths on the storage. The on-resonance
drives create coherent states with average photon numbers proportional to the square of the drive amplitude.
The blobs corresponding to different Fock distribution are separated by qubit-storage dispersive shift 𝜒𝑠/2𝜋.

generator (AWG), and the acquired signal is recorded in a computer for subsequent analysis.

4.3 Photon-number counting

The successful integration of a transmon with the SRF cavity is demonstrated by the observation
of a photon-number-dependent qubit frequency, as described in Eq. (9). This characteristic is
unveiled through qubit spectroscopy, where the storage is driven with varying strengths. In Fig. 8,
the x-axis represents the probe frequency utilized for the qubit’s 𝜋 pulse after applying a displacement
to the storage with increasing driving amplitudes.

When no drive is applied (amplitude = 0), the storage, having zero photons, results in qubit
excitation around 𝜔𝑞 (depicted by the red blob in Fig. 8). As a displacement is applied to the
storage, coherent states with different average photon numbers are generated, with distinct photon
number distributions given by Eq. (7). Consequently, the qubit responds to multiple frequencies
separated by the storage-qubit dispersive shift 𝜒𝑠, manifesting as multiple blobs in Fig. 8.

4.4 Fock state preparation

An essential aspect of utilizing a cavity as a qudit involves demonstrating the preparation of
Fock states. The process involves a sequence comprising alternate displacement and SNAP gates.
For instance, starting from the ground state |0⟩ in the storage, Fock state |1⟩ can be prepared by
applying (a) �̂�0(𝛼 = 1.143), (b) 𝑆𝜋 (0), and (c) �̂�1(𝛼 = −0.520). Here, 𝑆𝜃 (𝑘) indicates the
application of a SNAP gate with phase 𝜃 on Fock level |𝑘⟩. In Fig. 9(a), the Wigner tomography of
|1⟩ prepared using this sequence is depicted. The lifetime of this state was determined by measuring
the average population of |1⟩ after varying waiting periods, as presented in Fig. 9(b), showing a T1

of about 3.1 ms.
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Figure 9: Characterization of Fock state |1⟩. (a) Wigner tomography showing parity along orthogonal
displacement directions. A single circular ring with 0 parity is the signature of |1⟩. Data corresponding to
(b) a relaxation experiment and (c) a Ramsey experiment for characterizing T1 and T𝜙 .

To measure T𝜙, a Ramsey-type experiment was conducted where the initial state ( |0⟩ + |1⟩)/
√

2
is prepared with the sequence �̂�1(𝛼 = 0.243)𝑆𝜋 (0)�̂�0(𝛼 = −0.561). The resulting oscillation,
shown in Fig. 9(c), exhibits a decay constant 𝑇2R of 1.6 ms, corresponding to a pure dephasing time
𝑇𝜙 of 2.1 ms. These coherence numbers significantly surpass those of a typical transmon device.

Similarly, a Fock state |𝑛⟩ can be realized (with sufficeintly low infidelity) by applying 𝑛 SNAP
pulses and (𝑛 + 1) displacement pulses. Figure 10 illustrates qubit spectroscopy after various Fock
states are prepared, revealing peaks at difference frequencies 𝑛𝜒𝑠 from 𝜔𝑞. The peak heights serve
as an indicator of the occupation of a specific Fock level.
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Figure 10: Multiple Fock states preparation. Qubit spectroscopies after preparation of Fock states |0⟩ to |3⟩
show the relevant peaks at detunings which are multiple of the storage-qubit dispersive shift 𝜒𝑠/2𝜋.
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5. Conclusion and outlook

In conclusion, the utilization of 3D SRF cavities presents a promising avenue for advancing
quantum computing beyond conventional 2D superconducting circuits. The distinct advantages,
including access to a large Hilbert space, extended coherence times, and a simplified control
scheme, position this architecture as a compelling alternative. Besides accessing higher Fock
states, the ongoing development of multi-mode cavities [47], where a common transmon controls
all modes, sets the stage for the implementation of two-qudit gate schemes, particularly relevant for
addressing challenges in high-energy physics.

Looking forward, immediate enhancements involve the extension of this system to incorporate
multi-mode cavities, paving the way for more sophisticated algorithms targeting specific high-energy
physics problems. Further scalability is envisaged through a modular architecture featuring a multi-
mode storage unit and a manipulator module. The high-Q cavities in the storage unit, designed
for prolonged quantum information storage akin to quantum random access memory, coupled with
quantum operations in the manipulator module, present a viable path for scaling up quantum
computing capabilities. The integration of a coupler element facilitates seamless quantum state
transfer between the storage and manipulator modules, opening avenues for continued exploration
and innovation in quantum computing.
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