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In this work, we present the first lattice QCD study on the invisible decay 𝐽/𝜓 → 𝛾𝜈𝜈̄. The
calculation is accomplished using 𝑁 𝑓 = 2 twisted mass fermion ensembles. The excited-state
effects are observed and eliminated using a multi-state fit. The impact of finite-volume effects is
also examined and confirmed to be well-controlled. After a continuous extrapolation under three
lattice spacings, we obtain the branching fraction as Br[𝐽/𝜓 → 𝛾𝜈𝜈̄] = 1.00(9) (7) ×10−10, where
the first error is the statistical error and the second is an estimate of the systematics. The exact
theoretical prediction can be used to remove the only invisible contamination from the standard
model background in searching for the possible dark matter by the channel 𝐽/𝜓 → 𝛾 + invisible.
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1. Introduction

Searching for dark matter is one of the major goals of contemporary astronomy and particle
physics [1, 2]. In recent decades, abundant experimental observations have hinted at the existence
of dark matter, which triggered significant theoretical efforts to understand its nature and search
for new physics beyond the Standard Model. Among various experimental detections, the heavy
quarkonium experiments provide an ideal environment to study the possible dark matter associated
with heavy quarks. In contrast to the low-energy dark matter nucleon scattering experiments, the
decay of heavy quarkonium into a single photon and invisible particles can probe arbitrarily small
dark matter masses. Therefore, it is widely used to search for light sterile neutrino or sub-GeV dark
matter.

The CLEO [3], BaBar [4], Belle [5], and BESIII [6] experiments have performed the searches
for 𝐽/𝜓 or Υ radiative decays into invisible particles, and no signal was observed. The latest upper
limits on the branching fraction of 𝐽/𝜓 → 𝛾 + invisible is reported ranging from 8.3 × 10−8 to
1.8 × 10−6 by the BESIII experiment using (2708.1 ± 14.5) × 106𝜓(3686) events collected by the
detector [7]. In this analysis, the invisible particle is interpreted as an axion-like particle(ALP),
and the most stringent constraints on the ALP-photon coupling are presented. Not long before,
the BESIII experiment also searches for a CP-odd light Higgs boson (𝐴0) in 𝐽/𝜓 → 𝛾𝐴0 [8].
Among these searches, the standard model decay 𝐽/𝜓 → 𝛾𝜈𝜈̄ is involved since the neutrinos
are also invisible particles in the standard model. In Ref. [9], the author analyzes the process
𝐽/𝜓 → 𝛾𝜈𝜈̄ based on certain phenomenological assumptions and estimates the branching fraction
as Br(𝐽/𝜓 → 𝛾𝜈𝜈̄) = 0.7×10−10, thereby leaving a substantial room for new physics in the process.
At present, several futural experiments are under planning or construction, such as Super Tau Charm
Facility [10], Belle II [11], and LHCb [12], have the great potential to significantly improve the
upper limit on the branching fraction of 𝐽/𝜓 → 𝛾 + invisible.

At the present stage, a genuine non-perturbative calculation can not only provide a model-
independent comparison with previous phenomenological studies but also provide a potential the-
oretical assist for experiments in the search for dark matter and new physics beyond the standard
model. In this paper, we present the first lattice calculation of the invisible decay 𝐽/𝜓 → 𝛾+invisible.
The aim of the work is to non-perturbatively determine the branching fraction with various system-
atic effects under well control.

γ

ν

J/ψ

ν̄

Figure 1: The diagram for the decay 𝐽/𝜓 → 𝛾𝜈𝜈̄, where the shaded region denotes a weak neutral current.
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1.1 Foundation

2. Approach to the decay width on the lattice

We start our discussion from the amplitude of 𝐽/𝜓 → 𝛾𝜈𝜈̄, the lowest-order contribution of
which is expressed by

M = 𝐻𝜇𝜈𝛼 (𝑞, 𝑝)𝜖 𝛼𝐽/𝜓 (𝑝) (−𝑖𝑒𝜖
𝜈∗(𝑞)) (− 𝑖

2
𝑔𝑍 )2 × 𝑢̄(𝑞1)

𝛾𝜇

2
(1 − 𝛾5)𝑣(𝑞2)

−𝑖
(𝑘2 − 𝑚2

𝑍
)

(1)

where the nonperturbative hadronic interaction between the 𝐽/𝜓, photon and 𝑍 boson is encoded
in a hadronic function 𝐻𝜇𝜈𝛼 (𝑞, 𝑝),

𝐻𝜇𝜈𝛼 (𝑞, 𝑝) =
∫

𝑑4𝑥e𝑖𝑞𝑥H𝜇𝜈𝛼 (𝑥, 𝑝) (2)

where the hadronic function H𝜇𝜈𝛼 (𝑥, 𝑝) is defined as

H𝜇𝜈𝛼 (𝑥, 𝑝) = ⟨0|𝑇{𝐽em
𝜇 (𝑥)𝐽𝑍𝜈 (0)}|𝐽/𝜓(𝑝)𝛼⟩ (3)

with 𝐽/𝜓 four-momentum 𝑝 = (𝑖𝑚𝐽/𝜓, ®0), photon 𝑞 = (𝑖 | ®𝑞 |, ®𝑞) and the neutrino 𝑞 𝑗 = (𝑖 | ®𝑞 𝑗 |, ®𝑞 𝑗), 𝑗 =
1, 2. Both the photons and neutrinos satisfy the on-shell conditions and are viewed as massless. The
electromagnetic and weak currents are defined as 𝐽em

𝜇 =
∑

𝑞 𝑒𝑞 𝑞𝛾𝜇𝑞(𝑒𝑞 = 2/3,−1/3,−1/3, 2/3
for 𝑞 = 𝑢, 𝑑, 𝑠, 𝑐), 𝐽𝑍𝜈 =

∑
𝑞 𝑞𝛾𝜈 (𝑔

𝑞

𝑉
− 𝑔𝑞

𝐴
𝛾5)𝑞, 𝑔𝑞

𝑉
= 𝑇

𝑞

3 − 2𝑒𝑞 sin2 𝜃𝑊 and 𝑔𝑞
𝐴
= 𝑇

𝑞

3 , where 𝑇𝑞

3 is
the third component of the weak isospin of the fermion. In the case of the charm quark, we know
𝑔𝑐
𝐴
= 1/2 and 𝑔𝑐

𝑉
= 1/2 − 4/3 sin2 𝜃𝑊 . The 𝜖 𝛼

𝐽/𝜓 (𝑝) is the polarization vector of 𝐽/𝜓 and 𝜖𝜈 (𝑞)
for the photon. The 𝑒 is the coupling constant of electromagnetic interaction, and 𝑔𝑍 depicts the
coupling of 𝑍 boson to the fermions. The 𝑍 boson mass is 𝑚𝑍 and the four-momentum is given by
𝑘 = 𝑞1 + 𝑞2.

For the virtual 𝑍 boson, 𝑘2 ≪ 𝑚2
𝑍

, it is natural to make an replacement for the 𝑍 boson
propagator

1
𝑘2 − 𝑚2

𝑍

→ − 1
𝑚2

𝑍

(4)

Also considering the following notations,

𝐺𝐹√
2
=

𝑔2
𝑊

8𝑚2
𝑊

, 𝑔𝑍 =
𝑔𝑊

cos 𝜃𝑊
, cos 𝜃𝑊 =

𝑚𝑊

𝑚𝑍

(5)

The amplitude in Eq. (1) thereby reduces to

M = −𝑒𝐺𝐹√
2
𝐻𝜇𝜈𝛼 (𝑞, 𝑝)𝜖 𝛼𝐽/𝜓 (𝑝)𝜖

𝜈∗(𝑞) × 𝑢̄(𝑞1)𝛾𝜇 (1 − 𝛾5)𝑣(𝑞2) (6)

With consideration of the gauge symmetry and parity, the hadronic function 𝐻𝜇𝜈𝛼 (𝑞, 𝑝) can be
parameterized as [9]

𝐻𝜇𝜈𝛼 (𝑞, 𝑝) ≡ 𝜖𝜇𝜈𝛼𝛽𝑞𝛽𝐹𝛾𝜈𝜈̄ (7)
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The direct calculation on the decay width of 𝐽/𝜓 → 𝛾𝜈𝜈̄ in the rest frame of 𝐽/𝜓, by employing
Eq. (6) and (7), leads to

Γ(𝐽/𝜓 → 𝛾𝜈𝜈̄) =
1

2𝑚𝐽/𝜓

∫
𝑑3 ®𝑞

(2𝜋)32| ®𝑞 |

∫
𝑑3 ®𝑞1

(2𝜋)32| ®𝑞1 |

∫
𝑑3 ®𝑞2

(2𝜋)32| ®𝑞2 |

× (2𝜋)4𝛿4(𝑝 − 𝑞 − 𝑞1 − 𝑞2) ×
1
3
|M|2 × 3

=
𝛼𝐺2

𝐹

3𝜋2

∫ 𝑚𝐽/𝜓
2

0
| ®𝑞 |3(𝑚𝐽/𝜓 − | ®𝑞 |) |𝐹𝛾𝜈𝜈̄ |2𝑑 | ®𝑞 | (8)

where 𝛼 ≡ 𝑒2/4𝜋. Factor 1/3 in the third line denotes the average of three polarizations of 𝐽/𝜓 in
its rest frame and factor 3 for the three flavors of neutrinos.

2.1 Relationship of hadronic function in Minkowski and Euclidean space

In this section, we present the relation between the hadronic functions in Minkowski and
Euclidean spacetime, which can be established by inserting a complete set of intermediate states
into the respective hadronic functions.

In the Minkowski spacetime, the hadronic function has the following decomposition

𝐻𝜇𝜈𝛼 (𝑞, 𝑝) = 𝑖
∑︁
𝑛, ®𝑞

1
𝐸𝛾 − 𝐸𝑛 + 𝑖𝜖

⟨0|𝐽em
𝜇 (0) |𝑛( ®𝑞)⟩⟨𝑛( ®𝑞) |𝐽𝑍𝜈 (0) |𝐽/𝜓(𝑝)𝛼⟩

− 𝑖
∑︁
𝑛′ , ®𝑞

1
𝐸𝛾 + 𝐸𝑛′ − 𝑚𝐽/𝜓 − 𝑖𝜖 ⟨0|𝐽

𝑍
𝜈 (0) |𝑛′(−®𝑞)⟩⟨𝑛′(−®𝑞) |𝐽em

𝜇 (0) |𝐽/𝜓(𝑝)𝛼⟩

(9)

where the first line corresponds to the time-ordering 𝑡 > 0 and second line for 𝑡 < 0 in Eq. (2). The
intermediate states |𝑛⟩ and |𝑛′⟩ represent all possible states with the allowed quantum numbers.
As far as the connected contribution is concerned in this work, the low-lying states are given by
|𝑛′⟩ = |𝐽/𝜓⟩ and |𝑛⟩ = |𝜂𝑐⟩, respectively.

In the Euclidean spacetime, the hadronic function in Eq. (2) is replaced by 𝐻𝐸
𝜇𝜈𝛼 (𝑞, 𝑝), which

is obtained by making a naive Wick rotation 𝑡 → −𝑖𝑡

𝐻𝐸
𝜇𝜈𝛼 (𝑞, 𝑝) = −𝑖

∫ 𝑇/2

−𝑇/2
𝑑𝑡

∫
𝑑3®𝑥e𝐸𝛾 𝑡−𝑖 ®𝑞 · ®𝑥H𝜇𝜈𝛼 (𝑥, 𝑝)

(10)

with the Euclidean momenta 𝑞 = (𝑖𝐸𝛾 , ®𝑞), 𝑝 = (𝑖𝑚𝐽/𝜓, 0). As before, after inserting a complete
set of intermediate states into the Euclidean hadronic function above, we obtain

𝐻𝐸
𝜇𝜈𝛼 (𝑞, 𝑝) = 𝑖

∑︁
𝑛, ®𝑞

1 − e−(𝐸𝑛−𝐸𝛾 )𝑇/2

𝐸𝛾 − 𝐸𝑛 + 𝑖𝜖
⟨0|𝐽em

𝜇 (0) |𝑛( ®𝑞)⟩⟨𝑛( ®𝑞) |𝐽𝑍𝜈 (0) |𝐽/𝜓(𝑝)𝛼⟩

− 𝑖
∑︁
𝑛′ , ®𝑞

1 − e−(𝐸𝛾+𝐸𝑛′−𝑚𝐽/𝜓 )𝑇/2

𝐸𝛾 + 𝐸𝑛′ − 𝑚𝐽/𝜓 − 𝑖𝜖 ⟨0|𝐽𝑍𝜈 (0) |𝑛′(−®𝑞)⟩⟨𝑛′(−®𝑞) |𝐽em
𝜇 (0) |𝐽/𝜓(𝑝)𝛼⟩

(11)
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where the finite time integral [−𝑇/2, 𝑇/2] is introduced to define the Euclidean hadronic function.
Whether the Minkowski hadronic function can be obtained from the Euclidean hadronic func-

tion by naive Wick rotation usually depends on whether all the 𝑇-dependence terms converge in
the limit 𝑇 → ∞. If it does, the Wick rotation will leave the hadronic function unchanged and
the lattice calculation produces the physical results without particular difficulties. In this study, it
requires the conditions

𝐸𝑛 − 𝐸𝛾 > 0 (12)

𝐸𝛾 + 𝐸𝑛′ − 𝑚𝐽/𝜓 > 0 (13)

must be satisfied for 𝐸𝛾 ∈ [0, 𝑚𝐽/𝜓/2].
For the time ordering 𝑡 > 0, where the weak current is inserted before the electromagnetic

current, the low-lying state is 𝐽/𝜓 particle with momentum ®𝑞 and the condition (12) is satisfied
readily. However, the situation is quite different for time ordering 𝑡 < 0, where the electromagnetic
current is inserted before the weak current. In this case, the low-lying state is 𝜂𝑐 particle whose
mass is slightly less than the initial state 𝐽/𝜓, resulting in a violation of condition (13) for very
small 𝐸𝛾 , for example, 𝐸𝛾 = 0. For all ensembles used in this work, we find there exists only
one momentum ®𝑞 = 0 for intermediate state |𝜂𝑐 ( ®𝑞)⟩ that violates the condition (13), leading to
an exponentially growing factor 𝑒−(𝐸𝛾+𝐸𝑛′−𝑚𝐽/𝜓 )𝑇/2 as 𝑇 increases. One can check it numerically
using the discrete energy levels of 𝜂𝑐 summarized in Table 2. Moreover, for ®𝑞 = 0 it has

⟨0|𝐽𝑍𝜈 (0) |𝜂𝑐 (®0)⟩⟨𝜂𝑐 (®0) |𝐽em
𝜇 (0) |𝐽/𝜓(®0)𝛼⟩ = 0 (14)

which still protects the Euclidean hadronic function from an exponentially growing factor 𝑒−(𝑚𝜂𝑐−𝑚𝐽/𝜓 )𝑇/2.
In other words, all the intermediate states with discrete momenta ®𝑞 = 2𝜋®𝑛/𝐿 are independent of
the 𝑇-dependence factor as 𝑇 → ∞. We conclude that for the time ordering 𝑡 < 0, the condition
(12) is also satisfied in our calculations. Thus, we have proved that one can extract the Minkowski
hadronic function from the Euclidean hadronic function directly with naive Wick rotation, and the
𝑖𝜖 in Eq.(9) and Eq.(11) are unnecessary.

2.2 Extraction of the hadroinc function from lattice data

In the above section, we have established the direct connection between the Minkowski hadronic
function and the Euclidean hadronic function. In the following, we will provide the details of
constructing the Euclidean hadronic function using the lattice data.

The hadronic function H𝜇𝜈𝛼 (𝑥, 𝑝) defined in Eq.(3) can be extracted from a three-point
function 𝐶 (3)

𝜇𝜈𝛼 (𝑥;Δ𝑡)

𝐶
(3)
𝜇𝜈𝛼 (𝑥;Δ𝑡) =

{
⟨𝐽em

𝜇 (𝑥)𝐽𝑍𝜈 (0)𝜙†𝐽/𝜓,𝛼 (−Δ𝑡)⟩, 𝑡 ≥ 0
⟨𝐽𝑍𝜇 (0)𝐽em

𝜈 (𝑥)𝜙†
𝐽/𝜓,𝛼 (𝑡 − Δ𝑡)⟩, 𝑡 < 0

(15)

where 𝜙𝐽/𝜓,𝛼 is the 𝐽/𝜓 interpolating operator. A sufficient large Δ𝑡 should be chosen to guarantee
𝐽/𝜓 ground-state dominance. For a finiteΔ𝑡, the hadronic function has aΔ𝑡 dependence, we thereby
denote the hadronic function H𝜇𝜈𝛼 (𝑥, 𝑝) as H𝜇𝜈𝛼 (𝑥,Δ𝑡). For the hadronic function, the initial
momentum 𝑝 is omitted since our calculation is limited to the rest frame. So, it has

H𝜇𝜈𝛼 (𝑥,Δ𝑡) =
{ 2𝑚𝐽/𝜓

𝑍0
e𝑚𝐽/𝜓Δ𝑡𝐶

(3)
𝜇𝜈𝛼 (𝑥;Δ𝑡), 𝑡 ≥ 0

2𝑚𝐽/𝜓
𝑍0

e𝑚𝐽/𝜓 (Δ𝑡−𝑡 )𝐶 (3)
𝜇𝜈𝛼 (𝑥;Δ𝑡), 𝑡 < 0

(16)

5
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with 𝑍0 = ⟨𝐽/𝜓 |𝜙†
𝐽/𝜓 |0⟩ the overlap amplitude for the 𝐽/𝜓 ground state. Both 𝑍0 and 𝑚𝐽/𝜓 can

be calculated from the two-point function 𝐶 (2) (𝑡) = ⟨𝜙𝐽/𝜓 (𝑡)𝜙†𝐽/𝜓 (0)⟩, which has the following
expression

𝐶 (2) (𝑡) =
∑︁
𝑖=0,1

𝑍2
𝑖

2𝐸𝑖

(
e−𝐸𝑖 𝑡 + e−𝐸𝑖 (𝑇−𝑡 )

)
(17)

We adopt a two-state fit form for the two-point function 𝐶 (2) (𝑡) to extract 𝑍𝑖 , 𝐸𝑖 (𝑖 = 1, 2), with
𝐸0 = 𝑚𝐽/𝜓 the ground state energy, 𝐸1 the energy of the first excited state and 𝑍1 the overlap
amplitude for the first excited state. As is pointed out in the previous paper, when the precision
reaches a few percent in our calculation, the excited-state effects are statistically significant unless
𝑡 ≳ 1.6 fm as far as𝐶 (2) (𝑡) is concerned. Such systematic effects also affect the three-point function
𝐶

(3)
𝜇𝜈𝛼, leading to an obvious Δ𝑡 dependence. In a realistic lattice calculation, a series of Δ𝑡 are

utilized to perform an infinite extrapolation Δ𝑡 → ∞.

2.3 Form factor and decay width

To compute the 𝐹𝛾𝜈𝜈̄ , the traditional way is to choose a series of lattice momenta ®𝑞 = 2𝜋®𝑛/𝐿
with ®𝑛 = [001], [011], [111] · · · , and the phase space integral is finally completed by interpolating
or fitting this discrete 𝐹𝛾𝜈𝜈̄ ( | ®𝑞 |), leading to a model-dependent systematic effect. In this work, we
will proceed to another way, which is widely called the scalar function method. The method has
been widely applied to various processes [13–17]. The key point of the method is to construct the
appropriate scalar function method to extract the relevant form factors with particular momenta.
The decay width, which is related to the form factors directly by the phase-space integral, can be
calculated using the Monte-Carlo method.

According to the parameterization of the hadronic function 𝐻𝜇𝜈𝛼 (𝑞, 𝑝) in Eq. (7), we construct
the scalar function I by multiplying 𝜖𝜇𝜈𝛼𝛽𝑝𝛽 to both side. After averaging over the direction of ®𝑞,
it arrives at

I(𝐸𝛾 ,Δ𝑡) = 𝑖𝑚𝐽/𝜓

∫
𝑒𝐸𝛾 𝑡𝑑𝑡

∫
𝑑3®𝑥 𝑗0(𝐸𝛾 | ®𝑥 |)𝜖𝜇𝜈𝛼0H𝜇𝜈𝛼 (𝑥,Δ𝑡)

(18)

where 𝐸𝛾 ≡ | ®𝑞 |. Then the form factor is extracted through

𝐹𝛾𝜈𝜈̄ (𝐸𝛾 ,Δ𝑡) = − 1
6𝑚𝐽/𝜓𝐸𝛾

I(𝐸𝛾 ,Δ𝑡) (19)

Using the form factor 𝐹𝛾𝜈𝜈̄ (𝐸𝛾 ,Δ𝑡) as input, the decay width of 𝐽/𝜓 → 𝛾𝜈𝜈̄ can be obtained
by the Monte-Carlo phase-integral in the region 𝐸𝛾 ∈ [0, 𝑚𝐽/𝜓/2]

Γ𝛾𝜈𝜈̄ (Δ𝑡) =
𝛼𝐺2

𝐹

3𝜋2
𝑚𝐽/𝜓

2𝑁𝑀𝐶

𝑁𝑀𝐶∑︁
𝑖=1

(
𝐸3
𝛾 (𝑚𝐽/𝜓 − 𝐸𝛾) |𝐹𝛾𝜈𝜈̄ (𝐸𝛾 ,Δ𝑡) |2

)
𝑖

(20)

where 𝑁𝑀𝐶 is the number of Monte-Carlo simulations, which is chosen to guarantee the Monte-
Carlo error is much less than the statistical error.
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To further reduce the lattice discretization effect, we define a dimensionless quantity 𝑅 𝑓 ≡
Γ𝛾𝜈𝜈̄/ 𝑓𝐽/𝜓, where 𝑓𝐽/𝜓 is the decay constant of 𝐽/𝜓. The Δ𝑡 dependence can be parameterized
using a relatively simple two-state form

𝑅 𝑓 (Δ𝑡) = 𝑅 𝑓 + 𝜁 · e−(𝐸1−𝐸0 )Δ𝑡 (21)

with two unknown parameters 𝑅 𝑓 and 𝜁 . After the continuous extrapolations for the dimensionless
𝑅 𝑓 and the decay constant 𝑓𝐽/𝜓, we obtain the physical results as 𝑅Cont.Limit

𝑓
and 𝑓 Cont.Limit

𝐽/𝜓 . The
physical decay width can be therefore obtained by rescaling 𝑅Cont.Limit

𝑓
after multipling 𝑓 Cont.Limit

𝐽/𝜓 .
Finally, the branching fraction is presented as follows

Br[𝐽/𝜓 → 𝛾𝜈𝜈̄] = 𝑅Cont.Limit
𝑓 ×

𝑓 Cont.Limit
𝐽/𝜓

Γ𝐽/𝜓
(22)

where Γ𝐽/𝜓 = 92.6 keV is the 𝐽/𝜓 decay width from the Particle Data Group.

3. Numerical setup

Ensemble 𝑎 (fm) 𝐿3 × 𝑇 𝑁conf × 𝑇 𝑚𝜋 (MeV) 𝑡

a67 0.0667(20) 323 × 64 197 × 64 300 12-18
a85 0.085(2) 243 × 48 200 × 48 315 10-14
a98 0.098(3) 243 × 48 236 × 48 365 9-13

Table 1: Parameters of gauge ensembles are used in this work. From left to right, we list the ensemble name,
the lattice spacing 𝑎, the spatial and temporal lattice size 𝐿 and 𝑇 , the number of the measurements of the
correlation function for each ensemble 𝑁conf × 𝑇 with 𝑁conf the number of the configurations used , the pion
mass 𝑚𝜋 and the range of the time separation 𝑡 between the initial hadron and the electromagnetic current.
Here, both 𝐿, 𝑇 and 𝑡 are given in lattice units.

We use three two-flavor twisted mass gauge ensembles generated by the Extended Twisted Mass
Collaboration (ETMC) [19, 20] with lattice spacing 𝑎 ≃ 0.0667, 0.085, 0.098 fm, respectively. For
convenience, we name them a67, a85, and a98 in this work. The ensemble parameters are shown
in Table. 1. The valence charm quark mass is tuned by setting the lattice result of 𝐽/𝜓 mass to the
physical one. The detailed information on the tuning is referred to Ref. [21].

In this work, we calculate the three-point correlation function 𝐶 (3)
𝜇𝜈𝛼 (®𝑥, 𝑡) using 𝑍4-stochastic

wall-source 𝐽/𝜓 interpolating operator 𝜙𝐽/𝜓,𝛼 = 𝑐𝛾𝛼𝑐. For time ordering 𝑡 ≥ 0, we place the
point source propagator on 𝐽𝑍𝜈 and treat the electromagnetic current 𝐽em

𝜇 as the sink. For the time
ordering 𝑡 < 0, after considering the space-time translation invariance of the correlation function,
i.e. ⟨𝐽𝑍𝜇 (0)𝐽em

𝜈 (𝑥)𝜙†
𝐽/𝜓,𝛼 (𝑡 − Δ𝑡)⟩ = ⟨𝐽𝑍𝜇 (−®𝑥,−𝑡)𝐽em

𝜈 (0)𝜙†
𝐽/𝜓,𝛼 (−Δ𝑡)⟩, we place the point source

propagator on 𝐽em
𝜈 and treat the weak current 𝐽𝑍𝜇 as the sink. The wall-source propagator used here

can able to reduce the uncertainty of the mass spectrum by nearly half. All the propagators are
produced on all time slices by average to increase the statistics based on time translation invariance.
We also apply the APE [22] and Gaussian smearing [23] to the 𝐽/𝜓 field to efficiently reduce the
excited-state effects.
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To compute the 𝑓𝐽/𝜓, we calculate the two-point function 𝐶
(2)
𝑖𝑖

(𝑡) = ⟨O𝑖 (𝑡)O†
𝑖
(0)⟩ us-

ing a point source 𝐽/𝜓 interpolating operator O𝑖 = 𝑍𝐴𝑐𝛾𝑖𝑐. The overlap amplitude 𝑍0𝑖 =

⟨0|𝑐𝛾𝑖𝑐(0) |𝐽/𝜓(®0, 𝜆)⟩ can be extracted from a simple single-state fit

𝐶
(2)
𝑖𝑖

(𝑡) =
𝑍2
𝐴
𝑍2

0𝑖
2𝑚𝐽/𝜓

(
e−𝑚𝐽/𝜓𝑡 + e−𝑚𝐽/𝜓 (𝑇−𝑡 )

)
(23)

then the 𝐽/𝜓 decay constant is obtained immediately by 𝑓𝐽/𝜓 = 𝑍𝐴𝑍0𝑖/𝑚𝐽/𝜓.
In our calculations, we choose the local vector current 𝐽em

𝜈 (𝑥) = 𝑍𝑉𝑒𝑐𝑐𝛾𝜈𝑐 and weak current
𝐽𝑍𝜇 = 𝑐𝛾𝜇 (𝑍𝑉𝑔𝑐𝑉 − 𝑍𝐴𝑔

𝑐
𝐴
𝛾5)𝑐, where the renormalization constants 𝑍𝑉 and 𝑍𝐴 are introduced.

The detailed determination of 𝑍𝑉 has been presented in our previous paper [21]. In this study,
we just quote the values directly, which are shown as 0.6047(19), 0.6257(21), and 0.6516(15) for
𝑎 = 0.098, 0.085, 0.0667 fm, respectively. The values of 𝑍𝐴 are referred to the paper [24], which are
calculated by the RI-MOM scheme, and the results are given as 0.746(11),0.746(06) and 0.772(06)
for 𝑎 = 0.098, 0.085, 0.0667 fm, respectively.

4. Numerical results

4.1 Check of condition (13)

Ensemble a67 a85 a98
𝑎𝐸𝜂𝑐 ( | ®𝑛|2 = 0) 1.0142(2) 1.2958(3) 1.4995(3)
𝑎𝐸𝜂𝑐 ( | ®𝑛|2 = 1) 1.0302(2) 1.3157(3) 1.5144(4)
𝑎𝐸𝜂𝑐 ( | ®𝑛|2 = 2) 1.0467(2) 1.3354(3) 1.5290(4)
𝑎𝐸𝜂𝑐 ( | ®𝑛|2 = 3) 1.0629(3) 1.3546(4) 1.5434(4)
𝑎𝐸𝜂𝑐 ( | ®𝑛|2 = 4) 1.0782(4) 1.3729(5) 1.5572(5)
𝑎𝛿𝐸 ( | ®𝑛|2 = 0) -0.0343(2) -0.0372(3) -0.0387(3)
𝑎𝛿𝐸 ( | ®𝑛|2 = 1) 0.1781(2) 0.2446(3) 0.2380(4)
𝑎𝛿𝐸 ( | ®𝑛|2 = 2) 0.2758(3) 0.3737(3) 0.3611(4)
𝑎𝛿𝐸 ( | ®𝑛|2 = 3) 0.3544(3) 0.4751(4) 0.4587(4)
𝑎𝛿𝐸 ( | ®𝑛|2 = 4) 0.4223(4) 0.5636(5) 0.5426(5)

Table 2: Numerical results of 𝐸𝜂𝑐
( ®𝑝) and 𝛿𝐸 ( ®𝑝) with ®𝑝 = 2𝜋®𝑛/𝐿, | ®𝑛|2 = 0, 1, 2, 3, 4.

In Sec 2.1, we have declared that 𝛿𝐸 ( ®𝑝) = | ®𝑝 | + 𝐸𝜂𝑐 ( ®𝑝) − 𝑚𝐽/𝜓 > 0 is valid for any non-zero
lattice momentum ®𝑝 = 2𝜋®𝑛/𝐿, so the condition (13) is satisfied in our work. Using a point-source
propagator, we extract a series of discrete energy levels of 𝜂𝑐 from the two-point function calculated
by the interpolating operator O𝜂𝑐 = 𝑐𝛾5𝑐. The numerical values of 𝐸𝜂𝑐 ( ®𝑝) and 𝛿𝐸 ( ®𝑝) are also
summarized in Table 2. It is shown readily that 𝛿𝐸 ( ®𝑝) > 0 for | ®𝑛|2 ≠ 0, hence leading to a guarantee
of condition (13).

4.2 𝑓𝐽/𝜓

We present the lattice results of the decay constant 𝑓𝐽/𝜓 in different lattice spacings in Fig. 2.
The continuous extrapolation which is linear in 𝑎2 is performed due to the so-called automatic O(𝑎)
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improvement for the twisted mass configuration. After the continuous extrapolation, we obtain

𝑓 Cont.Limit
𝐽/𝜓 = 406(26) MeV (24)

Figure 2: Lattice results of 𝑓𝐽/𝜓 as a function of lattice spacing. The errors of lattice spacing are included
in the fitting and presented by the horizontal error bars. The symbol of the red circle denotes the lattice
results from ensemble a67,a85, and a98 from left to right. The black triangle is the result in continuous limit
𝑎2 → 0 and circle blue is obtained using the experimental average of Γ𝑒+𝑒− and 𝛼𝑄𝐸𝐷 (𝑚2

𝐽/𝜓) = 1/134.02.

Our lattice result is consistent with the experimental result 𝑓 exp
𝐽/𝜓 = 406.5(3.7) MeV but with a

larger statistical error. The experimental value is obtained using the experimental average of Γ𝑒+𝑒−
and 𝛼𝑄𝐸𝐷 (𝑚𝐽/𝜓) through

Γ𝑒+𝑒− =
4𝜋
3
𝛼2
𝑄𝐸𝐷 (𝑀2

𝐽/𝜓)𝑒
2
𝑐

𝑓 2
𝐽/𝜓

𝑀𝐽/𝜓
(25)

where 𝛼𝑄𝐸𝐷 (𝑀2
𝐽/𝜓) is evaluated at the scale of 𝑀𝐽/𝜓 = 3096.9 MeV. Note that the latest lattice

QCD calculation from HPQCD [25] gives a value 𝑓𝐽/𝜓,𝑄𝐶𝐷 = 409.6(1.6) with a much smaller
statistical error than this work.

4.3 Finite-volume effects

The decay width is calculated by a Monte-Carlo phase-integral as showed in Eq. (20), where
𝑁𝑀𝐶 = 200 is chosen and examined to guarantee the phase-integral error is much less than the
statistical error. In our calculations, the integral energy 𝐸𝛾 ∈ [0, 𝑚𝐽/𝜓/2] is picked randomly. The
non-lattice values (𝐸𝛾 ≠ 2𝜋 | ®𝑛|/𝐿) will inevitably introduce the systematic effects. These effects
are essentially the finite-volume effects, since all the random values 𝐸𝛾 become the lattice ones as
the volume 𝐿 goes to infinity.

To examine the finite-volume effects, we introduce a spatial integral truncation parameter 𝑅 in
Eq. (18). As the hadronic function H𝜇𝜈𝛼 (𝑥) is dominated by the 𝜂𝑐 state at large | ®𝑥 |, the size of
the integrand is exponentially suppressed when | ®𝑥 | becomes large. In Fig. 3 the ratio Γ𝛾𝜈𝜈̄/ 𝑓𝐽/𝜓 is
shown as a function of 𝑅. It is clearly seen that there exists a plateau for 𝑅 ≳ 0.8 fm, indicating

9
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Figure 3: For ensemble a67, Γ𝛾𝜈𝜈̄/ 𝑓𝐽/𝜓 with 𝑡 ≃ 1.2 fm and Δ𝑡 ≃ 1.2 fm as a function of the spatial range
truncation 𝑅.

that the hadronic function H𝜇𝜈𝛼 (𝑥) at | ®𝑥 | ≳ 0.8 fm has negligible contribution to Γ𝛾𝜈𝜈̄/ 𝑓𝐽/𝜓. All
the ensembles have the lattice size 𝐿 > 2 fm which is sufficiently large to accommodate the hadron.
We thus conclude that finite-volume effects are well under control in our calculation.

4.4 Decay width

The lattice results of Γ𝛾𝜈𝜈̄/ 𝑓𝐽/𝜓 as a function of 𝑡 with different seperation Δ𝑡 are shown in
Fig. 4. We find that for all the separation Δ𝑡 and all ensembles used in this work, a temporal
truncation 𝑡 ≃ 1.2 fm is a conservative choice for the ground-state saturation. With this choice, the
results for Γ𝛾𝜈𝜈̄/ 𝑓𝐽/𝜓 as a function ofΔ𝑡 are shown in Fig. 5. It shows that Γ𝛾𝜈𝜈̄/ 𝑓𝐽/𝜓 has an obvious
Δ𝑡 dependence, indicating nonnegligible excited-state effects associated with 𝜙†

𝐽/𝜓 operator as we
have pointed out before. Using a two-state fit described by Eq. (21) we can extract the ground-state
contribution to the ratio at Δ𝑡 → ∞. The results are listed in Table 3.

Ensemble a67 a85 a98
Γ𝛾𝜈𝜈̄/ 𝑓𝐽/𝜓 × 1014 1.852(44) 1.503(34) 1.371(25)

Table 3: Numerical results of Γ𝛾𝜈𝜈̄/ 𝑓𝐽/𝜓 for three ensembles.

In Fig. 6, the lattice results for Γ𝜂𝑐𝛾𝛾/ 𝑓𝐽/𝜓 at different lattice spacings are shown together
with an extrapolation that is linear in 𝑎2. We expect this linear behavior since the twisted mass
configuration has the so-called automatic 𝑂 (𝑎) improvement. It is also seen that the fitting curves
describe the lattice data well. After the continuous extrapolation, we obtain 𝑅Cont.Limit

𝑓
= 2.29(14) ×

10−14. For a convenient comparison with the experimental branching fraction in the future, we
rescale 𝑅Cont.Limit

𝑓
to physical branching fraction by multipling the 𝐽/𝜓 decay constant 𝑓 Cont.Limit

𝐽/𝜓
and dividing the total decay width Γ𝐽/𝜓 = 92.6 keV. Then, the branching factiong is given by
Br[𝐽/𝜓 → 𝛾𝜈𝜈̄] = 1.00(9) × 10−10.
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Figure 4: The lattice results of Γ𝛾𝜈𝜈̄/ 𝑓𝐽/𝜓 for ensemble a67, a85 and a98, which are shown as a function of
𝑡 with various choices of Δ𝑡. The vertical dashed line denotes a conservative choice of 𝑡 ≃ 1.2 fm, where the
ground-state saturation is realized. The statistical error of 𝑍𝐴 is not included here.

Figure 5: The lattice results of Γ𝛾𝜈𝜈̄/ 𝑓𝐽/𝜓 with the cut 𝑡 ≃ 1.2 fm in Fig.4 are shown as a function of Δ𝑡
together with a fit to the form (21).

Nevertheless, the Ref. [19] claims the ensemble a98 might not be optimally tuned and possibly
contain some O(𝑎) discretization errors. To examine this effect, we also perform our continuum
extrapolation without the coarsest lattice, a98. And then, we get the result 1.07(13) × 10−10, which
is consistent with the value 1.00(9) × 10−10, but with a larger error. The consistency suggests
there is no residual O(𝑎) effect on ensemble 𝑎98. This conclusion has also been demonstrated in
our recent works on charmonium radiative decay [16, 21] and other lattice studies [19, 26, 27]. In
this paper, we will quote the result with a98 included as the final report and take the difference
between these two central values as our estimation of the systematic error. Our final prediction for
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Figure 6: Lattice values of Γ𝛾𝜈𝜈̄/ 𝑓𝐽/𝜓 as a function of lattice spacing together with a continuous extrapolation
with a linear behavior 𝑎2. The errors of lattice spacing are included in the fitting and presented by the
horizontal error bars. The symbol of the red circle denotes the lattice results from ensemble a67,a85, and
a98 from left to right. The statistical error of 𝑍𝐴 is included by error propagation.

the branching fraction of 𝐽/𝜓 → 𝛾𝜈𝜈̄ is

Br[𝐽/𝜓 → 𝛾𝜈𝜈̄] = 1.00(9) (7) × 10−10 (26)

where the first error is a statistical error obtained with the spacing error included in the extrapolation
and the second is an estimate for the systematic error.

We remark that the relevant phenomenological study in the standard model gives a prediction
Br[𝐽/𝜓 → 𝛾𝜈𝜈̄] = 0.7 × 10−10 [9], which is in the same order of magnitude with our result. Our
calculation is performed using three different lattice spacings for the continuous extrapolation, thus
the lattice discretization effect is well-controlled. We have also used multiple Δ𝑡 to control the
excited-state effects by a multi-state fit. The remaining systematic effects include the the neglected
disconnected diagrams, the quenching of strange quark, and the use of up and down quarks heavier
than their physical values. For the neglected disconnected diagrams, they are believed to only
give a small contribution in the charmonium system [25, 28–30] due to the Okubo-Zweig-Iizuka
(OZI) suppression. For the last two, previous lattice calculations have indicated that they will also
result in only small effects [34]. Nevertheless, these residual systematic errors will be addressed
more straightforwardly in the future using gauge ensembles with physical pion mass and heavy sea
quarks.

5. Conclusion

In this paper, we present a lattice QCD calculation on the invisible decay 𝐽/𝜓 → 𝛾𝜈𝜈̄ for the
first time. Our calculation is accomplished using three 𝑁 𝑓 = 2 twisted mass fermion ensembles.
The excited-state effects are observed and eliminated using a multi-state fit. After a controlled
continuous extrapolation, we obtain the first lattice QCD prediction for the branching fraction of
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𝐽/𝜓 → 𝛾𝜈𝜈̄ as Br[𝐽/𝜓 → 𝛾𝜈𝜈̄] = 1.00(9) (7) × 10−10, where the first error is the statistical error
that already takes into account the 𝑎2-error in the continuous extrapolation, and the second is an
estimate of the systematics. The method can also be applied for other processes which involve the
leptonic or radiative particles in the final states, for example, 𝜋0 → 2𝛾 [31], 𝐽/𝜓 → 3𝛾 [32] and
𝐾𝐿 → 𝜇+𝜇− [33].

Our first-principle calculation provides a precise prediction for the decay of 𝐽/𝜓 → 𝛾𝜈𝜈̄. It
also confirms the previous phenomenological conclusion that the branching fraction of 𝐽/𝜓 → 𝛾𝜈𝜈̄

is about 10−10 [9]. If the future experiments can achieve a precision of 10−10, the search for new
physics scenarios beyond the standard model by the channel 𝐽/𝜓 → 𝛾 + invisible needs to consider
the exact contribution of 𝐽/𝜓 → 𝛾𝜈𝜈̄ from the standard model background.
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