
P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
3
0

Fast Partitioning of Pauli Strings into Commuting
Families for Expectation Value Measurements of
Dense Operators

Nouman Butt*, Andrew Lytle†, Ben Reggio, and Patrick Draper

Department of Physics and Illinois Center for Advanced Studies of the Universe,
University of Illinois, Urbana, Illinois, 61801, USA

The cost of measuring quantum expectation values of an operator can be reduced by grouping
the Pauli string (SU(2) tensor product) decomposition of the operator into maximally commuting
sets. We detail an algorithm, presented in [1], to partition the full set of m-qubit Pauli strings
into the minimal number of commuting families, and benchmark the performance with dense
Hamiltonians on IBM hardware. Here we also compare how our method scales compared to
graph-theoretic techniques for the generally commuting case.

The 40th International Symposium on Lattice Field Theory,
July 31st – August 4th, 2023,
Fermilab, Batavia, Illinois, USA

*Speaker.
†Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
3
0

Fast Pauli Partitioning Andrew Lytle

1. Introduction

The Pauli strings Pi appearing in the decomposition of an m-qubit operator H,

H =
4m

∑
i=1

ciPi (1.1)

where Pi is a tensor product of Pauli matrices, for example

P = σx ⊗1⊗1⊗σy ⊗ . . .⊗σz ≡ XIIY . . .Z , (1.2)

can be grouped into commuting families, reducing the number of quantum circuits needed to mea-
sure the expectation value of the operator. We detail an algorithm to completely partition the full
set of Pauli strings acting on any number of qubits into the minimal number of sets of commut-
ing families, and we provide python code to perform the partitioning. The partitioning method
scales linearly with the size of the set of Pauli strings and it naturally provides a fast method of
diagonalizing the commuting families with quantum gates. We provide a package that integrates
the partitioning into Qiskit, and use this to benchmark the algorithm with dense Hamiltonians,
such as those that arise in matrix quantum mechanics models, on IBM hardware. We demonstrate
computational speedups close to the theoretical limit of (3/2)m relative to qubit-wise commuting
groupings, for m = 2, . . . ,6 qubits [1].

The cost of a quantum computation depends on several aspects of the computation, including
the number of required quantum circuits, the depth of the circuits, and the number of times the same
circuits have to be run in order to achieve a level of confidence in the results. For computations
involving expectation value measurements, e.g. variational quantum eigensolver (VQE) problems,
the naïve approach for a generic operator produces O(4m) circuits for m qubits (one for each Pauli
string in the operator decomposition). In the NISQ era, the capacity to share the computational
burden between classical and quantum computers in an optimal way will be crucial. This is a
classical problem, the solution of which can be used to reduce the number of circuits needed to
measure an expectation value on a quantum device. An optimal solution partitions all Pauli strings
into 2m + 1 sets (families) where each set has size 2m − 1. This partition reduces the number of
circuits from 4m (3m), in the naïve (qubit-wise commuting) case, down to 2m +1.

2. Properties of Pauli Strings

A family is defined as a maximally commuting set of Pauli strings. All families have the
same size 2m −1 and can be generated from m generating strings [1]. These generating strings are
mutually independent: none of them can be written as a product of other strings. In other words we
only need m generating strings to characterize a family since all other strings in the family are all
possible products of these m generating strings. The two canonical families, namely z family with
strings of characters Is and Zs and x family with characters Is and Xs serves as generators of an
optimal partition. The full set of Pauli strings can be constructed by taking products of strings in
the canonical families as shown in the 2-qubit table below. The color scheme illustrates different
families in the 2-qubit case. In the next section we explain the algorithm to obtain these families.

1

P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
3
0

Fast Pauli Partitioning Andrew Lytle

X ⊗1 1⊗X X ⊗X
Z ⊗1 Y ⊗1 Z ⊗X Y ⊗X
1⊗Z X ⊗Z 1⊗Y X ⊗Y
Z ⊗Z Y ⊗Z Z ⊗Y Y ⊗Y

3. Properties of matrix A

The problem of finding optimal partition for full set of Paulis has been investigated many times
in the past. Notably Jena developed an approach which reduces the partitioning to finding a set of
Z2-valued, m×m matrices Ai [2]. The canonical x and z families can be converted into a Z2-valued
vector space V with the generating strings playing the role of basis vectors for V . The i-th family
that can be generated from the canonical x and z families has a corresponding generator matrix Ai

which encodes the commutativity of the strings in that family and furnishes a unique permutation
on the x family by transforming its basis vectors into a new set of basis vectors.

These matrices Ai are symmetric, and can be represented as powers of a single matrix A. This
set of matrices forms a Singer cycle Ai ∈ {A,A2,A3,,AN = A}. The matrix A has a period given
by A2m−1 = 1. On the generating strings (basis vectors vi ∈ V) the matrix A acts as a permutation:

Avi = vP(i) (3.1)

Every successive matrix Ai(= Ai) realizes a distinct permutation on the x family generating strings
and provides a distinct new set of generating strings for the x family. Using this new set we obtain
generating strings for a new family by taking products with z family’s generating strings. In order
to avoid redundancies in the solution we need to make sure that every matrix Ai should have the
right characteristics:

• Ai is symmetric

• Ai −A j for ∀ j ̸= i is invertible

In order to generate the set of matrices Ai we use the matrix representation of the Galois field
GF(2m). This representation leads to a set of matrices {C,C2, ...CN−1} which has the Singer cycle
property [2]. However these matrices requires symmetrization which is done using a separate
method [11].

4. Diagonalizing to z family

With a solution of 2m + 1 families, we need to run only O(2m) circuits rather than 4m. The
computational basis which is used for measurement is the eigen-basis for the z family. For each
family we need to find a unitary transformation that can transform the strings in the family to strings
in z family modulo an overall sign. Generating strings {xm} of the canonical x family can be used
to obtain the unitary transformation via U = exp(i π

4 ∑m xm). The overall sign can be evaluated by
keeping track of the sign change accumulated for each generating string. Surprisingly the set of
matrices {A,A2,A3, ...} can be used to find the diagonalizing strings {xm} :.

2

P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
3
0

Fast Pauli Partitioning Andrew Lytle

For the i−th family given by Ai the diagonalizing strings can be found via computing (Ai)
N
2 .

(Ai)N/2 =

{
Ai/2 if i mod 2 = 0

A
N+i−1

2 if i mod 2 = 1

}
. (4.1)

The set of generating (diagonalizing) strings {xm} are obtained from the action of (Ai)N/2 [1].
This unitary transforms the given family to the canonical z family. However for simultaneous
measurement of all the strings in the family, this unitary transformation leads to an additional circuit
depth which is approximately quadratic in the number of qubits. In QWC (qubit-wise commuting)
families the measurement circuit depth only increases by a unit. In the section below we show that
this additional circuit depth marginally affects the overall runtime.

5. Integrating into QISKIT

We developed a python package for generating the optimal solution and the diagonalizing
circuits [3]. We also developed a QISKIT extension dense_ev [4] which contain two classes.
The first class DenseGrouper works as an analog of native QISKIT class AbelianGrouper
(which generates qubit-wise commuting solutions) and the second class DensePauliExpectation
builds upon the native QISKIT PauliExpectation and contains the method to compute ex-
pectation values on hardware and quantum simulators. Both packages are publicly available.

6. Computational Cost

We compare the computational cost of qubit-wise commuting (QWC) vs. optimal grouping
using a simple model for the runtime of a single circuit, τ = τover + τcirc(D), where τover is the
circuit overhead time and τcirc depends on the depth D of the circuit needed to generate the state
|ψ⟩ in the desired expectation value ⟨ψ|H|ψ⟩. We assume that the runtime tcirc(D) is roughly
linear in the circuit depth. For QWC groups, the post-state rotation circuit to transform to the
computational basis has depth 1, while for groups based on optimal grouping the rotation circuit
has depth proportional to m2. For a prepared m-qubit state of depth D we have

τQWC

τoptimal
=

3m
[
τover + τcirc(D+1)

]
(2m +1)

[
τover + τcirc(D+am2)

] . (6.1)

If the circuit overhead is much greater than the circuit runtimes (τover >> τcirc), or the state circuit
depth is much greater than the average diagonalization circuit depth (D >> am2), the runtime
improvement will be close to the ideal (3/2)m.

7. Numerical Results

In Fig. 1 we show the ratios of the computational times between different methods. The circuits
ran on ibmq_quito using both dense (optimal) and abelian (QWC) grouping methods for 3 to 5
qubits. The ideal speedup factor is the ratio of the number of circuits, 3m

2m+1 shown by dotted lines.

3

P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
3
0

Fast Pauli Partitioning Andrew Lytle

Figure 1: The ratio of computation times to run circuits needed for expectation value measurement using
QWC (Abelian) and optimal (dense) grouping, on ibmq_quito.

2 3 4 5 6
n_qubits

0

500

1000

1500

2000

fa

m
ilie

s

n_cut
n_abelian
n_dense

2 3 4 5 6
n_qubits

100

101

n_
fa

m
ilie

s/
n_

de
ns

e
n_cut
n_abelian
n_dense
0.5*2**m
0.43*1.54**m

Figure 2: (Left) Number of families generated by different grouping methods for the Femtouniverse Hamil-
tonian. (Right) Same data as the left figure but expressed as a ratio to the number of families generated by
the dense method.

The states measured are constructed using EfficientSU2, and the reps parameter is varied
from 1 to 5 to show the effects of increased circuit depth.

On the left of Fig. 2 we show the number of family groupings generated by different grouping
methods for the A+

1 (g = 0.8) femtouniverse Hamiltonian [5], as a function of number of qubits m.
We compare the naïve decomposition into individual Pauli strings, the AbelianGrouper, and
the dense grouping. On the right we have the same data but plotted as a ratio to the number of fami-
lies from the dense grouping (2m+1), showing the improvement factor of the dense grouping com-
pared to measuring individual Pauli strings (blue) and grouping generated by AbelianGrouper
(orange). The dotted lines give an indication of the exponential improvement observed using the
dense vs. other methods.

8. Comparison with graph theoretic methods

The problem of partitioning a set of Pauli strings into a minimal number of commuting sets
may be re-expressed as a graph theory problem [6, 7, 8, 9, 10], where the Pauli strings in an operator
represent nodes of the graph and presence of an edge between nodes represents whether the strings

4

P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
3
0

Fast Pauli Partitioning Andrew Lytle

0 20 40 60 80 100
% of strings

0

50

100

150

200

250

n_
fa

m

GC
QWC
DENSE

0 20 40 60 80 100
% of strings

0.0

0.5

1.0

1.5

2.0

2.5

n_
fa

m
/n

_d
en

se

GC-2
GC-3
GC-4
GC-5
GC-6

Figure 3: (Left) Number of family groupings generated by different methods, starting from a random Her-
mitian operator, with m = 5. The number of Pauli strings in the original operator is reduced by applying a
numerical cut on the string coefficients, and the percentage of the original 4m strings remaining after the cut
is plotted on the x-axis. (Right) Ratio of number of families produced by the GC method to that produced
by the DENSE method, for m ∈ [2,6], as a function of the percentage of the original 4m strings present in the
operator after a numerical cut on the coefficients.

commute (or anti-commute, depending on the problem formulation)1. In [1], we compared our
algorithm with graph methods based on qubit-wise commuting (QWC) groups, and here we extend
this comparison to methods based on generally commuting (GC) groups.

For fully dense operators (all 4m Pauli strings present), the DENSE method provides an optimal
packing of strings into 2m + 1 families. In principle, graph theory methods for the GC case could
also find optimal or near-optimal solutions. As a practical matter, one should also consider the
time/memory requirements of graph-based vs. our method. Although an exhaustive study of graph-
based GC algorithms is beyond the current scope, for a comparison we tested the performance of
the Largest First algorithm, as implemented in the rustworkx package and provided through the
Qiskit group_commuting() function. As a future study it would be interesting to compare
with other heuristic methods in the literature. We found that for fully dense operators the DENSE
method outperforms GC for m ≥ 2, and that the ratio of families found by GC to that provided by
DENSE increases with m. This is shown on the right side of Fig. 3. One may also consider the
performance when the operator is not “fully dense”, but instead contains some fixed percentage of
the 4m total strings.

The DENSE algorithm will produce a minimal number of cliques whenever NPauli > 4m −2m.
When NPauli ≤ 4m − 2m, the solution is no longer guaranteed optimal, but may still be very good
for sufficiently “dense” Hamiltonians. As NPauli decreases, one would expect the relative GC per-
formance to improve, since the dense method always finds 2m + 1 cliques (except for the special
case where a clique happens to be empty). We test this expectation in Fig. 3. We generate random
Hamiltonians, and apply a cut on the Pauli string coefficients to reduce NPauli prior to grouping the
operators. Note that for GC the result will depend on the detailed operator structure (i.e. the ran-
dom operators tested here may not be representative of GC performance on other relatively dense

1Every clique on the commutation graph is dual to an independent set on the complement (anti-commutation) graph.

5

P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
3
0

Fast Pauli Partitioning Andrew Lytle

operators of interest.) For example, on our tests of the Femtouniverse Hamiltonian [5], which has
a population of ∼ 50%, the GC heuristic always finds 2m families, outperforming DENSE. The
results using random Hamiltonians are shown in Fig. 3. We find that for this class of operators,
DENSE outperform GC until some (approximate) percentage threshold is reached, and this per-
centage decreases as m increases. For m = 5, DENSE outperforms until NPauli ≈ 0.2×4m.

2 4 6 8 10 12
m

10 4

10 2

100

102

Ti
m

e
in

 se
co

nd
s

GC
QWC
DENSE

m24m

2 4 6 8 10 12
m

10 3

10 2

10 1

100

101

102

M
em

or
y

in
 M

B

GC
(m + 1)16m

DENSE
4m

Figure 4: (Left) Walltime comparison to group random dense operators based on general (GC) and qubit-
wise commuting (QWC) graph theoretic algorithms, and using methods based on finite fields (DENSE).
(Right) Memory usage comparison for the GC and DENSE algorithm as function of the number of qubits m,
as described in the text. Approximate scaling curves are given as dotted/dashed lines for comparison.

We also investigated resource scaling of memory and walltime for the QWC, GC, and DENSE
routines. Note that these are classical resources used to generate solutions on a classical processor.
For graph-theoretic methods, an adjacency matrix is constructed which encodes the graph connec-
tivity/commutation structure. For dense operators, this is a 4m × 4m object, and so the memory
required will scale at least as 16m. We tested this expectation empirically again using the native
Qiskit implementation as a benchmark, shown in Fig. 4. Here we measured only the memory
used in building the graph adjacency matrix (in the _noncommutation_graph() subroutine);
the peak memory usage was significantly larger as a vestige of casting numpy objects to python
lists. The rapid increase in memory usage meant that practically going beyond m = 6 was not fea-
sible on our laptops. In contrast, the DENSE routine generates families “on the fly” using powers
of an m×m A matrix, and the memory required to write down a solution will increase as 4m.

We also compared walltimes for generating solutions. For this comparison we simply timed
calls to group_commuting() and PauliOrganizer(). For DENSE, solutions are gener-
ated either by 1) Computing the orbit of generators produced by matrix powers of A or 2) enu-
merating the strings in the Pauli decomposition of an operator and using a lookup (detailed in [1])
to assign to a family. In either case the scaling will go like the number of strings NPauli with sub-
exponential corrections. Our measured walltimes are presented in Fig. 4. For small m the times to
solution are comparable but as m increases the favorable scaling of DENSE is evident. Note that
the DENSE algorithm can also parallelize in a straightforward manner.

6

P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
3
0

Fast Pauli Partitioning Andrew Lytle

9. Discussion

We have presented a public code for grouping commuting Pauli strings, following a construc-
tive algorithm which is optimal for observables that are dense in the space of Pauli strings. The
algorithm is fast, and in terms of memory use and walltime outperforms public GC heuristics on
random Hamiltonians and gauge-invariant matrix quantum mechanics models [5]. It would be in-
teresting to develop applications to lattice gauge theory simulations, where using a local gauge
invariant basis of states generally leads to dense subspaces with size that depends on the number
of qubits dedicated to local regions of the lattice. It would also be interesting to explore hybrid
dense/graph theoretic methods to make a universally optimal solution to the grouping problem for
arbitrary densities.

10. Acknowledgements

This work was supported in part by the U.S. Depart- ment of Energy, Office of Science, Of-
fice of High Energy Physics under award number DE-SC0015655 and by its QuantISED program
under an award for the Fermilab Theory Consortium “Intersections of QIS and Theoretical Parti-
cle Physics.” We acknowledge the use of IBM Quantum [12] services for this work. The views
expressed are those of the authors, and do not reflect the official policy or position of IBM or the
IBM Quantum team

References

[1] B. Reggio, N. Butt, A. Lytle and P. Draper, [arXiv:2305.11847 [quant-ph]].

[2] Andrew Jena (2019). Partitioning Pauli Operators: in Theory and in Practice. UWSpace.
http://hdl.handle.net/10012/15017

[3] https://github.com/Benjreggio/Psfam

[4] https://github.com/atlytle/dense-ev

[5] N. Butt, P. Draper and J. Shen, [arXiv:2211.10870 [hep-lat]].

[6] P. Gokhale et al. [arXiv:1907.13623 [quant-ph]].

[7] A. Jena, S. Genin, and M. Mosca, [arXiv:1907.07859 [quant-ph]].

[8] Vladyslav Verteletskyi, Tzu-Ching Yen, and Artur F. Izmaylov, J. Chem. Phys. 152, 124114 (2020),
[arXiv:1907.03358 [quant-ph]]

[9] Tzu-Ching Yen, Vladyslav Verteletskyi, Artur F. Izmaylov, [arXiv:1907.09386 [quant-ph]].

[10] Artur F. Izmaylov, Tzu-Ching Yen, Robert A. Lang, and Vladyslav Verteletskyi, [arXiv:1907.09040
[quant-ph]].

[11] J. Brawley, Timothy Teitloff [https://doi.org/10.1006/ffta.1998.0216]

[12] IBM Quantum. https://quantum-computing.ibm.com/, 2021

7

