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Flow-based machine learning techniques have demonstrated effectiveness in tackling significant
computational obstacles, including critical slowing-down and topological freezing, encountered
in the sampling of gauge field configurations within lattice field theories. We investigate the
viability of this approach for simulations of gauge theories at finite temperature. Several tests are
performed on two dimensional U(1) gauge theory at different temporal extents.
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Figure 1: Sketch of a normalizing flow, reproduced from [1]

1. Introduction

Recent studies in proof-of-principal applications of normalizing flows have demonstrated the
ability to mitigate against computational issues that persist in traditional sampling algorithms, such
as critical slowing down and topological freezing. These flow-based methods trade off reduced
autocorrelation times with an up-front training cost. Bespoke equivariant architectures have been
constructed for studying both Abelian and non-Abelian gauge theories [3, 6, 7], which maintain
asymptotic guarantees of exactness.

In this study, parametrisations of flows based on coupling layers are considered for U(1) gauge
theory. An exploratory demonstration for this theory at finite temperatures is presented, where the
lattice temperature is introduced in the usual way, by the identification [5]

𝑇 =
1

𝑎𝑁𝜏

, (1)

where 𝑎 is the lattice spacing and 𝑁𝜏 is the number of lattice points in the temporal direction.

2. Normalizing Flows

Normalizing flows [11] are a class of invertible density estimation models that learn a bĳection
𝑓𝜃 between a prior distribution 𝑟 and a model distribution 𝑞. The flow 𝑓𝜃 maps samples 𝑈 from
the prior to samples𝑈′ = 𝑓𝜃 (𝑈), as sketched in Figure 1. Using a change-of-variables formula, the
density of generated samples can be computed according to

𝑞(𝑈′) = 𝑞( 𝑓𝜃 (𝑈)) = 𝑟 (𝑈)
����det

𝜕 𝑓𝜃 (𝑈)
𝜕𝑈

����−1
. (2)

where the flow is constructed such that the determinant of the Jacobian is tractable. Expressivity
of the bĳection can be enhanced by using neural networks and composing them sequentially using
coupling layers 𝑔𝑖 . The parameters of the normalizing flow can be optimised or trained such that
𝑞(𝑈′) approximates a target distribution 𝑝(𝑈′).

Training of the normalizing flow is carried out by minimization of a loss function, typically
the reverse Kullback-Leibler (KL) divergence [9]

𝐷KL(𝑞 | |𝑝) =
∫

𝑑𝑈𝑞(𝑈) (ln(𝑞(𝑈)) − ln(𝑝(𝑈))), (3)
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which is a statistical ‘distance’ that measures the discrepancy between 𝑞(𝑈′) and 𝑝(𝑈′). This
allows for optimization of 𝑞(𝑈′) without having to use data from the 𝑝(𝑈′), i.e. self-training [6].
Deviations in the model distribution with respect to the target distribution can be corrected using a
Metropolis accept/reject step on model samples to produce target samples.

The primary goal of using normalizing flows in the context of lattice field theory is to enable
efficient sampling from the distribution 𝑝(𝑈) = 1

𝑍
𝑒−𝑆 [𝑈 ] , where 𝑆[𝑈] is the Euclidean action of

the theory. The efficiency of the sampler can be enhanced by imposing properties of the target
distribution into the architecture of the normalizing flow. In particular, imposing gauge symmetry
on the flow model is critical in achieving high quality models [3, 10]

3. Results for U(1) gauge theory

In this section, results for two-dimensional U(1) theory are shown. The theory is regularized
on a lattice Λ of size 𝑁𝜏 × 𝑁𝑠, with 𝛽 = 2

𝑔2 . The Wilson gauge action reads

𝑆(𝑈) = −𝛽
∑︁
𝑥∈Λ

∑︁
𝜇≤𝜈

Re 𝑃𝜇𝜈 (𝑥) = −𝛽
∑︁
𝑥∈Λ

Re 𝑃(𝑥), (4)

where 𝑃(𝑥) is the plaquette variable defined in terms of link variables 𝑈𝜇 ∈ U(1)

𝑃(𝑥) ≡ 𝑈0(𝑥)𝑈1(𝑥 + 0̂)𝑈†
0 (𝑥 + 1̂)𝑈†

1 (𝑥), (5)

where periodic boundary conditions were enforced. To investigate the efficacy of normalizing
flows for finite temperature gauge theory, 𝑁𝑡 was varied, while 𝑁𝑠 was kept fixed. Temperature
dependence for a range of 𝛽 values was also investigated. Two relevant topological observables
were computed on the ensembles generated by the normalizing flow, which can be compared to
𝑇 = 0 results obtained in [6]:

• Topological charge:
𝑄 ≡ 1

2𝜋

∑︁
𝑥∈Λ

arg(𝑃(𝑥)), (6)

where arg(𝑃(𝑥)) is defined on the principal interval [−𝜋, 𝜋].

• Topological susceptibility:

𝜒𝑄 =

〈
𝑄2

𝑉

〉
. (7)

3.1 Model Definition

The normalizing flow implemented in this study uses a Haar-uniform prior distribution and
is composed of 24 U(1)-gauge equivariant layers. Rational quadratic splines [4] transform the
U(1) plaquette variables, with convolutional neural networks defining the spline parameters. Each
convolutional network is defined using 3 convolutional layers with kernel size 3, using the ‘Leaky
ReLU’ activation function between intermediate layers, however the final output was not activated.
The intermediate convolution had 32 input and output channels, with the final layer having 13 output
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(a) 𝑁𝜏 = 4 (b) 𝑁𝜏 = 8

(c) 𝑁𝜏 = 12 (d) 𝑁𝜏 = 16

Figure 2: Histograms of the distribution of the topological charge 𝑄, constructed using samples from the
𝛽 = 4 simulation. Note that as the temperature of the lattice is decreased, the distribution of 𝑄 sampled from
the flow-based model widens, as expected.

channels for the 4 spline knots. The gauge-equivariant masking pattern introduced in [3] was used
to transform only a portion of the plaquettes per coupling layer.

Training was performed over a range of temporal extents 𝑁𝜏 = {4, 8, 12, 16, 20}. Furthermore,
models were trained at several values of the gauge coupling 𝛽 = {3.5, 4, 4.5, 5.0, 6.0} for a fixed 𝑁𝜏 .
To reduce training costs, model parameters for 𝛽 = 3.5 were used to initialize training for lattices at
other values of 𝛽, while keeping the number of lattice points fixed at 𝑁𝜏 × 𝑁𝑠 = 8 × 8. Similarly,
for a fixed 𝛽, the model parameters for lattices at differing temporal extents were initialized using
those learned parameters.

The model weights are initialized using the Xavier normal scheme, where the biases are set to
zero and the gain is set to 0.5. The parameters are optimised by minimizing stochastic estimates
of the KL divergence. Optimization is performed using the ADAM optimizer [8], with an initial
learning rate of 10−3 which was decreased by a factor of 0.5 every 8k optimizer steps. A batch size
of 2048 was used for each training iteration.

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
3
4

Normalizing Flows at Finite Temperature Christopher Kirwan

Figure 3: Topological susceptibility as a function of 𝑁𝜏 for several values of the gauge coupling 𝛽.

3.2 Results

In this study we use a standard benchmark, the Effective Sampling Size (ESS), to monitor the
quality of training. The ESS per configuration, defined over 𝑁 samples 𝑈𝑖 as

ESS =

(
1
𝑁

∑︁
𝑖

𝑝(𝑈𝑖)
𝑞(𝑈𝑖)

)2/
1
𝑁

(∑︁
𝑖

𝑝(𝑈𝑖)
𝑞(𝑈𝑖)

)2

(8)

which is defined in the interval [0, 1] and is equal to 1 when the model distribution 𝑞 is equal to the
target distribution. This quantity is monitored throughout the training of the model and was used
as a metric to determine when training was stopped.

In Figure 2 the distribution of the topological charge generated at a 𝛽 = 6.0 for several values
of the temporal extent 𝑁𝜏 is compared. Theses results for the flow-based sampler are consistent
with numerical results for the topological charge presented in [12]. In Figure 3, the topological
susceptibility defined earlier in equation (3) is shown for a range of couplings and temporal extents.
These results are consistent with analytical computations of the topological charge at finite volume
described in [2].

4. Conclusion

The efficacy of normalizing flows for two dimensional U(1) lattice gauge theory at finite
temperature has been demonstrated, albeit on small volumes, with results for topological observables
consistent with previous analytical and numerical results. Extensions of this initial study are
underway, including to gauge theories such as SU(3) in four dimensional lattices. Generation of
anisotropic gauge field configurations with normalizing flows for applications in thermodynamics
or spectroscopy is also being currently studied.
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