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Python is a particularly appealing language to carry out data analysis, owing in part to its user-
friendly character as well as its access to well maintained and powerful libraries like NumPy
and SciPy. Still, for the purpose of analyzing data in a lattice QCD context, some desirable
functionality is missing from these libraries. Moreover, scripting languages tend to be slower
than compiled ones. To help address these points we present the AnalysisToolbox, a collection of
Python modules to facilitate lattice QCD data analysis. Some highlighted features include general-
purpose jackknife and bootstrap routines; modules for reading in and storing gauge configurations;
a module to carry out hadron resonance gas model calculations; and convenience wrappers for
SciPy integration, curve fitting, and splines. These features are sped up behind the scenes using
parallelization and just-in-time compilation.
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1. Motivation

Lattice QCD calculations are broadly separated into three distinct steps: one generates config-
urations, makes measurements on those configurations, then carries out data analysis on the mea-
surements. These steps are roughly ranked in decreasing order of computational demand. Hence
the first two steps usually have to be carried out on powerful hardware using high-performance
code. The last step can often be done on one’s own laptop. There are many general techniques that
apply to a large class of statistical problems, so it’s useful to have code where your implementation
of that technique can be applied in as many situations as possible. This strategy saves you time;
moreover if you’ve implemented the technique correctly, it prevents you from making any error
having to again implement that technique any further time.

At this stage of analysis it’s therefore valuable to use Python. Python has many characteristics
that make it particularly appealing to lattice practitioners doing data analysis. For instance it lets you
implement classes to keep code well organized; doesn’t require almost any advanced knowledge of
software development; has many already existing, well tested libraries1 that can be easily imported
or exist already in common virtual environments such as Anaconda; and is very flexible and user
friendly. On the other hand, it’s slow relative to compiled languages such as C++ and even the
up-and-coming scripting language, Julia. At the level of data analysis this often doesn’t matter,
but it can, for instance when implementing systematic corrections depending on double or triple
integrals or solving slowly-converging optimization problems.

In these proceedings, we present a partial answer to some of the aforementioned challenges, the
AnalysisToolbox, which is publicly available on GitHub [1]. Statements in these proceedings apply
to release v1.1.0 . Hauke Sandmeyer wrote the basis for this package in the context of HotQCD
collaboration. From that basis, we tried to keep only the most general routines, like those that can
jackknife an arbitrary function of a time series. In addition, much effort was made to speed up such
routines, for example through just-in-time compilation or parallelization.

2. An invitation

We begin with some examples how the AnalysisToolbox can be used to carry out physics
calculations. The hadron resonance gas (HRG) model is a low-temperature statistical physics model
that imagines that hadrons are the only degrees of freedom. Comparing HRG with lattice data is
often utilized to, for example, determine the temperature at which hadronic states dissociate into
quarks [2]. In Listing 1 we show how the HRG class can be used to determine the baryon-number
fluctuation 𝜒𝐵2 in an HRG. As one can see from the gen_chi call, arbitrary conserved-charge
cumulants are supported.

To complete a lattice calculation, one must extrapolate to the continuum limit; hence straight-
forward continuum-limit extrapolations are something one will do fairly often. In the next example,
we show how the AnalysisToolbox can be used to perform general continuum-limit extrapolations.

1Nowadays machine learning is taking a major foothold in lattice field theory, with lattice practitioners developing
algorithms for e.g. gauge field generation and phase transition identification. Python has access to many machine-learning
libraries, and it may be useful in a lattice field theory context to leverage these.
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1 import numpy as np
2 import latqcdtools.base.logger as logger
3 from latqcdtools.physics.HRG import HRG
4 from latqcdtools.base.readWrite import readTable, writeTable
5 from latqcdtools.base.initialize import initialize, finalize
6
7 # Write terminal output to log file. Includes git commit hash.
8 initialize('HRG.log')
9

10 # Pick a temperature range in MeV
11 T = np.arange(100, 166, 1)
12
13 # Read in hadron names, masses, charges, baryon number, strangeness,
14 # charm, and degeneracy factor. This table is provided with AnalysisToolbox.
15 QMHRG_table = '../latqcdtools/physics/HRGtables/QM_hadron_list_ext_strange_2020.txt'
16 hadrons, M, Q, B, S, C, g = readTable(QMHRG_table, usecols=(0,1,2,3,4,5,6),
17 dtype="U11,f8,i8,i8,i8,i8,i8")
18 w = np.array([1 if ba==0 else -1 for ba in B])
19
20 # Instantiate HRG object.
21 QMhrg = HRG(M,g,w,B,S,Q,C)
22
23 # This computation is vectorized since T is a numpy array.
24 logger.info('Computing chi2B.')
25 chi = QMhrg.gen_chi(T, B_order=2, Q_order=0, S_order=0, C_order=0,
26 muB_div_T=0.3, muQ_div_T=0, muS_div_T=0, muC_div_T=0)
27
28 # Output T and chi2B as columns in this table.
29 writeTable("chi2B.txt", T, chi, header=['T [MeV]','chi2B (QMHRG)'])
30
31 finalize()

Listing 1: An example HRG calculation. In this case we work at fixed 𝜇𝐵/𝑇 = 0.3 and compute 𝜒𝐵2 as
function of temperature. What is needed is as much relevant input knowledge about hadron bound states
as is known. This is read from a table in lines 16-17. The table of information is provided with the
AnalysisToolbox. The list is also available as an ancillary file in the arXiv version of [3]. Line 18 determines
for each species whether the gas is bosonic or fermionic. Finally the HRG class is instantiated in line 21, which
besides cumulants like the one computed on line 25, contains many methods for various thermodynamic
observables such as the pressure and entropy.

For instance suppose we want to perform a continuum-limit extrapolation to determine the decon-
finement transition temperature 𝑇d in pure SU(3). The order parameter for this phase transition is
given by the Polyakov loop, 𝑃. The transition is first-order in the thermodynamic limit, where ⟨|𝑃 |⟩
as function of temperature would jump discontinuously at 𝑇d. At finite volume, this abrupt jump
becomes smooth, and 𝑇d is estimated by the inflection point of the curve.

In Listing 2 we show how such an extrapolation is achieved with the AnalysisToolbox, along
with error estimation, plotting the results, and carrying out a statistical comparison with the known
literature value. We assume you already2 have results for ⟨|𝑃 |⟩ at various 𝑁𝜏 , which we read in
from tables of the form Nt6.txt . For each 𝑁𝜏 , this code estimates the inflection point of ⟨|𝑃 |⟩ as a

2Incidentally, the AnalysisToolbox already has code that will assist with computing some Polyakov-loop observables,
such as |𝑃 | or the susceptibility 𝜒|𝑃 | , if you started with measurements at the configuration level.
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1 import numpy as np
2 import latqcdtools.base.logger as logger
3 from latqcdtools.base.readWrite import readTable
4 from latqcdtools.base.printErrorBars import get_err_str
5 from latqcdtools.base.initialize import initialize, finalize
6 from latqcdtools.math.num_deriv import diff_deriv
7 from latqcdtools.math.spline import getSpline
8 from latqcdtools.statistics.statistics import gaudif
9 from latqcdtools.statistics.bootstr import bootstr_from_gauss

10 from latqcdtools.physics.continuumExtrap import continuumExtrapolate
11 from latqcdtools.physics.constants import r0_phys
12 from latqcdtools.physics.lattice_params import latticeParams
13
14 initialize('cont.log')
15
16 Nts = [6,8,10,12,14,16,18,20]
17 Tds, Tderrs = [], []
18
19 for Nt in Nts:
20
21 T = []
22 Ns = Nt*3
23
24 # Read in Polyakov loop measurements,
25 beta, PM, PE = readTable('ploop/Nt'+str(Nt)+'.txt',usecols=(0,1,2))
26
27 # Create array of temperatures in physical units
28 for b in beta:
29 lp = latticeParams(Ns, Nt, b, scaleType='r0')
30 T.append( lp.getT() )
31 t = np.linspace(T[0],T[-1],1001)
32
33 # Extract Td from inflection point of <|P|> vs T using natural spline
34 def getTd(pm):
35 spl = getSpline(T, pm, natural=True)
36 dPdT = diff_deriv(t, spl)
37 maxIndex = np.argmax(dPdT)
38 return t[maxIndex]
39
40 # Error in Td estimate comes from 1000 Gaussian bootstrap samples
41 Td, Tde = bootstr_from_gauss(getTd, PM, PE, 1000)
42 Tds.append(Td)
43 Tderrs.append(Tde)
44
45 # Perform O(a^4) continuum-limit extrapolation
46 result, result_err, chidof = continuumExtrapolate( Nts, Tds, Tderrs, order=2,
47 xtype="Nt", show_results=True,
48 plot_results=True )
49
50 # Do a Z-test against literature result,
51 r0 = r0_phys(year=2014, units="MeVinv")
52 Tdr0, Tdr0e = r0 * result[0], r0 * result_err[0]
53 Tdr0_lit, Tdr0_lite = 0.7457, 0.0045
54 logger.info('q(ours vs. lit) =',gaudif(Tdr0,Tdr0e,Tdr0_lit,Tdr0_lite))
55
56 finalize()

Listing 2: Example continuum-limit extrapolation. As one sees in line 22, this calculation was performed
on ensembles with aspect ratio 3. Excluding the imports, we were able to read in ⟨|𝑃 |⟩ vs. 𝑇 tables, fit those
data with splines, estimate inflection points, bootstrap those estimates, continuum extrapolate those results,
plot them, and compare the final estimate using a Z-test to the literature value with about 25 commands.
Taken from a pedagogical project for first- and second-year undergraduate students [4].
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Figure 1: Figure 1: Rough sketch of organizational hierarchy. Base modules encapsulate combinations of
well maintained Python modules, such as SciPy and NumPy. These are used to construct and enhance math
and physics objects, which in turn build up high-level modules. Here the configuration reader and hadron
resonance gas model are given as two examples.

function of 𝑇 to get 𝑇d(𝑁𝜏). Temperatures are calculated in MeV using a 2017 parameterization [5]
of the Sommer scale 𝑟0/𝑎 [6]. This procedure is wrapped in a user-defined function3 getTc ,
so that errors in the ⟨|𝑃 |⟩ data can be conveniently propagated into the error in 𝑇d(𝑁𝜏) using a
Gaussian bootstrap4, which is done on line 41. We stress that this scheme allows the bootstrap to
be completely agnostic to the form and contents of the to-be-bootstrapped function.

Having the Nts , Tds , and Tderrs , we are ready to perform a continuum-limit extrapolation
on line 46. This will perform5 an extrapolation to second order in 𝑎2, i.e. O

(
𝑎4) , print the fit results

to screen, and create a plot of the extrapolation for you. The arrays result and result_err
contain the best fit parameters along with their errors, with result[0] being the continuum-
limit 𝑇d. In the last block we compare our result with 𝑇d𝑟0 determined in Francis et al. [7]. The
temperatures calculated in this code implicitly had units of MeV, hence we use the 2014 result [8]
for 𝑟0 in physical units converted to 1/MeV. Finally we call gaudif to carry out a Z-test.

3. Code design

As mentioned in Sec. 1, there exist many well tested and actively maintained Python packages
for various kinds of data analysis. In general we try to take the philosophy that we cannot write

3Within this function is a getSpline method that wraps various SciPy spline methods and diff_deriv , which is
our implementation of a central-difference numerical derivative.

4There is also an ordinary bootstrap, in case you would rather work with data on the configuration level.
5Under the hood, this tries several different scipy.optimize algorithms and chooses the one with the lowest

reduced 𝜒2. If you would like to try higher-order fits with few data, we also support Bayesian priors.
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something better than such libraries, especially given our limited personnel. Therefore, many of
the methods and classes in the AnalysisToolbox are wrappers for or inherit from existing methods
and classes in SciPy [9] and NumPy [10].

In Fig. 1 we outline the code’s organizational hierarchy using some example modules. At the
lowest level we collect methods and classes that we think all other modules might use. This includes
internal methods that streamline6 and check for consistency7. Error messages are output with our
custom logger, which uses parts of Python’s logging library. Our plotting library consists mainly
of convenience wrappers for Matplotlib [11].

Most importantly at this level is a module for speeding up Python calculations. Many
kinds of computations easily profit from parallelization; for example a jackknife can be easily
parallelized by having each jackknife sample independently evaluated in parallel. Python has
many parallelization libraries available to it. In our code, we have abstracted this away with a
parallel_function_eval method. This takes as arguments a function and an array, then eval-
uates the function on the array in parallel. Hence it can be used to replace for loops. While
parallelization in Python is generally less challenging than other languages, it can still be tricky to
pass arguments besides the to-be-parallelized array to the function, and the abstraction helps with
this. Moreover this abstraction lets one switch out different parallelizers without modifying any
higher-level code.

Sections of Python code using nested C-like for loops are often tremendously slow. In some
instances, they may not be easy to vectorize, and may be slow even after some straightforward
parallelization. For some such cases, Python has available to it a just-in-time compilation library
called Numba [12]. On the other hand, compilation also takes some time, and it could be that
for small enough problem sizes, the just-in-time compilation time is similar to the run time.
Hence we introduce a @compile decorator along with numbaON() and numbaOFF() methods to
conveniently toggle compilation for large swathes of code on and off.

At the next level up in the hierarchy we have physics and math modules. When possible, we
try to use already existing methods in NumPy and SciPy, for instance for curve fitting, integration,
matrix multiplication, and very basic statistics. At the time of writing, numerical differentiation
is slated to no longer be supported by SciPy, and we have not been able to make other automatic
differentiators work well in the code, so we do our own numerical differentiation using central
differences. More advanced statistical tools not already in NumPy or SciPy include the bootstrap
and jackknife. As discussed in Sec. 2, the jackknife and bootstrap are agnostic to the problem at
hand, which saves the user from constantly having to reimplement or tailor a jackknife approach
to each new problem. Moreover they call parallel_function_eval , so they are sped up under
the hood. Our class for SU(3) matrices inherits from NumPy matrices to leverage that already
existing functionality, and we implement a few methods special to SU(3) like reunitarization.
Parallelization, compilation, and the SU(3) class are synthesized in a gauge field class, so that one
can store gauge fields and somewhat quickly compute average plaquettes.

6For example some methods may expect NumPy arrays, and hence return an array, even if you wanted to pass a
simple scalar. The unvector method checks if something is a single-element, array-like object and, if it is, removes the
outermost brackets.

7For instance checking whether arrays have the same length or objects are of the correct type. In particular we try to
make sure that, when the code gets something it didn’t expect, it tells you exactly what values it received.
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At the highest level are modules requiring a synthesis of many lower-lying modules in the code.
The gauge field reader, inspired by qcdutils [13], is a good example of this. It reads in binary
and stores the result in a gauge field object. Mirroring gauge field readers in typical lattice codes,
we also check things like the average plaquette. At the moment we can only read in NERSC format
binaries and lack checksum calculation.

Finally we mention our unit tests, which are intended to make sure results remain stable under
changes to the code. These tests are usually very simple and include comparisons against trusted
results and analytic results or comparisons between multiple computation strategies.

4. Existing features

4.1 Math and statistics

The math and statistics methods of the code are independent of any physics context and hence
are applicable well beyond the lattice QCD. These methods include numerical differentiation and
integration; spline fitting; curve fitting with [14] and without Bayesian priors; ordinary and Gaussian
bootstrap; jackknife; autocorrelation calculation [15]; and the statistical Z-test and T-test.

4.2 Physics

We feature physics modules that might be of interest both to lattice practitioners and those
studying finite-temperature QCD phenomenology like HotQCD parameterizations of, e.g., 𝑎 𝑓𝐾 (𝛽)
and 𝑟1𝑚𝑠 (𝛽) [3, 8]; physical parameters and their errors from the PDG, e.g. 𝑚𝜋 and 𝑚𝜌; the hadron
resonance gas model [16, 17]; the QCD equation of state [18–20]; the QCD beta function; the
static quark potential and Polyakov loop observables; and critical exponents for various universality
classes.

4.3 Interfacing

Having evolved in the context of HotQCD and MILC projects, the code interfaces with some
software and conventions of these groups, for instance parsing HotQCD, MILC, and SIMULATe-
QCD [21, 22] ensemble names to extract metadata and jackknifing C. Schmidt’s DenseCode
output [23]. We also try to make the code flexible to conventions in the broader lattice community,
like reading8 in NERSC-format gauge configurations and reading .gpl files [24].

5. Future work and outlook

We have implemented features in this code as we encountered them in various lattice projects.
Many of these methods are sufficiently general that we believe they can especially be of use
to other lattice practitioners. Some methods, such as the QCD EoS, should also be useful to
phenomenologists, and still others like the jackknife, bootstrap, and fitting modules are usable for
general data analysis, even outside of a physics context.

As the ILDG progresses [25], we intend to dovetail some of our efforts with theirs, for instance
supporting QCDml markup and reading in ILDG configurations.

8We have found a gauge field reader to be of use in Python, since some projects explore applying machine learning
at the configuration level, and many machine learning tools already exist for Python.
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