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We present an evaluation of the glueball spectrum for configurations produced with Nf =

1 dynamical fermions as a function of the mPCAC mass. We obtained masses of states that
fall into the irreducible representations of the octahedral group of rotations in combination
with the quantum numbers of charge conjugation C and parity P . Due to the low signal
to noise ratio, practically, we can only extract masses for the irreducible representations
RPC = A++

1 , E++, T++
2 as well as A−+

1 . We make use of the Generalized Eigenvalue
Problem (GEVP) with an operator basis consisting only of gluonic operators. Throughout
this work we are aiming towards the identification of the effects of light dynamical quarks
on the glueball spectrum and how this compares to the statistically more precise spectrum
of SU(3) pure gauge theory. We used large gauge ensembles which consist of ∼ O(10K)

configurations. Our findings demonstrate that the low-lying spectrum of the scalar, tensor
as well as pseudo-scalar glueballs receive negligible contributions from the inclusion of
Nf = 1 dynamical fermions.
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1. Introduction

Glueballs are resonance states consisting solely of gluons with a color singlet configura-
tion, a phenomenon anticipated by the confinement principle in Quantum Chromodynamics
(QCD). While various possible candidates for glueballs have been detected, a consensus on
their precise identification remains elusive, making it one of the unresolved enigmas in the
field of hadron spectroscopy.

Over the past few years, new experimental instruments such as PANDA [1] and BE-
SIII [2] have become operational, with additional ones on the horizon. These advancements
will yield fresh data and analytical insights into the gluon-rich channels that have been pre-
viously explored. This, in turn, will present a challenge to the novel theoretical methodolo-
gies and results that have been recently proposed, encompassing both lattice and analytical
approaches. Recent reviews on the search for glueballs can be found in the Lattice 2022
plenary presentation by D. Vadacchino [3] as well as in the review by E. Klempt in Ref. [4].

Recent results on the glueball spectrum [5] obtained with Nf = 4 dynamical fermions
revealed the existence of an additional state, which manifests as the lightest state in the
scalar channel (A++

1 ). This state appears to be associated with the decay of a glueball to
two or four pions. It would, thus, be useful to investigate the effect of light quarks in a
theory were such decays are suppressed but dynamical fermions can still affect the nature
of the spectrum. Such a case is Nf = 1 QCD where pions do not exist.

In this study, we aim to delve into the impact of a single light fermion on the glue-
ball spectrum. To achieve this goal, we utilize configurations generated with a single light
Clover quark (Nf = 1) across a range of bare masses. We extract the glueball spectrum
and then compare it with that obtained from pure gauge SU(3) configurations produced
with the Symanzik tree-level improved action at two values of the gradient flow. For mas-
sive dynamical quarks we expect, from decoupling arguments, that the glueball spectrum
becomes similar to the spectrum of the pure gauge theory [6, 7]. The important question
that arises here is what happens if one includes light dynamical fermions.

Overall, our main finding of the investigation of Nf = 1 QCD is that the spectrum, at
the given statistical accuracy of O(10K) configurations, appears to be consistent with the
pure gauge theory and independent of the fermion mass.

This manuscript is structured as follows. We begin in Section 2 by presenting the lattice
setup used to generate configurations with Nf = 1, along with those using the pure gauge
action. Moving on to Section 3, we provide a brief explanation of how the glueball spec-
trum in Lattice QCD can be extracted using the Generalized Eigenvalue Problem (GEVP)
method. Next, in Section 4, we describe the process of calculating the topological charge,
which serves as a measure of the system’s ergodicity. We also detail the evaluation of the
energy scale t0 through the smoothing scheme of the gradient flow. Subsequently, we focus
on presenting the results, specifically discussing the scalar channel RPC = A++

1 , the tensor
RPC = E++ and T++

2 channels, and the pseudoscalar glueball obtained in the RPC = A−+
1

channel. Finally, we conclude the proceedings in Section 6.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
4
1

P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
4
1

Glueballs in Nf = 1 QCD Georg Bergner

2. Simulation Details

The lattice configurations have been generated as part of an extension of a larger
project focused on one flavour QCD started by the DESY-Münster collaboration [8–10].
The first ensembles have been generated with a tree-level Symanzik-improved gauge action
and one level of stout smearing in the standard Wilson fermion action. This has been later
extended to a tree-level clover-improved fermion action. While the first configurations have
been generated with the polynomial hybrid Monte-Carlo algorithm, later on the rational
hybrid Monte-Carlo algorithm has been used from a newly developed code package. The
meson masses including the ηS and σS have been determined at earlier stages of the project.
The mixing of meson and glueball operators has only been considered in a very preliminary
study. Here we report on a considerable update of the glueball sector using the improved
fermion action. For our analysis, we have selected ensembles at β = 4.2 and β = 4.4. To
facilitate a comparison, we also conducted simulations of pure SU(3) gauge theory with
tree-level Symanzik-improved gauge action using the hybrid Monte-Carlo algorithm. The
simulated values of β are β = 4.51 and β = 4.75, corresponding respectively to the β = 4.2

and β = 4.4 values employed in the Nf = 1 simulation with clover improvement.

3. Calculation of glueball masses

Glueball masses can be established through the use of the standard decomposition
technique applied to a Euclidean correlator involving an operator denoted as ϕ(t). This
decomposition process relies on representing these physical states within the context of the
system’s Hamiltonian, denoted as H, and the associated energy eigenstates:

⟨ϕ†(t = ant)ϕ(0)⟩ = ⟨ϕ†e−Hantϕ⟩ =
∑
i

|ci|2e−aEint t→∞
= |c0|2e−aE0nt , (1)

where E0 represents the ground state energy. The above summation is limited to states
that exhibit non-zero overlaps and satisfy the condition ci = ⟨vac|ϕ†|i⟩ ≠ 0. The quantum
properties of the operator ϕ shall align with those of the particular state being examined.
The identification of the ground state hinges on two critical elements: the strength of its
correlation with this state and the speed at which we witness exponential decay as outlined
in Eq. (1). Enhancing this correlation entails creating operators that adeptly encapsulate
the fundamental characteristics of the state. To extract excited states we employ the
GEVP technique [11–13] applied to a set of operators ϕi formed from various lattice loops
at different blocking levels [14, 15]. This involves using correlation matrices, denoted as
Cij = ⟨ϕ†

i (t)ϕj(0)⟩, where i, j = 1, ..., Nop, in conjunction with GEVP. Here, Nop represents
the number of operators used.

To construct an operator that projects onto a glueball state, we create an ordered
product of SU(3) link matrices along a loop that can be continuously contracted and then
calculate its trace. The real (imaginary) part of this trace corresponds to positive (nega-
tive) charge conjugation C = +(−). In order to ensure that the operator possesses zero
momentum, we sum over all spatial translations of the loop. Additionally, we account for all
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conceivable rotations of the loop and combine them in ways that adhere to the irreducible
representations (R) of the rotational symmetry group. To create operators with both pari-
ties (P = ±), we construct the parity inverse for each loop and then take appropriate linear
combinations. In Fig. 1, we provide a selection of the paths used in constructing our basis.

Figure 1: All the different closed loops used for the construction of the glueball operators.

The irreducible representations R of the discrete subgroup of cubic rotations within
the full rotation group are denoted as A1, A2, E, T1, T2. The A1 representation is a singlet
and possesses full cubic rotational symmetry, thereby encompassing the J = 0 state in the
continuum limit. Similarly, the A2 representation is also a singlet. The E representation
forms a doublet, while both T1 and T2 representations are triplets. In the lattice setting, the
three states corresponding to the triplet of T2 are degenerate. To address this, we average
their values and treat them as a single state when estimating glueball masses. The same
procedure is applied to the E doublets, where their mass estimates are averaged.

The representations of rotational symmetry described above are based on our cubic
lattice formulation. As we approach the continuum limit, these states will converge to
continuum glueball states that belong to representations of the continuous rotational sym-
metry. Consequently, they will fall into degenerate multiplets consisting of 2J + 1 states,
where J represents the spin of the states. When determining the continuum limit of the
low-lying glueball spectrum, it is more valuable to assign states to a specific spin J , rather
than to representations of the cubic subgroup, which provide a less precise ’resolution’ as
they map all spins J = 1, 2, 3, . . . ,∞ to just 5 cubic representations. For low values of J
(J = 0, 1, 2), the distribution of the 2J + 1 states can be characterized as A1 → J = 0,
T1 → J = 1, and E, T2 → J = 2.

4. Topological charge and scale setting

In the continuum limit, the topological charge is established as the integral across
the entire four-dimensional Euclidean space-time volume of the topological charge density
Q = 1

32π2

∫
d4x ϵµνρσTr [Fµν(x)Fρσ(x)] . We employed a lattice version of Q known as the

symmetric or ’clover’ definition, which was initially introduced in Ref. [16]. We use the
gradient flow [17] in order to smooth out the UV fluctuations of the gauge field defining
the topological charge. The smoothing action utilized in the flow equation is the standard
Wilson action.

In Fig. 2 we present the history of the topological charge as well as its distribution for
two Nf = 1 ensembles, namely one at β = 4.2 and one at β = 4.4. Clearly, the plots do
not indicate severe topological freezing, suggesting that the Markov-Chain is ergodic.

The gradient flow technique additionally allows for the establishment of a well-defined
physical scale parameter denoted as t0, which can be determined with a high degree of preci-
sion. This concept of t0 was originally introduced in references [18, 19]. The definition of t0

4
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follows a specific prescription as outlined below. First, we set F (t) = t2⟨E(t)⟩ with E(t) =
1
4B

2
µν(t) , where Bµν is field strength obtained by flowing Fµν along the flow time direction.

We define the scale t0(c) as the value of t for which F (t)|t=t0(c) = c where c should be
chosen so that the relevant condition a ≪ √

8t0 ≪ L is satisfied. Small values of c lead to
large lattice artefacts while large c usually lead to larger autocorrelations [20]. In our case
we choose the value c = 0.3 which is the value commonly used in lattice QCD calculations.
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Figure 2: Topological charge fluctuations as a function of the Monte-Carlo time for an ensemble
at β = 4.2 at flow time t/a2 = 8.0 (above) and β = 4.4 at flow time t/a2 = 10.0 (below).

5. Results

We have successfully acquired the low-energy spectra associated with the irreducible
representations A++

1 , E++, and T++
2 , as well as A−+

1 , which correspond to the scalar,
tensor, and pseudoscalar channels respectively. An intriguing observation stemming from
our calculations is the early establishment of effective mass plateaus, illustrated in Figure 3,
in stark contrast to what has been observed in the case of Nf = 4, where the plateaus set
in later during the temporal evolution. These results are marked by high overlaps ranging
from 80% to 100%. Notably, this phenomenon closely resembles the rapid convergence of
mass plateaus observed in the context of SU(3) pure gauge theory. It could potentially
indicate a significant reduction in the number of states appearing in the aforementioned
Hilbert space of the Nf = 1 QCD vacuum compared to that of Nf = 4 QCD. Consequently,
the quality of the mass plateau appears to be akin to that of a pure gauge theory.

In Figure 4 we provide results of the glueball masses in units of 1/
√
t0 as a function

of the PQChPT pion mass for the (i) ground and first excited states for A++
1 , (ii) the

ground state for E++, (iii) the ground state for T++
2 , and (iv) the ground state for A−+

1 .
The parameters of the ensembles used to produce the aforementioned plot are β = 4.4,

5
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Figure 3: Here we provide examples of well-defined mass plateaus, along with their most accurate
estimates for the four irreducible representations. In the plots above, moving from left to right, we
showcase effective mass plots for: the ground and first excited states of A++

1 , one of the doublets
of the E++ ground state, one of the triplets in the T++

2 ground state, the A−+
1 ground state.

and κ = 0.1280, 0.1287, 0.1290 and 0.1293. The bands represent the mass estimates for
SU(3) pure gauge theory for β = 4.75 which corresponds to t0/a

2 ∼ 7.07. The above value
of t0/a

2 matches the corresponding values for the Nf = 1 ensembles at β = 4.4. The
level of agreement between the results for Nf = 1 and the pure gauge theory of SU(3) is
astonishing, demonstrating that the effects resulting from the inclusion of the dynamical
quark into the vacuum are negligible at the given level of accuracy. Hence, the glueball
masses, are independent of the quark mass.
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Figure 4: Glueball masses for Nf = 1 and β = 4.4 improved case vs. the PQChPT pion mass.
The bands represent the mass estimates for SU(3) pure gauge theory for β = 4.75.

An investigation of the same theory at β = 4.4, without O(a) fermionic improvement,
reveals a similar pattern, as shown in Figure 5. However, it is important to note that while
the results for the irreducible representations A++

1 , E++, and T++
2 are independent of the

quark mass, the glueball mass for the ground state of the pseudoscalar channel A−+
1 appears

to decrease with increasing quark mass. This effect disappears in the improved case, leading
us to interpret this behavior as a consequence of lattice artifacts. While t0/a

2 ≈ 5.2 in the
unimproved theory, the bands in Figure 5 once again denote the mass estimates for SU(3)
pure gauge theory at β = 4.75. This assumes that lattice artifacts on M

√
t0 for the pure

gauge theory exhibit negligible differences between t0/a
2 ≈ 5.2 and 7.07.
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Figure 5: Glueball masses for Nf = 1 and β = 4.4 unimproved case vs. the PQChPT pion mass.
The bands represent the mass estimates for SU(3) pure gauge theory at β = 4.75.

6. Conclusions

The spectrum of Nf = 1 QCD, at the given statistical accuracy of O(10K) configura-
tions, appears to be consistent with the one of the pure gauge theory and independent of the
fermion mass with no any other states showing up at low energies. This has been confirmed
for two values of β as well as for O(a) improved vs. unimproved fermionic descretizations.
This suggests that the effects of one dynamical fermion on the glueball spectrum are in-
significant. In the future, we will also consider mesonic operators to investigate possible
mixings between glueballs and mesons.
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