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In this study we present lattice results on the QCD 𝛽-function in the presence of quark masses.
The 𝛽-function is calculated to three loops in perturbation theory and for improved lattice actions;
it is extracted from the renormalization of the coupling constant 𝑍𝑔. The background field method
is used to compute 𝑍𝑔, where it is simply related to the background gluon field renormalization
constant 𝑍𝐴. We focus on the quark mass effects in the background gluon propagator; the
dependence of the QCD 𝛽-function on the number of colors 𝑁𝑐, the number of fermionic flavors
𝑁 𝑓 and the quark masses, is shown explicitly. The perturbative results of the QCD 𝛽-function
will be applied to the precise determination of the strong coupling constant, calculated by Monte
Carlo simulations removing the mass effects from the nonperturbative Green’s functions.
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1. Introduction – Motivation

The renormalized 𝛽-function, describing the dependence of the renormalized coupling constant
𝑔𝑅 on the scale of the renormalization scheme [1], plays a crucial role in understanding the
underlying dynamics of QCD across different momentum regimes. It encodes the underlying
dynamics of QCD from low to high momentum regions. Nonperturbative estimations of the strong
coupling𝛼, in several renormalization schemes, through numerical simulations of the corresponding
lattice theories, are being studied by a number of groups at present (see e.g., Refs. [2, 3] and
references therein).

The three-loop bare QCD 𝛽-function [4] can be extracted from the two-loop calculation of
the renormalization factor 𝑍𝑔, which relates the bare running coupling 𝛼0 to the MS-renormalized
running coupling 𝛼MS (�̄� is the MS renormalization scale and 𝑎 is the lattice spacing) through:

𝛼0 = 𝑍2
𝑔 (𝑔0, 𝑎�̄�) × 𝛼MS (1)

The inclusion of quark masses makes this calculation even more complicated [5]. Note that
we are interested in the discretization errors proportional to the quark mass (𝑂 (𝑎𝑚) effects) on the
𝛽-function. For simplicity of notation, we denote all flavor masses by 𝑚; the case of different flavor
masses can be trivially recovered from our results. This new direction is very important due to the
fact that the𝑂 (𝑎𝑚) effects will be removed from the nonperturbative Green’s functions entering the
strong coupling, allowing for a more precise determination. Furthermore, removing 𝑂 (𝑎𝑚) effects
will improve importantly any quantity that is calculated using Wilson-type fermions [6].

2. Computational setup and methods used to calculate 𝑍𝑔

The renormalized 𝛽-function and the bare 𝛽-function on the lattice (𝛽𝐿 (𝑔0)) are defined:

𝛽(𝑔MS) = �̄�
𝑑𝑔MS
𝑑�̄�

���
𝑎,𝑔0

, 𝛽𝐿 (𝑔0) = −𝑎 𝑑𝑔0
𝑑𝑎

���
�̄�,𝑔MS

(2)

In the asymptotic limit, one can write the expansion of Eq. (2) in powers of 𝑔0:

𝛽𝐿 (𝑔0) = −𝑏0 𝑔
3
0 − 𝑏1 𝑔

5
0 − 𝑏𝐿2 𝑔7

0 − ..., (3)
𝛽(𝑔MS) = −𝑏0 𝑔

3
MS

− 𝑏1 𝑔
5
MS

− 𝑏2 𝑔
7
MS

+ ... (4)

The coefficients 𝑏0, 𝑏1 are well-known universal constants (regularization independent) for the
massless case; 𝑏𝐿

𝑖
(𝑖 ≥ 2) (regularization dependent) must be calculated perturbatively. 𝛽𝐿 (𝑔0) and

𝛽(𝑔MS) can be related using the renormalization function 𝑍𝑔, that is:

𝛽𝐿 (𝑔0) =
(
1 − 𝑔2

0
𝜕 ln 𝑍2

𝑔

𝜕𝑔2
0

)−1

𝑍𝑔 𝛽(𝑍−1
𝑔 𝑔0) (5)

The most convenient and economical way to proceed with the calculation of 𝑍𝑔 (𝑔0, 𝑎�̄�) is to use
the Background Field (𝐵𝐹) technique [7, 8], in which the following relation is valid.

𝑍𝐴(𝑔0, 𝑎�̄�)𝑍2
𝑔 (𝑔0, 𝑎�̄�) = 1 (6)
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where 𝑍𝐴 is the 𝐵𝐹 renormalization function. In the lattice version of the 𝐵𝐹 technique, the link
variable takes the form: 𝑈𝑥,𝑥+𝜇 = 𝑒𝑖𝑎𝑔0𝑄𝜇 (𝑥 ) · 𝑒𝑖𝑎𝐴𝜇 (𝑥 ) (𝑄𝜇: quantum field, 𝐴𝜇: background field).
In this framework, instead of calculating 𝑍𝑔, it suffices to compute 𝑍𝐴. Note that the inclusion
of quark masses adds an additional layer of complexity to this calculation, and we are particularly
interested in understanding 𝑂 (𝑎𝑚) effects on the 𝛽-function.

Therefore, our attention is directed towards the 2-point 𝐵𝐹 1PI Green’s function, denoted as
⟨𝐴𝜇 (𝑥)𝐴𝜈 (𝑦)⟩ (in a slight abuse of notation, cf. [8]), where we focus on the quark mass effects of
𝑂 (𝑎𝑚). Currently, we have completed the computation of the one-loop quantum correction for this
Green’s function, and the two-loop calculations are in progress.

Our computations are carried out within the lattice regularization, utilizing the clover improved
action for fermions and a class of Symanzik improved gauge actions. The clover action reads, in
standard notation:

𝑆𝐹 =
∑︁
𝑓

∑︁
𝑥

(4𝑟 + 𝑚 𝑓 )�̄� 𝑓 (𝑥)𝜓 𝑓 (𝑥)

− 1
2

∑︁
𝑓

∑︁
𝑥, 𝜇

[
�̄� 𝑓 (𝑥)

(
𝑟 − 𝛾𝜇

)
𝑈𝑥, 𝑥+𝜇𝜓 𝑓 (𝑥 + 𝜇) + �̄� 𝑓 (𝑥 + 𝜇)

(
𝑟 + 𝛾𝜇

)
𝑈𝑥+𝜇, 𝑥𝜓 𝑓 (𝑥)

]
− 1

4
𝑐SW

∑︁
𝑓

∑︁
𝑥, 𝜇, 𝜈

�̄� 𝑓 (𝑥)𝜎𝜇𝜈 �̂�𝜇𝜈 (𝑥)𝜓 𝑓 (𝑥), (7)

The Wilson parameter 𝑟 is set to 𝑟 = 1; 𝑓 is a flavor index; 𝜎𝜇𝜈 = [𝛾𝜇, 𝛾𝜈]/2 ; the clover coefficient
𝑐SW is kept as a free parameter throughout. Powers of the lattice spacing 𝑎 have been omitted and
may be directly reinserted by dimensional counting. The tensor �̂�𝜇𝜈 is proportional to a lattice
representation of the gluon field tensor; it is defined through: �̂�𝜇𝜈 ≡ 1

8 (𝑄𝜇𝜈 −𝑄𝜈𝜇), where 𝑄𝜇𝜈 is
the sum of the plaquette loops:

𝑄𝜇𝜈 = 𝑈𝑥, 𝑥+𝜇𝑈𝑥+𝜇, 𝑥+𝜇+𝜈𝑈𝑥+𝜇+𝜈, 𝑥+𝜈𝑈𝑥+𝜈, 𝑥

+ 𝑈𝑥, 𝑥+𝜈𝑈𝑥+𝜈, 𝑥+𝜈−𝜇𝑈𝑥+𝜈−𝜇, 𝑥−𝜇𝑈𝑥−𝜇, 𝑥

+ 𝑈𝑥, 𝑥−𝜇𝑈𝑥−𝜇, 𝑥−𝜇−𝜈𝑈𝑥−𝜇−𝜈, 𝑥−𝜈𝑈𝑥−𝜈, 𝑥

+ 𝑈𝑥, 𝑥−𝜈𝑈𝑥−𝜈, 𝑥−𝜈+𝜇𝑈𝑥−𝜈+𝜇, 𝑥+𝜇𝑈𝑥+𝜇, 𝑥 (8)

For the gauge fields we employ the Symanzik improved action, involving Wilson loops with 4
and 6 links (1 × 1 plaquettes and 1 × 2 rectangles, respectively), which is given by the relation

𝑆𝐺 =
2
𝑔2

0

[
𝑐0

∑︁
plaquette

Re Tr {1 −𝑈plaquette} + 𝑐1
∑︁

rectangle
Re Tr {1 −𝑈rectangle}

]
(9)

The coefficients 𝑐0 and 𝑐1 can in principle be chosen arbitrarily, subject to the following normal-
ization condition, which ensures the correct classical continuum limit of the action:

𝑐0 + 8𝑐1 = 1. (10)

Particular choices of values for {𝑐0, 𝑐1} are employed in our calculaltions ({1, 0}: Wilson gluons,
{5/3,−1/12}: Symanzik tree-level improved action and {3.648,−0.331}: Iwasaki action) .
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3. One-loop Results

The mass effects, which contribute to the 2-point Green’s function ⟨𝐴𝜇 (𝑥)𝐴𝜈 (𝑦)⟩, are asso-
ciated with the Feynman diagrams with at least one fermion line. At one-loop order, fermion
contributions to ⟨𝐴𝜇 (𝑥)𝐴𝜈 (𝑦)⟩1−𝑙𝑜𝑜𝑝 come from the sum of the Feynman diagrams in Figure 1.

1 2

Figure 1: One-loop Feynman diagrams for fermion contributions to ⟨𝐴𝜇𝐴𝜈⟩. A solid line represents quarks.
Wavy lines ending on a cross represent background gluons. Each diagram is meant to be symmetrized over
the color indices, Lorentz indices and momenta of the two external background fields.

The one-loop result of the fermion contributions to 2-pt lattice Green’s function is:

⟨𝐴𝛼
𝜇 𝐴

𝛽
𝜈 ⟩1−𝑙𝑜𝑜𝑝 = 𝛿𝛼𝛽𝑁 𝑓

(
𝛿𝜇𝜈𝑞

2 − 𝑞𝜈𝑞𝜇

) {
𝐹1(𝑎𝑞) + 𝐹2

(
𝑚2

𝑞2

)
+ 𝑎𝑚

[
𝐹3(𝑎𝑞) + 𝐹4

(
𝑚2

𝑞2

) ]}
, (11)

where:

𝐹1(𝑎𝑞) = −0.0137322 + 0.0050467 𝑐𝑠𝑤 − 0.0298435 𝑐2
𝑠𝑤 + 2

3
1

16𝜋2 log(𝑎2𝑞2)

𝐹2

(
𝑚2

𝑞2

)
=

8
3

1
16𝜋2

𝑚2

𝑞2 − 8
3

1
16𝜋2

(
−1

2
+ 𝑚2

𝑞2

) √︄
1 + 4

𝑚2

𝑞2 arccoth ©«
√︄

1 + 4
m2

q2
ª®¬ + 2

3
1

16𝜋2 log
(
m2

q2

)
𝐹3(𝑎𝑞) = 0.0272837 − 0.0223503𝑐𝑠𝑤 + 0.0070667𝑐2

𝑠𝑤 − (1 − 𝑐𝑠𝑤)
2

16𝜋2 log
(
𝑎2𝑞2

)
𝐹4

(
𝑚2

𝑞2

)
= − 4

16𝜋2
𝑚2

𝑞2 + 4
16𝜋2

[
(−1 + 𝑐𝑠𝑤)

(
1 + 4

𝑚2

𝑞2

)
+ 4

(
𝑚2

𝑞2

)2] arccoth
(√︃

1 + 4 m2

q2

)
√︃

1 + 4𝑚2

𝑞2

−(1 − 𝑐𝑠𝑤)
2

16𝜋2 log
(
𝑚2

𝑞2

)
Since Eq. (11) stemming from diagrams of closed fermion loops, the one-loop results are inde-
pendent of the Symanzik coefficients. However, our two-loop calculations employed values for the
Symanzik coefficients which are commonly used.

We define the 𝐵𝐹 coupling to one-loop order as (for 𝑐𝑠𝑤 = 1 +𝑂 (𝑔2
0)):

𝑔2
𝐵𝐹 (𝑞, 𝑚) = 𝑔2

0 + 𝑔4
0

{
𝐹1(𝑎𝑞) + 𝐹2

(
𝑚2

𝑞2

)
+ 𝑎𝑚

[
𝐹3(𝑎𝑞) + 𝐹4

(
𝑚2

𝑞2

) ]}���
𝑐𝑠𝑤=1

+𝑂 (𝑔6
0) (12)

𝑔2
𝐵𝐹

(𝑞, 𝑚) can be expressed in terms of the renormalized coupling 𝑔MS through 𝑍
𝐿,MS
𝑔 where

𝑔2
MS

= 𝑍
𝐿,MS
𝑔 𝑔2

0, 𝑍
𝐿,MS
𝑔 = 1−𝑔2

0
(
𝑏 log

(
𝑎2 �̄�2) − 𝑎 𝑚 𝑏𝑔

)
+𝑂 (𝑔4

0). It easy to show that in order to
remove the unwanted lattice contributions (log(𝑎) and (𝑎𝑚)) the coefficients 𝑏 and 𝑏𝑔 must be [9]:

𝑏 = − 1
24𝜋2 , 𝑏𝑔 = 0.01200 (13)

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
4
7

Mass effects on the QCD 𝛽-function M. Costa

At one loop order, expressing 𝑔2
𝐵𝐹

(𝑞, 𝑚) in terms of renormalized quantities (𝑔MS, 𝑚MS =

𝑚

(
1 − 1

2𝑎𝑚
)

and taking the limit 𝑧 → ∞ (𝑧 = 𝑚2
MS

/𝑞2) we get:

lim
𝑧→∞

𝑔2
𝐵𝐹 (𝑞, 𝑚MS) = 𝑔2

MS
+ 𝑔4

MS

(
−0.0314928 + 1

24𝜋2 log
(
𝑚2

MS
/�̄�2

))
+𝑂 (𝑎2, 𝑔6

MS
) (14)

Equation (14) distinctly illustrates the logarithmic mass dependence exhibited by heavy quarks as
we approach the continuum limit.

The one-loop results provide valuable insights into the quark mass effects on the QCD 𝛽-
function; the logarithmic mass dependence in the 𝐵𝐹 coupling shows the significance of heavy
quark behavior in the continuum limit. While the one-loop results lay a foundational understanding,
ongoing two-loop calculations are crucial for refining the precision of the QCD 𝛽-function and
completing the picture of quark mass effects on the renormalization of the coupling constant within
the lattice QCD framework.

4. Two-loop Calculations

The computation of the two-loop Feynman diagrams is currently in progress. The result of
the fermion contribution to the two-loop 2-point lattice Green’s function is obtained as the sum of
twenty Feynman diagrams, as shown in Figure 2.

Since we are interested in the 𝑂 (𝑎𝑚) corrections, we use the relation for the tree-level fermion
propagator in momentum space:

⟨𝜓�̄�⟩ = −𝑖 /𝑞◦ + 𝑀 (𝑞, 𝑚)
𝑞
◦2 + 𝑀 (𝑞, 𝑚)2

, (15)

where: /𝑞◦ = ∑
𝜇 𝛾𝜇

1
𝑎

sin(𝑎𝑞𝜇) and 𝑀 (𝑞, 𝑚) = 𝑚 + 2
𝑎

∑
𝜇 sin2(𝑎𝑞𝜇/2).

To study the mass effects, we expand the denominator of Eq. (15) with respect to 𝑚 and we
obtain Eq. (16).

1
𝑞
◦2 + 𝑀 (𝑞, 𝑚)2

=
1

𝑞
◦2 + 𝑀 (𝑞, 0)2

(
1 −

4𝑚 1
𝑎

∑
𝜇 sin2(𝑎𝑞𝜇/2)

𝑞
◦2 + 𝑀 (𝑞, 0)2

+𝑂 (𝑎2𝑚2)
)

(16)

One main difficulty in this computation, as compared to the 𝑂 ((𝑎𝑚)0) calculation, stems
from the fact that the fermion propagator now contains contributions of 𝑂 (𝑞−2); this amplifies
the presence of potential IR divergences, which must be carefully addressed. Also, the sheer
number of terms which must be integrated over the two loop momenta is of the order of ∼ 106;
this has necessitated the creation of special-purpose integration routines, in order to overcome
the severe contraints on CPU and memory. These ongoing two-loop calculations are anticipated
to offer a more thorough understanding of the quark mass effects in the renormalization of the
coupling constant. However, it is essential to note also that the computational challenges are further
amplified by the distinct methodologies and manipulations required for each diagram. Particularly,
the "diamond" diagrams (diagrams 15 and 16 in Figure 2) stand out as the most challenging within
this computation.
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1 2 3 4

5 6 7 8

1 21 11 09

1 3 1 4 1 5 1 6

1 7 1 8 1 9 2 0

Figure 2: Two-loop Feynman diagrams for the fermion contributions to ⟨𝐴𝜇𝐴𝜈⟩. A wavy (solid) line
represents gluons (quarks). Wavy lines ending on a cross represent background gluons. A solid circle is
the one-loop fermion mass counterterm. Each diagram is meant to be symmetrized over the color indices,
Lorentz indices, and momenta of the two external background fields.

5. Conclusions

In this study, we examined the QCD 𝛽-function on the lattice, taking into account quark masses
and emphasizing 𝑂 (𝑎𝑚) effects. By employing the Background Field method, we derived the
𝛽-function from the renormalization of the coupling constant 𝑍𝑔. Our one-loop results for the 2-
point lattice Green’s function show the importance of the quark mass effects in the 𝛽-function. The
ongoing two-loop calculations play a crucial role in refining the precision of the QCD 𝛽-function
and advancing our comprehensive understanding of quark mass effects. We anticipate that our
perturbative results will contribute to the precise determination of the strong coupling constant in
numerical simulations, thereby enhancing the accuracy of nonperturbative Green’s function calcu-
lations in lattice QCD.
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