
P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
5
5

Progress report on testing robustness of the Newton
method in data analysis on 2-point correlation function
using a MILC HISQ ensemble

Tanmoy Bhattacharya,𝑎 Benjamin J. Choi,𝑏,1 Rajan Gupta,𝑎 Yong-Chull Jang,𝑐,1

Seungyeob Jwa,𝑏,1,∗ Sunghee Kim,𝑏,1 Sunkyu Lee,𝑏,1 Weonjong Lee,𝑏,1 Jaehoon
Leem,𝑑,1 Jeonghwan Pak𝑏,1 and Sungwoo Park𝑒,1
𝑎Los Alamos National Laboratory, MS B285, P.O. Box 1663, Los Alamos, NM 87545-0285, USA
𝑏Lattice Gauge Theory Research Center, CTP, and FPRD, Department of Physics and Astronomy, Seoul
National University, Seoul 08826, South Korea

𝑐Physics Department, Brookhaven National Lab, Upton, NY 11973, USA
𝑑Computational Science and Engineering Team, Innovation Center, Samsung Electronics, Hwaseong,
Gyeonggi-do 18448, South Korea

𝑒Lawrence Livermore National Lab, 7000 East Ave, Livermore, CA 94550, USA

E-mail: wlee@snu.ac.kr, thoth@snu.ac.kr

We report recent progress in data analysis on the two point correlation functions which will be
prerequisite to obtain semileptonic form factors for the 𝐵 (𝑠) → 𝐷 (𝑠)ℓ𝜈 decays. We use a MILC
HISQ ensemble for the measurement. We use the HISQ action for light quarks, and the Oktay-
Kronfeld (OK) action for the heavy quarks (𝑏 and 𝑐). We used a sequential Bayesian method for
the data analysis. Here we test the new fitting methodology of Benjamin J. Choi in a completely
independent manner.

The 40th International Symposium on Lattice Field Theory,
July 31-August 4, 2023,
Fermilab, Batavia, Illinois, USA

1The SWME collaboration
∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:wlee@snu.ac.kr
mailto:thoth@snu.ac.kr
https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
5
5

Data analysis on 2pt correlators Seungyeob Jwa

1. Introduction

Semileptonic form factors for the 𝐵 → 𝐷 (∗) 𝑙𝜈 decays can probe the Cabibbo-Kobayashi-
Maskawa (CKM) matrix element |𝑉𝑐𝑏 | [1]. This requires the precise data analysis on 2-point
correlation functions [2]. Here, we present our recent progress in data analysis on 2-point correlation
functions. This work provides an independent cross-checking of the methodology developed by
Benjamin Choi in Ref. [3].

We use the MILC HISQ ensembles for the numerical study. In Table 1 (a), we summarize
details on the MILC lattice a12m310. For bottom and charm quarks, we use the Oktay-Kronfeld
(OK) action [4]. In Table 1 (b), we summarize details on hopping parameters for bottom quarks,
and light quark masses.

ID a (fm) 𝑀𝜋(MeV) 𝐿3 × 𝑇

a12m310 0.1207(11) 305.3(4) 243 × 64

(a) Details on the MILC lattice ensemble

𝜅crit 𝜅𝑏 𝑚𝑙 𝑁cfg × 𝑁src

0.051211 0.04102 0.0509 1053 × 3

(b) Hopping parameters

Table 1: Parameters for the numerical study. Here, 𝑁cfg (𝑁src) represents the number of gauge configurations
(the number of measurements per gauge configuration).

2. Fit Function

Spectral decomposition of 2-pt correlation functions 𝐶 (𝑡) measured on the lattice is

𝐶 (𝑡) =
∑︁
𝜏

〈
O†

𝜏 (𝑥)O𝜏 (0)
〉

=

∞∑︁
𝑛=0

(−1)𝑛(𝑡+1) |〈𝑛|O(0) |0〉|2
(
𝑒−𝐸𝑛𝑡 + 𝑒−𝐸𝑛 (𝑇 −𝑡)

)
. (1)

where the heavy-light meson operator O is

O𝜏 (𝑥) ≡
[
𝜓̄(𝑥)ΓΩ(𝑥)

]
𝜏
𝜒(𝑥) , (2)

Γ = 𝛾5 or 𝛾 𝑗 , (3)
Ω(𝑥) = 𝛾

𝑚1
1 𝛾

𝑚2
2 𝛾

𝑚3
3 𝛾

𝑚4
4 , (4)

𝑥𝜇 = 𝑚𝜇𝑎 with 𝑚𝜇 ∈ 𝑍 (5)

with staggered quark field 𝜒(𝑥), and the 𝜓 is a heavy quark field in the OK action [4]. Here, 𝑛 is
an integer index for energy eigenstates. If 𝑛 is even (odd), its eigenstate has even (odd) time-parity.
The oscillating terms with odd time-parity come from the temporal doubler of staggered quarks [5].
The 𝜏 represents taste degrees of freedom for staggered quarks. In our notation, |0〉 represents not
the vacuum state (|Ω〉) but the heavy-light meson ground state with energy 𝐸0 > 0.

Then, the 𝑛 + 𝑚 fitting function [5] is

𝑓 𝑛+𝑚(𝑡) =𝑔𝑛+𝑚(𝑡) + 𝑔𝑛+𝑚(𝑇 − 𝑡), (6)
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𝑔𝑛+𝑚(𝑡) =𝐴0𝑒
−𝐸0𝑡

[
1 + 𝑟2𝑒

−Δ𝐸2𝑡 ×
(
1 + · · · × (1 + 𝑟 (2𝑛−2)𝑒

−Δ𝐸(2𝑛−2) 𝑡 ) · · ·
)

− (−1)𝑡𝑟1𝑒
−Δ𝐸1𝑡

(
1 + · · · × (1 + 𝑟 (2𝑚−1)𝑒

−Δ𝐸(2𝑚−1) 𝑡 ) · · ·
) ]

(7)

where 𝑟𝑖 =
𝐴𝑖

𝐴𝑖−2
, Δ𝐸𝑖 = 𝐸𝑖 − 𝐸𝑖−2 for 𝑖 ≥ 1 with 𝐸−1 = 𝐸0 and 𝐴−1 = 𝐴0. The 𝑛 + 𝑚 fit implies

that we include the 𝑛 even time-parity states and 𝑚 odd time-parity states in the fitting function.

3. Newton method

When we do the least 𝜒2 fitting, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algo-
rithm [6–9] to minimize 𝜒2. This algorithm belongs to a category of the quasi-Newton method in
an optimization problem [10]. The quasi-Newton method requires an initial guess as input to the
fitting by construction.

If a initial guess is good, the quasi-Newton method finds the minimum efficiently. If the initial
guess is poor (out of radius of convergence), the number of iterations increases and the chance to find
the local minima instead of the global minimum grows up. Therefore, it is essential to find a good
initial guess close to the true solution (the global minimum), if we want to save computing resources.
For this purpose, it is best to obtain initial guess directly from the data, as long as the computing
time is negligibly small compared with that of the 𝜒2 minimizer. It is the multi-dimensional Newton
method combined with a scanning method [3] that satisfies these conditions.

The (1-dimensional) Newton method converges quadratically with respect to the distance from
the true solution. Hence, it find a root in a few iterations, if the initial guess is sufficiently close
to the true solution. However, if the initial guess is sufficiently far away from the true solution, it
loses its merit completely. The scanning method converges slowly, but it can narrow down a range
to find roots in a few iterations. If we combine the Newton method with the scanning method, it is
possible to keep only the merits, while discarding the disadvantages. In other words, the scanning
method finds a narrow range to find roots in a few iterations, and then the Newton method can find
a root in a few iterations within the narrow range.

Let us consider the 1 + 1 fit as an example. We feed results for the 1 + 0 fit as an initial guess
for the 𝐴0, 𝐸0 part of the 1 + 1 fit parameters. In order to obtain initial guess for the remaining
parameters 𝑟1 and Δ𝐸1, we use the 4-dimensional Newton method combined with the scanning
method. The initial range is set to 𝑟1 ∈ [0, 1.5] and Δ𝐸1 ∈ [0, 1.0] for the scanning method. After
a few iterations (1 ∼ 2), the scanning method finds such a narrow range for 𝑟1 and Δ𝐸1 that we may
use the Newton method [3] to find an exact solution for Eqs. 8 in a few iterations (7 ∼ 10).

The Newton method uses the same time slice combination (e.g. {𝑡1 = 𝑡min, 𝑡2, 𝑡3, 𝑡4} for the
1 + 1 fit) as the scanning method. First, we collect all the possible time slice combinations within
the fit range ( 𝑡min ≤ 𝑡 ≤ 𝑡max ; e.g. 𝑡min = 12 and 𝑡max = 26 for the 1 + 1 fit), before using the
scanning and Newton methods. A possible time slice combination should satisfy the following two
conditions: 1) it must contains 𝑡min, and 2) the number of even time slices must be equal to that of
odd time slices. For each time slice combination, we run the Newton method until we consume all
the time slice combinations. If the Newton method find a good solution in a few iterations (7 ∼ 10),
then we keep it, and if it fails, we discard that time slice combination. The failure rate is about 70%
for the 1+1 fit.
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Figure 1: 𝜒2/d.o.f of the 1 + 0 fit as a function of 𝑡min and 𝑡max

The Newton method finds a solution to satisfy the 𝑁 equations: 𝑞(𝑡𝑖) = 0 with 𝑡𝑖 ∈
{𝑡min, 𝑡2, 𝑡3, . . . , 𝑡𝑁 }, with 𝑁 = 2(𝑛 + 𝑚) for the 𝑛 + 𝑚 fit (e.g. 𝑁 = 4 for the 1 + 1 fit).

𝑞(𝑡𝑖) =
𝑓 (𝑡𝑖) − 𝐶 (𝑡𝑖)

𝐶 (𝑡𝑖)
= 0 . (8)

Here, 𝐶 (𝑡𝑖) is the 2pt correlator data coming from our numerical measurements, and 𝑓 (𝑡) is the
fitting function in Eq. (6). The stopping condition is

max
𝑖=1,...,𝑁

|𝑞(𝑡𝑖) | < 10−12 . (9)

4. Fitting results

Here we describe our sequential Bayesian fitting procedure such as 1+0 fit → 1+1 fit → 2+1 fit
→ 2+2 fit in detail. We also present results for the 𝑛 +𝑚 fit in each stage of the sequential Bayesian
method (SBM). We also explain how to perform stability tests at each stage of the SBM.

4.1 1+0 Fit

Here the fitting function is 𝑓 (𝑡) = 𝑓 1+0(𝑡) in Eq. (6). First we do the 𝜒2 fit for the 1 + 0 fit
over the whole appropriate fit ranges. To find initial guess for 𝜒2 minimizer, we solve the following
linear equation: 

∑
𝑖

𝐶2(𝑡𝑖)
𝜎2(𝑡𝑖)

∑
𝑖

𝑡𝑖
𝐶2(𝑡𝑖)
𝜎2(𝑡𝑖)∑

𝑖

𝑡𝑖
𝐶2(𝑡𝑖)
𝜎2(𝑡𝑖)

∑
𝑖

𝑡2
𝑖

𝐶2(𝑡𝑖)
𝜎2(𝑡𝑖)


[
ln 𝐴

ig
0

−𝐸 ig
0

]
=


∑
𝑖

𝐶2(𝑡𝑖)
𝜎2(𝑡𝑖)

ln |𝐶 (𝑡𝑖) |∑
𝑖

𝑡𝑖
𝐶2(𝑡𝑖)
𝜎2(𝑡𝑖)

ln |𝐶 (𝑡𝑖) |

 , (10)

which assumes the diagonal approximation in the covariance matrix [11]. Here 𝐴
ig
0 , 𝐸 ig

0 denote the
initial guesses, and 𝜎(𝑡𝑖) =

√︁
𝑉 (𝑡𝑖 , 𝑡𝑖), where 𝑉 (𝑡𝑖 , 𝑡𝑖) is the covariance matrix of the data 𝐶 (𝑡𝑖).

Here the summation
∑
𝑖

is over the fit range: 𝑡min ≤ 𝑡𝑖 ≤ 𝑡max. The optimal fit range for the 1+1 fit

is determined by the minimum of 𝜒2/dof. In Fig. 1 we present results for 𝜒2/dof as a function of
𝑡min and 𝑡max. We find that the optimal fit range is 19 ≤ 𝑡 ≤ 28: 𝑡min = 19 and 𝑡max = 28. Note that
𝑡max = 28 is fixed for the remaining fits of the SBM.

Let us define the Newton mass 𝑚𝑑
newt(𝑡) = 𝐸0(𝑡) at zero momentum projection. At each time

slice 𝑡, we obtain 𝑚𝑑
newt(𝑡) by solving two equations: 𝑞(𝑡) = 𝑞(𝑡 + 𝑑) = 0, using the 2-dimensional
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(b) Residual plot of 1 + 0 fit

Figure 2: Results of 1 + 0 fit
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Figure 3: Results of 1 + 1 fit

Newton method. We use the least 𝜒2 fitting results for 𝐴0 and 𝐸0 as initial guess for the 2-d. Newton
method. In Fig. (2a), we present results for 𝑚𝑑

newt(𝑡) with 𝑑 = 1 and 𝑑 = 2 as a function of time 𝑡.
Results for the 1+0 fit are summarized in Table (2). In order to check the quality of fitting,

we plot the residual, 𝑟 (𝑡) = 𝐶 (𝑡) − 𝑓 (𝑡)
|𝐶 (𝑡) | in Fig. 2 (b). Here the red (blue) symbols represent the

residual within (out of) the fit range.

Fit range 𝐴0 𝐸0 𝜒2/𝑑.𝑜. 𝑓 . 𝑝-value
[19, 28] 0.01735(125) 2.0162(38) 0.981(22) 0.448(17)

Table 2: Result of the 1 + 0 fit

4.2 1+1 Fit

We use results of the 1+0 fit to determine Bayesian priors for the 1+1 fit. We set the Bayesian
prior widths (BPW) to the maximum fluctuation (𝜎𝑚 𝑓

𝑝 ) or the signal cut (𝜎𝑠𝑐
𝑝 ) of the 𝐴0 and 𝐸0

parameters.1 We choose min(𝜎𝑚 𝑓
𝑝 , 𝜎𝑠𝑐

𝑝 ) for the BPW.
Starting from 𝑡1+1

min = 𝑡1+0
min − 2, we run 𝑡1+1

min over the lower values until 𝜒2/dof overflows the
appropriate criterion. In Fig. 3 (a) we present 𝜒2/dof as a function of 𝑡1+1

min . Here we find that
the optimal fit range is 𝑡1+1

min = 12. In Fig. 3 (b) we present the residual 𝑟 (𝑡) with the fit range
12 ≤ 𝑡 ≤ 28. The 1+1 fit results are summarized in Table 3.

1The signal cut means that the error (= noise) is the same as the average (= signal), when the parameters should be
positive thanks to physical reasons.
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Figure 4: Results of 2 + 1 fit

4.3 2+1 Fit

First, we use the results of 1 + 1 to set the BPW for 2 + 1 fit. Starting from 𝑡2+1
min = 𝑡1+1

min − 2, we
run 𝑡2+1

min over the lower values until 𝜒2/dof overflows the criterion. In Fig. 4 (a) we present 𝜒2/dof
as a function of 𝑡2+1

min . Here we find that 𝑡2+1
min = 6 is the optimal fit range for the 2+1 fit. In Fig. 4 (b)

we present the residual 𝑟 (𝑡) with the fit range 6 ≤ 𝑡 ≤ 28.
Once we choose the fit range, we can perform the stability tests to find the optimal prior widths

for 𝐴0 and 𝐸0, which minimize prior widths with no change in fit results. Here we adopt the same
notation and convention as in Ref. [12]. First, we first do the fit with maximum prior widths:
𝜎max

p (𝐴0) = 𝜎sc
𝑝 , and 𝜎max

p (𝐸0) = 𝜎mf
𝑝 , which correspond to the blue circles in Fig. 5. Here note

that 𝜎𝐴0
max = 𝜎(𝐴0;𝜎max

𝑝 (𝐴0), 𝜎max
𝑝 (𝐸0)) and 𝜎

𝐸0
max = 𝜎(𝐸0;𝜎max

𝑝 (𝐴0), 𝜎max
𝑝 (𝐸0)). The units for

𝑥−axis are [𝜎𝐴0
max] = 5.54 × 10−4, and [𝜎𝐸0

max] = 2.01 × 10−3. We find the optimal prior widths (the
red square symbols, 𝜎opt

𝑝 (𝐴0 or 𝐸0)) such that they are the minimum prior widths which does not
disturb the fit results obtained with the maximum prior widths. Here the 𝜎𝜎 (blue dashed lines)
represents the error of the error.

Results of the 2+1 fit are summarized in Table 4.

4.4 2+2 Fit

For the 2+2 fit we set the prior widths as follows.

1. [𝐴0 and 𝐸0] We use the results of the stability tests for the 2+1 fit as the prior widths for 𝐴0
and 𝐸0.

2. [𝑅1 and Δ𝐸1] We set the prior widths to the signal cuts for both.

3. [𝑅2 and Δ𝐸2] We set the prior widths to the signal cuts for both.

4. [𝑅3 and Δ𝐸3] No prior information.

𝑡min 𝐴0 (10−2) 𝐸0 𝑟1 Δ𝐸1
𝜒2

d.o.f.
prior 1.735(1735) 2.0162(538)
12 1.847(31) 2.0198(13) 0.28(14) 0.193(39) 0.827(15)

Table 3: Result of the 1 + 1 fit
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Figure 5: Results of the stability test for the 2 + 1 fit.

𝑡min 𝐴0 (10−2) 𝐸0 𝑟1 Δ𝐸1 𝑟2 Δ𝐸2
𝜒2

d.o.f.
prior 1.789(997) 2.0180(400) 0.69(69) 0.257(257)

6 1.789(55) 2.0180(20) 0.69(3) 0.257(6) 1.04(20) 0.372(60) 1.011(14)

Table 4: Result of the 2 + 1 fit
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Figure 6: Results of 2 + 2 fit

Starting from 𝑡2+2
min = 𝑡2+1

min − 2 = 4, we run 𝑡2+2
min over the lower values. In Fig. 6 (a) we present

𝜒2/dof as a function of 𝑡2+2
min . The physical positivity [13] constrains 𝑡min such that 𝑡min ≥ 3. Here

we find that 𝑡2+2
min = 3 is the optimal fit range. In Fig. 6 (c) we present the residual 𝑟 (𝑡) with the fit

range 3 ≤ 𝑡 ≤ 28.
Once we choose the fit range, we do the stability tests to find the optimal prior widths for 𝑟1

and Δ𝐸1. First, we first do the fit with maximum prior widths: 𝜎max
p (𝑟1), and 𝜎max

p (Δ𝐸1), which
correspond to the blue circles in Fig. 7. Here note that 𝜎𝑟1

max = 𝜎(𝑟1;𝜎max
𝑝 (𝑟1), 𝜎max

𝑝 (Δ𝐸1)) and
𝜎
Δ𝐸1
max = 𝜎(Δ𝐸1;𝜎max

𝑝 (𝑟1), 𝜎max
𝑝 (Δ𝐸1)), while 𝜎max

𝑝 (𝑟1) = 𝜎sc
𝑝 (𝑟1) and 𝜎max

𝑝 (Δ𝐸1) = 𝜎sc
𝑝 (Δ𝐸1).
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Figure 7: Results for the stability test in the 2 + 2 fit.

The units for 𝑥−axis are [𝜎𝑟1
max] = 7.8 × 10−2, and [𝜎Δ𝐸1

max ] = 1.31 × 10−2. In Fig. 7 the red square
symbols represent the optimal prior widths, 𝜎opt

𝑝 (𝑟1 or Δ𝐸1)).
Results of the 2+2 fit are summarized in Table 5.

𝑡min 𝐴0 (10−2) 𝐸0 𝑟1 Δ𝐸1

prior 1.858(997) 2.0203(400) 0.58(53) 0.242(171)
3 1.858(24) 2.0203(11) 0.58(8) 0.242(13)

𝑟2 Δ𝐸2 𝑟3 Δ𝐸3
𝜒2

d.o.f.
prior 1.91(191) 0.512(512)

3 1.91(6) 0.512(17) 1.63(19) 0.480(114) 0.983(13)

Table 5: Result of the 2 + 2 fit.
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