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General positivity constraints linking various powers of observables in energy eigenstates can
be used to sharply locate acceptable regions for the energy eigenvalues, provided that efficient
recursive methods are available to calculate the matrix elements. These recursive methods are
derived by looking at the commutation relations of the observables with the Hamiltonian. We
discuss how this self-consistent (bootstrap) approach can be applied to the study of digitized scalar
field theory in the harmonic basis. Using known results, we develop the method by testing on
quantum systems, including the harmonic and anharmonic oscillators. We report recent numerical
results for up to four coupled anharmonic oscillators. From here, we consider the possibility of
using the groundwork of this method as a means of studying phase transitions in 1+1 dimensions.
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1. Introduction

Universal quantum computers allow for real time evolution in quantum field theory. One of
the simplest examples is 𝜆𝜙4 [1,2,3]. In [4], a digitization inspired by Gaussian quadrature for the
path integral where 𝜙 is restricted to the zeros of the 𝑛𝑚𝑎𝑥 order Hermite polynomial is used. With
the following modification and resulting commutation relations, the Dyson Interaction picture is
preserved:

[𝑎, 𝑎†] = 1 − 𝑛𝑚𝑎𝑥 |𝑛𝑚𝑎𝑥 − 1⟩⟨𝑛𝑚𝑎𝑥 − 1| (1)

[𝑎†𝑎, 𝑎] = −𝑎 (2)

[𝑎†𝑎, 𝑎†] = 𝑎† (3)

It is shown in [4] that since digitization provides a field cutoff, the perturbation series in 𝜆 will
converge with a radius determined from complex singularities, for sufficiently small |𝜆 | [5]. See
below for case when 𝑛𝑚𝑎𝑥 = 8 (from [4]).
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Figure 1: From [4], an example of radius of convergence for 𝑛𝑚𝑎𝑥 = 8

In 1+1 dimensions these singularities pinch the real axis for 𝜆 = 𝜆𝑐, which indicates second order
phase transition.

For the undigitized anharmonic oscillator, the moments ⟨𝐸 |𝑥2𝑙 |𝐸⟩ can be recursively calculated
[6,7].

Within this work, we begin with a discussion of the methods that will yield this recursive
process, the quantum mechanical bootstrap. We then investigate a specific case for the infinite
undigitized anharmonic oscillator, to allow us to eventually compare to results from applying the
bootstrap to the digitized anharmonic oscillator. Finally, we investigate what can be learned from
combining the bootstrap with the digitization procedure.
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2. Background

2.1 Bootstrap Foundations

Utilizing the following simple identities and constraints with our Hamiltonian of interest, we
can begin to develop a bootstrap.

⟨[𝐻,𝑂]⟩ = 0 (4)

⟨𝐻𝑂⟩ = 𝐸 ⟨𝑂⟩ (5)

⟨𝑂†𝑂⟩ ≥ 0 (6)

All of these should be familiar from an introductory quantum mechanics course, but by combining
the above equations with different momentum and positional moments, we begin to build the
requisite background. As is shown in [7], by utilizing 𝑂 = 𝑥𝑚, 𝑥𝑚𝑝, and 𝑥𝑚−1 we get, respectively:

𝑠⟨𝑥𝑚−1𝑝⟩ = 𝑖

2
𝑚(𝑚 − 1)⟨𝑥𝑚−2⟩ (7)

0 = 𝑚⟨𝑥𝑚−1𝑝2⟩ + 1
4
𝑚(𝑚 − 1) (𝑚 − 2)⟨𝑥𝑚−3⟩ − ⟨𝑥𝑚𝑉 ′(𝑥)⟩ (8)

𝐸 ⟨𝑥𝑚−1⟩ = 1
2
⟨𝑥𝑚−1𝑝2⟩ + ⟨𝑥𝑚−1𝑉 (𝑥)⟩ (9)

Upon combining the above equations, we recover an equation which can be used in the bootstrapping
algorithm itself:

0 = 2𝑚𝐸 ⟨𝑥𝑚−1⟩ + 1
4
𝑚(𝑚 − 1) (𝑚 − 2)⟨𝑥𝑚−3⟩ − ⟨𝑥𝑚𝑉 ′(𝑥)⟩ − 2𝑚⟨𝑥𝑚−1𝑉 (𝑥)⟩ (10)

This is our moment recursion. Utilizing this we can find higher moments of x in terms of lower
moments, our potential, and our energy. Notice, that upon setting m=1 this returns the virial
theorem. From the positivity of the norm, a Hankel matrix can be constructed as such:

0 ≤ ⟨𝑂†𝑂⟩ =
∑︁
𝑖 𝑗

𝑐∗𝑖 ⟨𝑥𝑖+ 𝑗⟩𝑐 𝑗 ≡
∑︁
𝑖 𝑗

𝑐∗𝑖𝑀𝑖 𝑗𝑐 𝑗 (11)

We now have the necessary pieces for implementing the bootstrap algorithm.

2.2 Bootstrap Algorithm

Starting with a Hamiltonian with a given potential, find a recursive statement for this potential
with equation (10). This will allows us to populate the Hankel matrix with moments according to
(11). Taking a search space S and a set of trial points A within S, we then utilize the algorithm by
the following steps:

1. For each point in A, generate 2K-2 points of the moment sequence for each.

2. For these terms, construct a 𝐾 × 𝐾 Hankel matrix where 𝑀𝑖 𝑗 = ⟨𝑥𝑖+ 𝑗⟩ for each point in A.

3. Check positive definiteness of this matrix. If positive definite accept this point, if not throw
it out.
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4. Obtain a set of values at depth K: 𝐵𝐾 . Note: 𝐵𝐾 ⊆ 𝐴 ⊂ 𝑆 and, working through different
values of K: 𝐵𝐾+1 ⊆ 𝐵𝐾

This method will allow us to trial over different values at once, for example in the infinite anharmonic
oscillator, we simultaneously trial over possible energies and possible ⟨𝑥2⟩ moments, as these are
needed to be provided for the moment recursion, as opposed to being found by it. The ability to deal
with multiple trial spaces simultaneously allows for the handling of more complicated Hamiltonians
with the method.

3. Infinite Anharmonic Oscillator

To see how the quantum mechanical bootstrap of [6,7] behaves, we tested the cases of the
infinite harmonic oscillator and infinite anharmonic oscillator. Results for the infinite harmonic
oscillator were not illuminating as to the behavior of the algorithm, but by replicating the work in
[6] for the infinite anharmonic oscillator a useful visualization of the algorithm at work arises.

We use a Hamiltonian equation of the form 𝐻 = 𝑝2 + 𝑔𝑥2 + ℎ𝑥4 with 𝑔 = ℎ = 𝑚 = 𝜔 = ℏ = 1

Figure 2: From left to right, depths at K= 7,8,9,10,11,12 for the ground state energy

This highlights how the bootstrap behaves visually. The blue regions are all possible specific ⟨𝑥2⟩
and 𝐸 combinations for a given depth. Recall, these depths for a 𝐾 × 𝐾 matrix tell us the highest
moment used for depth K is ⟨𝑥2𝑘⟩. So, upon increasing the depth K, we reduce the possible ⟨𝑥2⟩
and 𝐸 combinations (seen visually as the "islands" decreasing in size), eventually reducing to the
energy values for the Hamiltonian.

4. Applications for Digitization

We now seek to determine if the bootstrap method can be applied to the digitized case, and
if so, what, if any modifications need to be made to implement. From here, we investigate what
information can be learned from such applications.
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4.1 Digitized Oscillators

Now, by taking 𝐻𝑛𝑚𝑎𝑥
(𝑥) = 0 we can re-express the ⟨𝑥𝑛𝑚𝑎𝑥 ⟩ moment in terms of lower powers

of x, via the Hermite polynomial. Recall, the Hermite polynomial is the eigenfunction for the
harmonic oscillator, so by setting it to 0 a highest level is imposed at which this and all successive
Hermite polynomials go to zero.

From here, the 𝑛𝑚𝑎𝑥 = 4 case will be investigated. From 𝐻4(𝑥) = 0, we get a rescursion
relation:

𝑥4 = 3𝑥2 − 3
4

(12)

Which we can now use as we did a derived statement from (10) before. Now, moments larger than
𝑛𝑚𝑎𝑥 = 4 are superfluous. This limits us to a 𝑛𝑚𝑎𝑥

2 × 𝑛𝑚𝑎𝑥

2 Hankel matrix, as we only need to go to
moments of the 𝑛𝑚𝑎𝑥 = 4 power, and the odd moments are all zero, allowing us to reduce to this
2× 2 matrix. It is important to note that as a result of this truncation, these higher moments are not
only superfluous, but entirely useless as the truncation removes their relevance. This digitization
(1,2,3) introduces new terms as a result of the modifications to the relations, yielding new terms are
introduced from the modified relations, for instance in the 𝑛𝑚𝑎𝑥 = 4 case terms such as ⟨𝐸 |𝑛𝑚𝑎𝑥−1⟩.

Knowing ⟨𝐸 |𝑥0 |𝐸⟩, ⟨𝐸 |𝑥2 |𝐸⟩, ..., ⟨𝐸 |𝑥𝑛𝑚𝑎𝑥−2 |𝐸⟩ is equivalent to the knowledge of |⟨𝑥 𝑗 |𝐸⟩|2 ≥
0 for the 𝑛𝑚𝑎𝑥

2 positive zeros of the Hermite polynomial of degree 𝑛𝑚𝑎𝑥 . We predict that the positivity
constraint imposed by the eigenvalues of the 𝑛𝑚𝑎𝑥

2 × 𝑛𝑚𝑎𝑥

2 Hankel matrix as a result of the positive
definiteness are equivalent to the constraints on energy also imposed by the necessary positivity of
|⟨𝑥 𝑗 |𝐸⟩|2 ≥ 0 as a probability. Specifically, we will attempt to show this for a digitized harmonic
and anharmonic oscillator with 𝑛𝑚𝑎𝑥 = 4.

4.2 Digitized Results

When producing the bootstrap for each case, instead of trialing over sample ⟨𝑥2⟩ values
randomly, utilizing a position operator built from raising and lowering operators, we can provide
⟨𝑥2⟩ in terms of energy to be used directly, that will differ with the Hamiltonian.

Resultingly, the digitized harmonic oscillator yields:

Figure 3: Graph of energy constraints imposed by eigenvalues (orange and blue) and those imposed by Hermite polynomials (red and
green)

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
6
3

Bootstrap methods for digitized scalar field theory Zane Ozzello

It can be seen on the x-axis we get matching intercepts for results from our probability and from
our eigenvalue constraints at the same spots, yielding an area of possible values together. Energy
falls within the range 3−

√
6

2 to 3+
√

6
2 . Here we have:

⟨𝑥2⟩ = 𝐸 − 2|⟨𝐸 |3⟩|2 (13)

With the inner product set to 0 for convenience, but if included would just provide a shift of the
graph.

When looking at the digitized anharmonic oscillator we get:

⟨𝑥2⟩ = 1
6𝜆 + 1

(𝐸 − 2|⟨𝐸 |3⟩|2 + 3𝜆
√

6⟨𝐸 |1⟩⟨3|𝐸⟩ + 9𝜆 |⟨𝐸 |2⟩|2 + 9𝜆 |⟨𝐸 |3⟩|2) (14)

One can see how with𝜆 = 0 this returns the harmonic case. Which gives for the digitized anharmonic
oscillator:

Figure 4: Left figure is 𝜆 = 1
2 and right is 𝜆 = 1 Graph of energy constraints imposed by eigenvalues (orange and blue) and those

imposed by Hermite polynomials (red and green)

Noticing, these graphs are not exceptionally different from the harmonic case. The anharmonic
case just introduces a scaling difference with a coordinate shift of the same graph. For 𝜆 = 1

2 and
𝜆 = 1 they would respectively have energy fall in ranges of 6 − 2

√
6 to 6 + 2

√
6 for the former and

21−7
√

6
2 to 21+7

√
6

2 for the latter.

5. Future Work

We have applied the quantum mechanical bootstrap to different oscillator models. We have
shown that with minimal adjustments, the bootstrap can be applied to the digitized case, showing
for the harmonic and anharmonic case for 𝑛𝑚𝑎𝑥 = 4. Going forward, we want to see how easily
we can apply this method to larger 𝑛𝑚𝑎𝑥 , with beginning to look at 𝑛𝑚𝑎𝑥 = 8. We also want to
investigate how the bootstrap works with coupled oscillators.
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