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The Bielefeld Parma Collaboration has in recent years put forward a method to probe finite density
QCD by the detection of Lee-Yang singularities. The location of the latter is obtained by multi-
point Padè approximants, which are in turn calculated matching Taylor series results obtained from
Monte Carlo computations at (a variety of values of) imaginary baryonic chemical potential. The
method has been successfully applied to probe the Roberge Weiss phase transition and preliminary,
interesting results are showing up in the vicinity of a possible QCD critical endpoint candidate.
In this talk we will be concerned with a couple of significant aspects in view of a more powerful
application of the method. First, we will discuss the possibility of detecting finite size scaling of
Lee-Yang/Fisher singularities in finite density (lattice) QCD. Second, we will briefly mention our
attempts at detecting both singularities in the complex chemical potential plane and singularities in
the complex temperature plane. The former are obtained from rational approximations which are
functions of the chemical potential at given values of the temperature; the latter are obtained from
rational approximations which are functions of the temperature at given values of the chemical
potential.
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1. Our workhorse: multi-point Padè

Since a few years [1] the Bielefeld Parma collaboration has started a project aiming to probe
the QCD phase diagram by reconstructing the singularity structure of the theory in the complex
chemical potential plane. The method is based on the approximation of the relevant observables by
a rational function via the so-called multi-point Padè method.
The method works as follows. Suppose we know a few Taylor expansion coefficients of a given
function 𝑓 (𝑧) at different points

. . . , 𝑓 (𝑧𝑘), 𝑓 ′(𝑧𝑘), . . . , 𝑓 (𝑠−1) (𝑧𝑘), . . . 𝑘 = 1 . . . 𝑁 (1)

The basic idea of our multi-point Padé approach is to approximate (interpolate, actually) 𝑓 (𝑧) by
a convenient function. While a polynomial approximation would be a natural choice with many
respects, that is not what we are interested in, because it would leave us with no singularity pattern
for |𝑧 | ≠ ∞. Since we want instead to guess the singularity structure of our 𝑓 (𝑧), we consider the
rational function 𝑅𝑚

𝑛 (𝑧)

𝑅𝑚
𝑛 (𝑧) = 𝑃𝑚(𝑧)

�̃�𝑛 (𝑧)
=

𝑃𝑚(𝑧)
1 +𝑄𝑛 (𝑧) =

𝑚∑
𝑖=0

𝑎𝑖 𝑧
𝑖

1 +
𝑛∑
𝑗=1

𝑏 𝑗 𝑧 𝑗
(2)

with 𝑚 and 𝑛 being the degrees of the polynomials at numerator and denominator respectively. We
make a couple of preliminary observations which will be useful in the following. First of all, writing
�̃�𝑛 (𝑧) = 1 +𝑄𝑛 (𝑧) ensures that the rational function depends essentially on 𝑛 + 𝑚 + 1 parameters.
Having said that, we stress that a priori we should naturally demand that there is no point 𝑧0 such
that 𝑃𝑚(𝑧0) = �̃�𝑛 (𝑧0) = 0. The latter request seems indeed natural: we should in principle exclude
any (common) zero of both numerator and denominator. Strictly speaking, if this were not the case,
we would have rather essentially defined the rational function 𝑅𝑚′

𝑛′ (𝑧) with 𝑛 = 𝑛′ + 𝑙 and 𝑚 = 𝑚′ + 𝑙
for some integer 𝑙 > 0. We will nevertheless not exclude the possibility of common zeros, and
we will instead live with that: as will see, the fact that common zeros do show up will be a very
frequent event. We also make it clear that the number of coefficients we know can be different at
different points. For the sake of simplicity we will however assume that 𝑓 (𝑠−1) is the highest order
derivative which is known at each point (together with all derivatives of degree 0 ≤ 𝑔 < 𝑠 − 1).
Now remember: we want 𝑅𝑚

𝑛 (𝑧) to be a good interpolation for 𝑓 (𝑧). It is quite obvious that we
want the rational function to account for all the information available from (1). In order for this to
hold true, the somehow simplest case is that of having 𝑛 + 𝑚 + 1 = 𝑁𝑠. If that is the case, we will
have (

𝑑

𝑑𝑧

)𝑔
𝑅𝑚
𝑛 (𝑧) |𝑧=𝑧𝑘 = 𝑓 (𝑔) (𝑧𝑘)
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if we solve a system of equations, that is

...

𝑃𝑚(𝑧𝑘) − 𝑓 (𝑧𝑘)𝑄𝑛 (𝑧𝑘) = 𝑓 (𝑧𝑘)
𝑃′
𝑚(𝑧𝑘) − 𝑓 ′(𝑧𝑘)𝑄𝑛 (𝑧𝑘) − 𝑓 (𝑧𝑘)𝑄′

𝑛 (𝑧𝑘) = 𝑓 ′(𝑧𝑘)
...

𝑃 (𝑠−1)
𝑚 (𝑧𝑘) − 𝑓 (𝑠−1) (𝑧𝑘)𝑄𝑛 (𝑧𝑘) − . . . − 𝑓 (𝑧𝑘)𝑄 (𝑠−1)

𝑛 (𝑧𝑘)
= 𝑓 (𝑠−1) (𝑧𝑘)
...

(3)

This is our recipe: by solving this system of linear equations we determine the coefficients of the
polynomials 𝑃𝑚 and 𝑄𝑛. In order to estimate the coefficients of the rational functions we could
of course rely on different methods, all somehow related to the idea of minimizing a generalized
𝜒2, i.e. we could want to minimize the distance between the input Taylor coefficients and the
relevant rational function, weighted by the errors available on the input coefficients (the latter will
in the end come from Monte Carlo measurements). Notice that this is equivalent to solving an
over-constrained system (𝑛 + 𝑚 + 1 < 𝑁𝑠) in a least squares sense. This has been compared to the
linear solver method in [2].
Let us pause and inspect where we stand with respect to what we could be interested in. A first
observation is that the method leaves us with an interpolation of 𝑓 (𝑧), but of course we could
be interested in extrapolating, that is we could want to get some information on 𝑓 (𝑧) outside the
interval where we collected the information encoded in (1). This is actually the case for lattice
QCD. As a matter of fact, this was for us a strong motivation for introducing the method. This has
to do with the (in)famous sign problem: for real values of the baryonic chemical potential, lattice
QCD computations by Monte Carlo methods are hampered. The problem disappears for imaginary
values, and this has been largely relied on [3, 4]: one performs computations where the latter are
viable and then has to continue results for real (i.e. physical) values of the chemical potential. By
our method we can compute a rational approximation interpolating results obtained for imaginary
values of the baryonic chemical potential. The analytic continuation (that’s what we need) of the
results is in our approach a most natural one: simply compute our 𝑅𝑚

𝑛 (𝜇) for real 𝜇. Although
important, this is not the only thing we could be interested in. As already pointed out, having a
𝑅𝑚
𝑛 (𝑧) as an interpolation for the function 𝑓 (𝑧) enables us to guess the singularity structure of 𝑓 (𝑧):

simply look at the poles of the rational function. Actually, in the following this is what we are
interested in.

2. The best case playground for the method: 2D Ising model

In [2] we applied for the first time the method to lattice QCD. Namely, we were able to probe
the Roberge Weiss transition. By studying the number density at various temperatures and for
different imaginary values of �̂�𝐵 = 𝜇𝐵

𝑇 (𝜇𝐵 being the baryonic chemical potential), for a given value
of the temperature one should recognise a phase transition taking place at �̂�𝐵 = 𝑖𝜋. By studying our

3
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rational approximants, we were able to inspect singularities at Im�̂�𝐵 = 𝜋. At different values of the
temperature, the singularities take place closer and closer to the imaginary axis as temperature gets
closer and closer to 𝑇𝑅𝑊 , the critical temperature of the Roberge Weiss transition. At each temper-
ature we registered Re�̂�𝐵0, to be read as the real part of the singularity with minimum real part.
This quantity was shown to verify the expected scaling in 𝑇 as the temperature was approaching
𝑇𝑅𝑊 . An updated account on our study of the Roberge Weiss transition has been presented in [5].
The singularities we have been talking about are known as Lee-Yang singularities, simply related
to zeros of the partition function of the theory.
While the result in [2] was a success, we can notice that our result was obtained for a single scaling
variable. Given our setting, there are in principle finite size errors in the procedure, which appeared
to be quite well under control. One would nevertheless like to apply the method in a cleaner setting,
in particular having the finite size effects acting as main characters and not as minor ones.

This is what we did in [6, 7], to which we refer the interested reader for more details: in the
following we will mainly sketch the conceptual path, to set the stage for the experiments in lattice
QCD. The theory which we probed is the well-known Ising model in 𝐷 = 2

𝐻 = −𝐽
∑︁
<𝑖, 𝑗>

𝜎𝑖𝜎𝑗 − ℎ
∑︁
𝑖

𝜎𝑖 (𝜎𝑖 = ±1) (4)

We were able to probe both the thermal singularities, related to the so-called Fisher zeros and the
magnetic singularities, related to the so-called Lee-Yang zeros. Roughly speaking, Fisher zeros are
values of 𝛽 at which the partition function at ℎ = 0 is zero, while Lee-Yang zeros are values of ℎ at
which the partition function at 𝛽 = 𝛽𝑐 is zero, 𝛽𝑐 being singled out by studying Fisher zeros. All
this is associated to the phase transition taking place (at the critical temperature, i.e. at 𝛽 = 𝛽𝑐) at
ℎ = 0 and separating the paramagnetic phase from the ferromagnetic one. Here we recap what is
going on with Lee-Yang zeros. For the case at hand, the 𝑓 (𝑧) of (1) is the magnetization 𝑚 (𝐿) (ℎ),
which is computed at various values of the lattice size 𝐿 as a function of the magnetic field ℎ, at
𝛽 = 𝛽𝑐. The rational function in (2) now reads 𝑅𝑚(𝐿)

𝑛 (ℎ). All in all, we can recap

𝑓 (𝑧) → 𝑚 (𝐿) (ℎ) 𝑅𝑚
𝑛 (𝑧) → 𝑅𝑚(𝐿)

𝑛 (ℎ)

The dependence on the lattice size 𝐿 here is crucial. We first of all compute the magnetization
𝑚 (𝐿) (ℎ) at 𝛽 = 𝛽𝑐 and various values of external magnetic field ℎ and lattice size 𝐿. At each
value of 𝐿, these results are interpolated by the 𝑅𝑚(𝐿)

𝑛 (ℎ), which display singularities which are the
candidate Lee-Yang zeros ℎ (𝐿)0 , i.e. the singularity of the rational approximant for the magnetisation
which is the closest to the real axis. As a matter of fact, ℎ (𝐿)0 always sits at Re(ℎ (𝐿)0 ) = 0, but with
an imaginary part Im(ℎ (𝐿)0 ) scaling in 𝐿 as

Im(ℎ (𝐿)0 ) ∼ 𝐿D (5)

D being a combination of critical exponents of the 2D Ising model reading D = 1
8 − 2. Fig. 1

displays how our determinations of Im(ℎ (𝐿)0 ) indeed turn out to get closer to the real axis as 𝐿

increases. Notice that a few zeros of the denominator are canceled by corresponding zeros of the
numerator. These are not genuine pieces of information: actually their location vary if we vary e.g.

4
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Multi-point Padè for the study of phase transitions Francesco Di Renzo

• In the left panel we display the scaling in 1/! of Im(V0). Errors are computed by varying
results with respect to statistical errors for the cumulant and functional form for the rational
approximant. As one can see, the value of the relevant critical exponent a = 1 is got with
fairly good accuracy (1.03(3)).

• Once a = 1 has been recognised, we can fit the scaling of the real part Re(V0) (right panel),
thus finding the value of the critical inverse temperature. We get the very accurate result
V2 = 0.4405(5).

Once the critical inverse temperature is known, one can sit on top of it and study the scaling in !

of Im(⌘0), ⌘0 being the Lee Yang zero, that is the closest singularity of a magnetic cumulant to
the real axis. Explicitly, our program again entails four steps: (1) we compute the = = 1 magnetic
cumulant (i.e. the magnetisation) at V = V2 and various values of external magnetic field ⌘ and
lattice size !; (2) for each ! we compute the rational approximant '<

= (⌘) for the magnetisation by
our multi-point Padè method; (3) at each ! we find the Lee Yang zero ⌘0, which is the singularity
of the rational approximant for the magnetisation which is the closest to the real axis; (4) we study
the finite size scaling of the values of Im(⌘0) (as we will see, ⌘0 always sits at Re(⌘0) = 0).
Before we inspect this scaling behaviour, it is useful to have a closer look at the singularity pattern

in the complex ⌘ plane at given values of !. In Fig 4 we depict the zeros of the numerator (blue
crosses) and of the denominator (red circles) of our '<

= (⌘) at di�erent values of the lattice size !,
i.e. ! = 15 (left panel) and ! = 30 (right panel). We can easily make a couple of key observations.

• A few zeros of the denominator are canceled by corresponding zeros of the numerator. These
are not genuine pieces of information: actually their location vary when varying e.g. the order
of the Padé approximant [<, =]. On the other hand, genuine pieces of information (i.e. actual
zeros and poles) stay constant to a very good precision. Notice that this is the explanation for
the small spikes in Fig. 2: they are simply the shadow of cancellations which are indeed very
good, but not good enough to be invisible when plotting the rational approximant.
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Figure 4: (Left panel) Zeros of the numerator (blue crosses) and of the denominator (red circles) of the
rational approximant '<

= (⌘) for the magnetisation on ! = 15 (left panel) and ! = 30 (right panel). We
highlight the closest singularity to the real axis, which is getting closer to the real axis itself as ! gets larger,
with real parts being Re(⌘0) = 0. Plots are in the complex ⌘ plane.

7

Figure 1: In the left panel we plot as blue crosses the zeros of the numerator of the rational approximant
𝑅𝑚(𝐿)
𝑛 (ℎ) for the magnetisation on 𝐿 = 15; red circles are the zeros of the denominator. In the right panel

we plot the same for 𝐿 = 30. In both cases we highlight the closest singularity to the real axis. Plots are in
the complex ℎ plane.

the order of the Padé approximant [𝑚, 𝑛]. This is a consequence of numerical errors in our data.
But the key point is that genuine pieces of information (i.e. actual zeros and poles) stay constant to
a very good precision. In Fig. 2 we depict the scaling of Im(ℎ (𝐿)0 ): to guide the eye, the horizontal
axis is 𝐿 1

8 −2 (i.e. the theoretically expected power of 𝐿), but the value we got (1.88) is indeed quite
accurate. All in all, the method is working beautifully.
Of course, we were not at all the first to study phase transitions by Fisher/Lee-Yang zeros. For
example, our method can be compared to [8]: the good piece of information is that our method is
competitive.

0 2 4 6 8 10 12 14 16 18

L1/8-2 10-3

0

0.01

0.02

0.03

0.04

0.05

0.06

Im
(h
0)

1.880(16)

Figure 2: As got from the rational approximants 𝑅𝑚(𝐿)
𝑛 (ℎ), we plot the finite size scaling of the imaginary

part of the singularity which is the closest to the real axis, Im(ℎ (𝐿)0 ). As expected, the phase transition
appears to take place at ℎ = 0.
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3. Can we do the same for Lattice QCD?

The obvious question is: can we repeat the procedure for QCD? Now that we have established
a dictionary, what to do is pretty simple to describe

𝑚 (𝐿) (ℎ) → 𝜒𝐵(𝐿)
1 ( �̂�𝐵) = 𝜕

𝜕�̂�𝐵

ln 𝑍

𝑉𝑇3 𝑅𝑚(𝐿)
𝑛 (ℎ) → 𝑅𝑚(𝐿)

𝑛 ( �̂�𝐵) (6)

where we have adopted for the number density the notation is terms of its definition as a suscep-
tibility (𝜒𝐵

1 ). All the measurements are here taken at 𝑇 = 𝑇𝑅𝑊 ∼ 200𝑀𝑒𝑉 on lattices whose
sizes are fixed by the spatial volume (𝑎𝑁𝑠)3 (we adhere to the usual notation of finite temperature
QCD for the spatial size, i.e. 𝐿 = 𝑎𝑁𝑠, where 𝑎 is the lattice spacing). We notice that our lattice
regularization is a coarse one, given the value 𝑁𝑇 = 4 for the (inverse) temperature in units of the
lattice spacing. As for spatial sizes, these were dictated by our choice 𝑁𝑠 = 12, 16, 20, 24.

Figure 3: In the complex-�̂�𝐵 plane, we plot as blue crosses the zeros of the numerator of the rational
approximant 𝑅𝑚(𝐿)

𝑛 ( �̂�𝐵) for the number density of QCD computed at 𝑇 = 𝑇𝑅𝑊 ∼ 200𝑀𝑒𝑉 ; red circles are
the zeros of the denominator. The various panels are for different values of 𝐿 = 𝑎𝑁𝑠 . As expected, the
singularities which are the closest to the imaginary axis get closer and closer to the expected Roberge Weiss
transition point, i.e. �̂�𝐵 = 𝑖𝜋.

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
6
9

Detecting Lee-Yang/Fisher singularities by multi-point Padè Francesco Di Renzo

Fig. 3 depicts the singularities which we find for the rational approximation of our observable
(the plot is in the complex-�̂�𝐵 plane). In particular, one can inspect the location of Re(𝜇 (𝐿)

𝐵0 ), which
is the real part of the singularity that at a given value of 𝐿 has real part that is the closest to zero.
Notice that, as for imaginary parts, we always find that they sit at 𝜋, that is to say that Im(𝜇 (𝐿)

𝐵0 ) = 𝜋.
As 𝐿 = 𝑎𝑁𝑆 gets larger and larger, Re(𝜇 (𝐿)

𝐵0 ) gets closer and closer to zero: this means that the
method is doing a good job, at least at a qualitative level. To make all this quantitative, we have (as
in the case of the Ising model) to look at the scaling with the lattice size 𝐿. Also in this case we
should find a power law

Re(𝜇 (𝐿)
𝐵0 ) ∼ 𝐿D′

(7)

with D′ = 2.4818 . . ., once again fixed by a combination of relevant critical exponents. As seen
in Fig. 4, our analysis does not work that badly. The power is very close to the exact one, with
a reasonable value for the 𝜒2. Error-bars are quite important (and, by the way, they look quite
funny in the figure, due to the log-log plot), and thus we can conclude that, while the picture is
making sense, as in the case of the Ising model, we need to refine the statistics and collect more
measurements in order to fully trust the procedure as effective.

4. Outlook

We reported on a first attempt at the study of finite size scaling in the study of Lee-Yang zeros
in QCD. This is not the only new application of the multi-point Padè method we are developing.

Figure 4: For the rational approximants 𝑅𝑚(𝐿)
𝑛 ( �̂�𝐵), we plot the real part of the singularity which is the

closest to the imaginary axis, Re( �̂�𝐵0) (vertical axis) versus 𝐿−1 ∼ 𝑁−1
𝑆 (horizontal axis). Notice how the

error-bars are deformed in the log-log plot. The slope of the (finite size scaling) curve is very close to the
expected one (but we are living with quite sizeable errors).

7
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One can actually study rational approximations of the form 𝑅𝑚
𝑛 (𝑇 ; �̂�𝐵). Here the notation explicitly

accounts for the measurements being taken at different values of the temperature 𝑇 for fixed values
of �̂�𝐵. The approach is like that of [2], i.e. in terms of a single scaling variable, but this time
singularities show up in the complex-T plane. While we presented very preliminary results at this
year conference, we are looking forward to reporting on a more precise analysis in a not that long
time. In a quite near future, we hope we will also be able to confirm preliminary, interesting results
showing up in the vicinity of a possible QCD critical endpoint candidate [9].
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