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We study the (2+1)-dimensional Gross-Neveu model at non-zero chemical potential and subjected
to a homogeneous background magnetic field. We do so both analytically, in the limit of an infinite
number of fermion flavors in which mean-field approaches become exact, as well as on the lattice
for a single flavor. The rich and exotic phase structure observed in the mean-field limit is found to
be destroyed when strong quantum fluctuations are present in the system. Instead, in the phase of
spontaneously broken chiral symmetry the magnetic field enhances this breaking for all choices of
parameters. As a byproduct, we find indications for a first-order phase transition in the chemical
potential for vanishing magnetic field but also provide hints that this could rather be a finite-size
than a finite-flavor-number effect.
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Magnetized GN model at finite 𝜇 Michael Mandl

1. Introduction

The study of strongly-interacting matter under extreme conditions has widespread applications,
ranging from the description of heavy-ion collisions or compact stellar objects to models of the early
universe. In this context, ‘extreme conditions’ refers to exceedingly high temperatures or densities,
strong magnetic fields and combinations thereof. The strong interactions are described by the theory
of Quantum Chromodynamics (QCD), whose behavior at zero and non-zero temperature and within
background magnetic fields is well understood by now, owing to extensive numerical studies in the
framework of lattice quantum field theory [1]. However, little is known about the finite-density
regime of QCD due to a strong complex-action problem preventing the straightforward application
of conventional lattice methods based on importance sampling.

In order to nonetheless gain insight into the behavior of strongly-interacting matter at finite
density, one commonly reverts to the study of effective models expected to reproduce QCD phe-
nomenology within their range of validity. One particular class of such model theories is constituted
by four-Fermi theories, i.e., models of relativistic fermions with local four-point self-interactions.
Apart from various applications in condensed-matter physics (see, e.g., [2]), they have contributed
substantially to our understanding of strongly interacting matter at finite temperature and density
[3]. Moreover, they have been shown to reproduce the inverse magnetic catalysis phenomenon
observed in lattice simulations of QCD within background magnetic fields [1], provided that the
four-Fermi coupling runs appropriately with the magnetic field [4]. Most model approaches, how-
ever, employ the mean-field approximation, which, despite its success, is not guaranteed to describe
real physical systems faithfully due to the suppression of quantum fluctuations. In order to assess
the effect of said fluctuations, one may, e.g., perform lattice simulations beyond the mean-field limit
and this is, in fact, the approach we pursue in this work. Many comparable previous studies found
that mean-field approaches generally provide a solid understanding of the qualitative features of a
theory, with corrections arising only on a quantitative level when going beyond [5–7]. In this work,
however, we present a counter-example to this assertion.

2. The Gross-Neveu model

We study the simplest four-Fermi theory, the so-called Gross-Neveu model [8],

L = 𝜓̄(𝑥)
( /𝜕 + 𝜎(𝑥) + 𝜇𝛾0 + i𝑒 /𝐴(𝑥)

)
𝜓(𝑥) + 𝑁f

2𝑔2𝜎
2(𝑥) , (1)

where the auxiliary scalar field 𝜎(𝑥) was introduced in exchange for the scalar-scalar interaction
term

(
𝜓̄𝜓

)2 via a Hubbard-Stratonovich transformation as usual. In (1), 𝜓(𝑥) is used to denote
𝑁f flavors of massless fermion fields, 𝜇 is the fermion number chemical potential, 𝑒 denotes the
elementary electric charge, 𝐴𝜇 controls an external magnetic field and 𝑔2 denotes the four-Fermi
coupling. The Lagrangian (1) is invariant under discrete chiral transformations of the form

𝜓(𝑥) → i𝛾5𝜓(𝑥) , 𝜓̄(𝑥) → i𝜓̄(𝑥)𝛾5 , 𝜎(𝑥) → −𝜎(𝑥) , (2)

and this symmetry is broken by a fermionic mass term. A breaking pattern like this entails that one
may employ the chiral condensate ⟨𝜓̄𝜓⟩, which is related to the expectation value of 𝜎 via

⟨𝜓̄𝜓⟩ = i𝑁f

𝑔2 ⟨𝜎⟩ , (3)
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Figure 1: Phase diagrams in the mean-field limit at zero temperature. Left: 𝐿 = ∞. Right: 𝐵 = 0. The
scale 𝜎0 is set by the value of ⟨𝜎⟩ at vanishing 𝐵, 𝑇 , and 𝜇 and in an infinite volume.

as an order parameter for chiral symmetry breaking. Throughout, we shall work in 2+1 (Euclidean)
space-time dimensions and with four-component spinors. The magnetic field 𝐵 = 𝐹12 := 𝜕1𝐴2(𝑥) −
𝜕2𝐴1(𝑥) is chosen to be constant and homogeneous.

3. The large-𝑁f limit

A first approach to studying the Gross-Neveu and similar models is to let the number of
fermionic flavors tend to infinity, 𝑁f → ∞. In fact, in this limit the mean-field approximation
becomes exact and the problem of determining the phase structure in (𝐵,𝑇, 𝜇) space is reduced to
a minimization problem by means of a saddle point expansion terminated at the lowest order. More
concretely, if we assume the scalar field to be independent of space and time, 𝜎(𝑥) = 𝜎 = 𝑐𝑜𝑛𝑠𝑡.,
then ⟨𝜎⟩ is given by the minimum position of the effective potential

𝑉eff (𝜎) =
𝜎2

2𝑔2 − 1
𝑉

ln det
( /𝜕 + 𝜎 + 𝜇𝛾0 + i𝑒 /𝐴

)
, (4)

where 𝑉 = 𝛽𝐿2 denotes the space-time volume, 𝛽 = 1/𝑇 is the inverse temperature and 𝐿 denotes
the extent of space in each direction.

This effective potential can be computed in closed form, see, e.g., [9] and its minimization
allows for the study of the model’s phase structure. The situation at vanishing chemical potential
was treated exhaustively in [7], whereas we are concerned with non-zero 𝜇 but zero temperature
here. In the following, 𝑔2 is assumed to be larger than a critical value, in such a way that chiral
symmetry is spontaneously broken at vanishing 𝐵, 𝑇 , and 𝜇. We show the phase diagram of the
model in (𝐵, 𝜇)-space in the infinite-volume limit in Fig. 1 (left). One observes that for low 𝜇 the
magnetic field enhances chiral symmetry breaking, a phenomenon referred to as magnetic catalysis
[10]. At larger 𝜇, however, a small region emerges in which the magnetic field instead has the
opposite effect and one finds so-called inverse magnetic catalysis [11]. Perhaps most interestingly,
close to the region of inverse magnetic catalysis, the formation of Landau levels in the model gives
rise to a pattern of multiple (first-order) phase transitions in 𝜇 between the phase of broken chiral
symmetry and the symmetric phase. It is interesting to note that a non-zero magnetic field can
induce first-order transitions which are not present at 𝐵 = 0 in the infinite-volume limit.
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Figure 2: Constraint effective potential on an 83 lattice at 𝑇/𝜎0 ≈ 0.118 with 𝑎𝜎0 ≈ 1.063 (𝑎 denotes the
lattice spacing). Left: 𝐵 = 0. Right: 𝐵 ≠ 0 and 𝜇 close to the phase transition. The potentials are plotted in
arbitrary units and shifted vertically for visual clarity.

For 𝐿 < ∞, on the other hand, the discretization of spatial momenta also gives rise to a
fully discrete energy spectrum, in close analogy to the Landau quantization. This analogy can be
appreciated from Fig. 1 (right), where we plot the phase diagram in the (𝐿, 𝜇) plane for 𝐵 = 0.
Similar to the situation at non-zero magnetic field, one thus observes multiple phase transitions
which can be of first order and the same is also found for low non-zero temperatures [9]. Notice
that, despite the finite spatial volume, these transitions are still proper phase transitions since we
work in the large-𝑁f limit and 𝑁f and𝑉 enter the path integral in an analogous way. In what follows,
we study what happens to the mean-field phase structure presented in this section when considering
a finite number of fermion flavors, i.e., going beyond the mean-field limit.

4. Lattice results

In order to address this question, we study the model on the lattice; in particular, we perform
simulations, employing Neuberger’s overlap Dirac operator [12], at 𝑁f = 1 in order to deviate from
the large-𝑁f limit as much as possible. For details on our simulation setup, measured observables
and scale-setting, as well as for a list of all parameter values we have performed simulations for, we
refer to [9]. This reference also outlines how the complex-action problem arising in our simulations
is avoided.

We first consider the case of vanishing magnetic field but non-zero 𝜇, for which previous
lattice simulations employing staggered fermions have conjectured the existence of a first-order
phase transition at low non-zero temperatures [13]. This observation was later explained to be a
consequence of going beyond the mean-field limit [14]. However, given our remarks in the previous
section and the fact that simulations can be performed only in finite volumes, it is not entirely
clear what the true origin of this first-order phase transition is, since a similar phenomenon can
also be observed in the large-𝑁f limit on a finite volume. After all, one typically expects quantum
fluctuations to weaken phase transitions rather than strengthen them.

In order to study the possible existence of a first-order transition in the model at 𝐵 = 0 we
show in Fig. 2 (left) the (appropriately normalized) logarithm of the probability distribution of
𝜎̄ := 1

𝑉

∑
𝑥 𝜎(𝑥), corresponding to the (constraint) effective potential, for different values of 𝜇.
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Figure 3: (𝐵, 𝜇) phase diagram for increasing physical volume and fixed lattice spacing. Left: 83 lattice,
𝑎𝜎0 ≈ 1.063. Center: 123 lattice, 𝑎𝜎0 ≈ 1.004. Right: 163 lattice, 𝑎𝜎0 ≈ 0.984. The thick lines show a
rough estimate of the critical chemical potential.

As one can see, the effective potential has two degenerate minima at low 𝜇 but develops a third
one around 𝜇/𝜎0 ≈ 0.301, while for large enough 𝜇 it has only a single minimum at zero. This
behavior is reminiscent of the mean-field limit and could hint at a first-order transition. However,
since both 𝑁f and 𝑉 are small in our simulations, this finding is not fully conclusive. The situation
is somewhat different when considering non-zero magnetic fields, as seen in Fig. 2 (right), where
we plot the effective potential for various values of 𝐵 and for 𝜇 close to the phase transition. We no
longer see clear evidence for a third minimum in the potential, which rather suggests a second-order
phase transition in the thermodynamic limit.

Let us now study the phase structure of the model in (𝐵, 𝜇) space. The analog of Fig. 1 (left)
for 𝑁f = 1 is presented in Figs. 3 and 4; the former shows increasing volumes at fixed lattice spacing
𝑎, while the approach to the continuum limit at constant volume is depicted in the latter. For the
smaller lattices, where the data allowed for a rough estimate of the critical chemical potential 𝜇𝑐
of the transition, we have indicated the dependence of this estimate on 𝐵 as thick gray lines. One
observes that, apart from finite-size effects the magnetic field enhances chiral symmetry breaking
for all values of 𝜇 below the transition and the critical chemical potential increases with 𝐵. Thus, our
data are consistent with magnetic catalysis for all 𝜇 < 𝜇𝑐. Moreover, we do not observe any trace
of multiple phase transitions in 𝜇 for finite 𝐵. These findings are in stark contrast to the large-𝑁f
expectations and also contradict the analytical study [15] working at finite 𝑁f . We believe that this
discrepancy arises due to strong fluctuations of 𝜎(𝑥) present at 𝑁f = 1 but absent in the mean-field
limit and in [15]. Further investigations along this line of research are currently underway. It could,
however, also be possible that our current approach simply does not allow for a sufficiently fine
parameter scan with sufficiently high statistics to resolve these delicate features. Estimates on this
are presented in [9].

5. Summary & Outlook

We have investigated the Gross-Neveu model (1) in 2 + 1 dimensions, both analytically in the
limit of a large number of fermion flavors, as well as on the lattice using 𝑁f = 1 flavor of overlap
fermions. In the mean-field limit, we find a rich phase structure in the parameter space spanned
by the temperature, the chemical potential, a homogeneous background magnetic field, and the
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Figure 4: (𝐵, 𝜇) phase diagram for decreasing lattice spacing and fixed physical volume. Left: 83 lattice,
𝑎𝜎0 ≈ 0.995. Center: 123 lattice, 𝑎𝜎0 ≈ 0.691. Right: 163 lattice, 𝑎𝜎0 ≈ 0.451. The thick lines show a
rough estimate of the critical chemical potential.

spatial volume. In particular, at non-zero magnetic field this phase structure features both magnetic
catalysis and inverse magnetic catalysis, as well as multiple phase transition patterns. Our lattice
simulations, on the other hand, indicate that for 𝑁f = 1 the situation is drastically different and, in
fact, much simpler: We find only magnetic catalysis to be present for all chemical potentials below
some critical value, the latter increasing with 𝐵, and no evidence for multiple transitions. This
investigation thus provides a counter-example for the common lore that the large-𝑁f limit usually
serves as a reliable guiding principle for the study of the qualitative behavior of a four-Fermi theory.
It would be interesting to test this observation also in more realistic models of QCD, which up to
now have been studied mostly from the mean-field point of view.
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