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We determine the location of the critical point where the first-order deconfining transition in
the heavy-quark region turns into a crossover in finite-temperature and density lattice QCD with
2+1 flavors of Wilson quarks. Combining a hopping parameter expansion (HPE) of the quark
determinant with a reweighting method, we evaluate the chemical potential dependence of the
critical point. By systematically calculating the coefficients of the hopping parameter expansion
up to a high order of HPE at finite chemical potential, we find that the higher order terms are
strongly correlated with the Polyakov loop, which is the leading-order term, on each configuration.
Moreover, their complex phases themselves, which are important at finite density, are also found
to be strongly correlated with the complex phase of the Polyakov loop. Using this property, we
develop a method for estimating the critical point incorporating high-order terms from calculations
with only low-order terms. We report that the first-order phase transition region in the heavy-quark
region becomes narrower exponentially with increasing the chemical potential. Since the hopping
parameter of the critical point decreases exponentially as the density increases, the sign problem
does not become serious even when the density increases, and critical points can be evaluated up
to high densities.
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1. Introduction

The phase structure of QCD depends not only on temperature and chemical potential but also
on the quark mass. In 2+1 flavor QCD, there are first-order phase transition regions around the
heavy quark limit [1–5] and also near the massless point of 3 flavors. We have been investigating
the critical line at the boundary where the first-order phase transition ends in the heavy quark region
[1–4, 6, 7]. When quark masses are heavy, approximation by the hopping parameter expansion
(HPE) is useful. This approximation drastically reduces computational demands, and allows us to
use reweighting methods for quark masses, which is difficult in full QCD simulations.

In this report, we extend the study to the complex phase of the terms in the HPE at finite
chemical potential. We introduce the HPE in finite temperature/density lattice QCD in the next
section. We particularly discuss the effects of the chemical potential. In Sec. 3, we determine the
critical line when the complex phase is ignored, i.e., in the phase quenched QCD. Then, in Sec. 4,
we estimate the effect of the complex phase on the critical line and calculate the shift of the critical
line from the phase quenched case. Section 5 is devoted to a summary.

2. Hopping parameter expansion

We consider 𝑁f flavor QCD with the standard plaquette gauge action and the Wilson quark
action. The expectation value of an operator Ô is given by

〈Ô〉(𝛽,𝜅 ) =
1
𝑍

∫
D𝑈 Ô

𝑁f∏
𝑓 =1

det 𝑀 (𝜅 𝑓 ) 𝑒6𝛽𝑁site �̂�, 𝑍 =
∫

D𝑈

𝑁f∏
𝑓 =1

det 𝑀 (𝜅 𝑓 ) 𝑒6𝛽𝑁site �̂�, (1)

where 𝑁site = 𝑁3
𝑠 × 𝑁𝑡 is the number of sites, 𝑇 = 1/(𝑁𝑡𝑎) is the temperature, and 𝑎 is the lattice

spacing. The plaquette value is �̂�. The Wilson quark kernel 𝑀𝑥𝑦 is defined by

𝑀𝑥𝑦 (𝜅) = 𝛿𝑥𝑦 − 𝜅


3∑
𝑗=1

{
(1 − 𝛾 𝑗)𝑈𝑥, 𝑗 𝛿𝑦,𝑥+ 𝑗 + (1 + 𝛾 𝑗)𝑈†

𝑦, 𝑗 𝛿𝑦,𝑥− 𝑗

}
+(1 − 𝛾4)𝑈𝑥,4 𝑒𝜇𝑎 𝛿𝑦,𝑥+4̂ + (1 + 𝛾4)𝑈†

𝑦,4 𝑒−𝜇𝑎 𝛿𝑦,𝑥−4̂,
]

(2)

with the chemical potential 𝜇 and the hopping parameter 𝜅. The hopping parameter is approximately
proportional to the inverse quark mass. In the heavy quark region, we evaluate the quark determinant
by the HPE around 𝜅 = 0:

ln det 𝑀 (𝜅) = ln det 𝑀 (0) + 𝑁site

∞∑
𝑛=1

𝐷𝑛𝜅
𝑛, (3)

𝐷𝑛 =
1

𝑁site 𝑛!

[
𝜕𝑛 ln det 𝑀

𝜕𝜅𝑛

]
𝜅=0

=
(−1)𝑛+1

𝑁site 𝑛
tr
[(
𝜕𝑀

𝜕𝜅

)𝑛]
. (4)

The first term is ln det 𝑀 (0) = 0, and (𝜕𝑀/𝜕𝜅)𝑥𝑦 is the hopping term following 𝜅 in the right hand
side of Eq. (2). Nonzero contributions appear when the product of the hopping terms form closed
loops in the space-time. Therefore, the nonzero contributions to 𝐷𝑛 are given by 𝑛-step Wilson
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loops and Polyakov loops. The latter are closed by the boundary condition, where we impose the
anti-periodic boundary condition in the time direction for fermions.

Moreover, these 𝐷𝑛 are classified by the number of windings 𝑚 in the time direction:

𝐷𝑛 = �̂� (𝑛) +
∞∑

𝑚=1
�̂�+
𝑚(𝑁𝑡 , 𝑛)𝑒𝑚𝜇/𝑇 +

∞∑
𝑚=1

�̂�−
𝑚(𝑁𝑡 , 𝑛)𝑒−𝑚𝜇/𝑇

= �̂� (𝑛) +
∞∑

𝑚=1
2Re�̂�+

𝑚(𝑁𝑡 , 𝑛) cosh
(𝑚𝜇

𝑇

)
+ 𝑖

∞∑
𝑚=1

2Im�̂�+
𝑚(𝑁𝑡 , 𝑛) sinh

(𝑚𝜇

𝑇

)
. (5)

�̂� (𝑛) is the sum of Wilson-loop-type terms with winding number zero, and �̂�+
𝑚(𝑁𝑡 , 𝑛) is the sum

of Polyakov-loop-type terms with winding number 𝑚 in the positive direction. �̂�−
𝑚(𝑁𝑡 , 𝑛) is that

with winding number 𝑚 in the negative direction, and �̂�−
𝑚(𝑁𝑡 , 𝑛) = [�̂�+

𝑚(𝑁𝑡 , 𝑛)]∗. �̂� (𝑛) is nonzero
only if 𝑛 ≥ 4 and 𝑛 is even. When 𝑁𝑡 is an even number, �̂�+

𝑚(𝑁𝑡 , 𝑛) is nonzero only if 𝑛 is an even
number, and the lowest order term is �̂�+

𝑚(𝑁𝑡 , 𝑚𝑁𝑡 ), i.e., �̂�+
𝑚(𝑁𝑡 , 𝑛) is nonzero when 𝑛 ≥ 𝑚𝑁𝑡 .

These expansion coefficients have been calculated on configurations generated near the phase
transition point in Ref. [6] and found to have the following properties: (1) �̂� (𝑛) mainly effect
to shift the gauge coupling 𝛽, and have almost no effects in the determination of the critical 𝜅.
(2) �̂�𝑚(𝑁𝑡 , 𝑛) for 𝑚 ≥ 2 are much smaller than �̂�1(𝑁𝑡 , 𝑛). (3) �̂� (𝑁𝑡 , 𝑛) is strongly correlated with
ReΩ̂ on each configuration, i.e.,

�̂� (𝑁𝑡 , 𝑛) ≈ 𝐿0(𝑁𝑡 , 𝑛)𝑐𝑛ReΩ̂, (6)

where �̂� (𝑁𝑡 , 𝑛) =
∑

𝑚 [�̂�+
𝑚(𝑁𝑡 , 𝑛) + �̂�−

𝑚(𝑁𝑡 , 𝑛)] = 2
∑

𝑚 Re�̂�+
𝑚(𝑁𝑡 , 𝑛), 𝑐𝑛 is a proportionality

constant, and 𝐿0(𝑁𝑡 , 𝑛) is �̂� (𝑁𝑡 , 𝑛) when all link fields are set to 𝑈𝑥,𝜇 = 1, which is given in Table
2 of Ref. [6]. Using these properties, we define an effective action:

𝑆eff = −6𝑁site𝛽
∗�̂� − 𝑁3

𝑠𝜆
∗ReΩ̂, where 𝜆∗ = 𝑁𝑡

𝑁f∑
𝑓 =1

𝑛max∑
𝑛=𝑁𝑡

𝐿0(𝑁𝑡 , 𝑛) cosh
( 𝜇
𝑇

)
𝜅𝑛𝑓 𝑐𝑛, (7)

with which the partition function is given by 𝑍 =
∫
D𝑈 𝑒−𝑆eff cos 𝜃. Here, 𝜃 is the complex phase

of the quark determinant, which is nonvanishing at finite 𝜇 and will be discussed in Sec. 4. �̂� (𝑛)
effectively shift 𝛽 from the original 𝛽 to 𝛽∗ = 𝛽 + (1/6)𝑊0(4)∑ 𝑓 𝜅

4
𝑓 + · · · [6]. However, in the

determination of the critical 𝜅, 𝛽 is adjusted to the phase transition point for each 𝜅, so we do not
discuss the shift of 𝛽 in this report. We plot ReΩ̂ and �̂� (𝑁𝑡 , 𝑛)/𝐿0(𝑁𝑡 , 𝑛) on each configuration
in the left panel of Fig. 1. The configurations are generated at 𝛽∗ = 5.8905 and 𝜆∗ = 0.0012 on
a 363 × 6 lattice. This figure shows that the data are linearly distributed and that Eq. (6) is well
satisfied, at least up to the order 𝑛 = 22. The slopes define 𝑐𝑛 and their values turned out to have
only vary weak dependences on 𝛽∗ and 𝜆∗. When the approximation of Eq. (7) is valid with a
finite 𝑛max, the computational cost can be drastically reduced, since the calculation of det 𝑀 is not
required in the simulation.

3. Critical line for phase quenched QCD

We performed Monte Carlo simulation using the action 𝑆eff on 𝑁𝑡 = 4 and 6 lattices [4, 7].
At the transition point 𝛽c for each 𝜅, we determined the critical point 𝜅c where the order of the
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Figure 1: Left: Correlation between �̂� (𝑁𝑡 , 𝑛)/𝐿0 (𝑁𝑡 , 𝑛) and ReΩ̂ for 𝑁𝑡 = 6. The straight lines are the fit
functions. Right: The critical 𝜅 of 2+1 flavor QCD calculated with various 𝑛max for 𝑁𝑡 = 6.

phase transition changes from first-order to crossover. We generated configurations with 𝑆eff and
calculated the operators �̂� (𝑁𝑡 , 𝑁𝑡 ) and �̂� (𝑁𝑡 , 𝑁𝑡+2). We corrected the measurements to be accurate
up to the next leading order (NLO) of HPE by taking the effects of �̂� (𝑁𝑡 , 𝑛) up to 𝑛 = 𝑁𝑡 + 2 with
the reweighting method. Performing a scaling analysis of the order parameter ReΩ̂, we determined
the critical point 𝜅c,NLO. The results for 𝑁f = 2 are 𝜅c,NLO = 0.0602(4) at 𝑁𝑡 = 4 [4] and
𝜅c,NLO = 0.09003(19) at 𝑁𝑡 = 6 [7].

When we adopt the effective theory of Eq. (7), the critical point at 𝜇 = 0 and that at finite 𝜇

in the phase quenched QCD (i.e., ignoring the complex phase of det 𝑀) are dependent only on the
parameters 𝛽∗ and 𝜆∗. The dependence on the number of flavors are inherent in these parameters
through explicit relations by the HPE. Therefore, when the critical point for 𝑁f = 2 is obtained,
we can determine it for any 𝑁f with no new simulations. From 𝜅c,NLO of 𝑁f = 2, the critical 𝜆∗ is
𝜆∗𝑐 = 2𝑁𝑡 [𝐿0(𝑁𝑡 , 𝑁𝑡 )𝜅𝑁𝑡

c,NLO + 𝐿0(𝑁𝑡 , 𝑁𝑡 + 2)𝜅𝑁𝑡+2
c,NLO𝑐𝑁𝑡+2]. For 𝑁f = 2 + 1, denoting the hopping

parameter for the up and down quarks as 𝜅ud and that for the strange quark as 𝜅s, the critical line in
the (𝜅ud, 𝜅s) plane is obtained by finding (𝜅c,ud, 𝜅c,s) that satisfies the following equation :

2
𝑛max∑
𝑛=𝑁𝑡

𝐿0(𝑁𝑡 , 𝑛) cosh
( 𝜇
𝑇

)
𝑐𝑛𝜅

𝑛
c,ud +

𝑛max∑
𝑛=𝑁𝑡

𝐿0(𝑁𝑡 , 𝑛) cosh
( 𝜇
𝑇

)
𝑐𝑛𝜅

𝑛
c,s =

𝜆∗𝑐
𝑁𝑡

. (8)

The critical lines at 𝜇 = 0 for 𝑁𝑡 = 6 calculated with 𝑛max = 6–22 are shown in the right panel
of Fig. 1. The region inside the critical line is the first-order phase transition region. The critical
line converges well when 𝑛max >∼ 10. We also plot the critical lines of 𝑁f = 2 + 1 phase quenched
QCD at each 𝜇/𝑇 calculated with 𝑛max = 22 in Fig. 2 (left). This figure shows that the first-order
phase transition region becomes exponentially narrower as 𝜇 increases.

4. Complex phase of the quark determinant

Next, we study the magnitude of the complex phase of det 𝑀 on the critical point and calculate
the shift of the critical point due to the complex phase. The complex phase comes from the terms
of 2Im�̂�+

𝑚(𝑁𝑡 , 𝑛) in Eq. (5). We compute �̂�+
𝑚(𝑁𝑡 , 𝑛) on the configurations of 𝑁𝑡 = 6 used in Fig. 1

(left). In order to calculate �̂�+
𝑚(𝑁𝑡 , 𝑛) and �̂�−

𝑚(𝑁𝑡 , 𝑛) separately for 𝑚 = 1 to 3, we impose eight
types of boundary conditions, 𝜓(®𝑥, 𝑁𝑡 + 1) = 𝑒2𝜋𝑖𝑘/8𝜓(®𝑥, 1), in the temporal direction with 𝑘 = 0
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Figure 2: Left: The critical lines of 2+1 flavor phase quenched finite density QCD at each 𝜇/𝑇 with
𝑛max = 22. Right: Correlation between Arg�̂�1 (𝑁𝑡 , 𝑛) and ArgΩ̂ for 𝑁𝑡 = 6.

to 7, and calculate the coefficients of the expansion using the noise method. We plot the values of
ArgΩ̂ = tan−1(ImΩ̂/ReΩ̂) and Arg�̂�+

1 (𝑁𝑡 , 𝑛) for each configuration in Fig. 2 (right). This figure
indicates that the arguments of those complex numbers are approximately identical.

Arg�̂�+
1 (𝑁𝑡 , 𝑛) ≈ ArgΩ̂, thus, 2Im�̂�+

1 (𝑁𝑡 , 𝑛) ≈ 𝐿0(𝑁𝑡 , 𝑛)𝑐𝑛ImΩ̂. (9)

Note that Eq. (9) is not satisfied for 𝑛 ≥ 20, since the sign of Re�̂�+
1 (6, 𝑛) changes to negative from

𝑛 = 20. Regarding the complex phase of �̂�+
2 (𝑁𝑡 , 𝑛) and �̂�+

3 (𝑁𝑡 , 𝑛), since their values themselves
are small, no clear signal could be obtained due to the error of the noise method. We ignore the
small contributions from �̂�+

2 and �̂�+
3 in the following. From Eq. (9), the complex phase of det 𝑀 for

degenerate 𝑁f flavors is given as follows, which is proportional to ImΩ̂:

𝜃 ≈ 𝑁f𝑁site

∞∑
𝑛=𝑁𝑡

𝐿0(𝑁𝑡 , 𝑛) sinh
( 𝜇
𝑇

)
𝜅𝑛𝑐𝑛ImΩ̂. (10)

In determining the critical point, we focus on the most important dynamical variable, the
Polyakov loop Ω̂. We define 𝑤(ReΩ̂) as the probability distribution function of ReΩ when we
generate configurations with the weight | det 𝑀 |𝑁f 𝑒6𝛽𝑁site𝑃, and 〈· · · 〉ReΩ̂=𝑥 as the expectation value
averaged only when ReΩ̂ is 𝑥. Then, we rewrite Eq. (1) as

〈O[ReΩ̂]〉 = 1
𝑍

∫
O[ReΩ̂]〈cos 𝜃〉ReΩ̂=𝑥𝑤(𝑥)𝑑𝑥, (11)

where O[ReΩ̂] is a physical observables in terms of ReΩ̂, such as the susceptibility and the Binder
cumulant of ReΩ̂. If the phase fluctuation is large, the sign problem occurs, i.e., 〈cos 𝜃〉ReΩ̂=𝑥
becomes zero within the error and the expectation value cannot be computed. Even in such cases,
it is possible to calculate the phase factor if the following cumulant expansion converges [2, 8]:
〈cos 𝜃〉 = exp[1−〈𝜃2〉𝑐/2+〈𝜃4〉𝑐/4!−〈𝜃6〉𝑐/6!+. . . ],where 〈𝜃𝑛〉𝑐 are cumulants, e.g., 〈𝜃2〉𝑐 = 〈𝜃2〉,
〈𝜃4〉𝑐 = 〈𝜃4〉 − 3〈𝜃2〉2, 〈𝜃6〉𝑐 = 〈𝜃6〉 − 15〈𝜃〉4〈𝜃2〉 + 30〈𝜃2〉3. Since the exponential function is
always positive, Eq. (11) is computable.

Using the critical value𝜆∗𝑐 of Eq. (8), the phase at the critical point is 𝜃 ≈ 𝑁3
𝑠𝜆

∗
𝑐 tanh (𝜇/𝑇) ImΩ̂.

Since tanh (𝜇/𝑇) < 1, when 𝜇/𝑇 is increased along the critical line, the phase fluctuation does not

5
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Figure 3: Left: 〈𝜃𝑛〉𝑐/(𝑛!𝑁3
𝑠𝜆

∗
𝑐) and ln〈cos 𝜃〉/(𝑁3

𝑠𝜆
∗
𝑐) classified by ReΩ̂ on a 903 × 6 lattice. Right: Spatial

volume dependence of ln〈cos 𝜃〉/(𝑁3
𝑠𝜆

∗
𝑐) for 𝑁𝑠 = 36 –90.

increase. We compute 〈cos 𝜃〉ReΩ̂=𝑥 for each value of ReΩ̂ on the configurations used in Ref. [7]. At
the same time, we calculate 〈𝜃𝑛〉𝑐 = [𝑁3

𝑠𝜆
∗
𝑐 tanh (𝜇/𝑇)]𝑛〈(ImΩ̂)𝑛〉𝑐, and investigate the convergence

properties of the cumulant expansion. The lattice size is 𝑁𝑡 = 6, 𝑁𝑠 = 36, 42, 48, 54, 60, 72, and 90.
Figure 3 (left) shows 〈𝜃2〉𝑐, 〈𝜃4〉𝑐, 〈𝜃6〉𝑐, and ln〈cos 𝜃〉 as functions of ReΩ̂ for the maximum phase
fluctuation case tanh (𝜇/𝑇) = 1 with 𝑁𝑠 = 90. When we classify by the values of ReΩ̂ and take the
average, we find that the expectation values are almost independent of the simulation parameters 𝛽∗

and 𝜆∗. Therefore, we take the average over 𝛽∗ and 𝜆∗ of the configurations. This figure indicates
that the second-order cumulant is dominant, i.e., ln〈cos 𝜃〉 ≈ 〈𝜃2〉𝑐/2. Although this cumulant
expansion generally may not converge for large 𝜃, this result is due to 𝜆∗𝑐 being sufficiently small.
Since the variance 〈𝜃2〉𝑐 is dominant, ln〈cos 𝜃〉 increases in proportion to the volume 𝑁3

𝑠 . In Fig. 3,
we plot ln〈cos 𝜃〉/(𝑁3

𝑠𝜆
∗
𝑐). The volume dependence is shown in Fig. 3 (right) for 𝑁𝑠 = 36 – 90.

They do not change much depending on the volume as expected.
To roughly evaluate the effect of complex phase around the critical point, we approximate

〈cos 𝜃〉 with the dashed line in Fig. 3 (right): ln〈cos 𝜃〉/(𝑁3
𝑠𝜆

∗
𝑐) ≈ 𝑑0 + 𝑑1ReΩ̂ with 𝑑0 = 0.00075

and 𝑑1 = −0.015 for the case of tanh (𝜇/𝑇) = 1. Then, we get

〈cos 𝜃〉ReΩ̂ | det 𝑀 |𝑁f ≈ exp
[
ln〈cos 𝜃〉ReΩ̂ + 𝑁3

𝑠𝜆
∗
𝑐ReΩ̂

]
≈ 𝑒𝑁

3
𝑠𝜆

∗
𝑐𝑑0 exp

[
𝑁3
𝑠𝜆

∗
𝑐 (1 − 𝑑1)ReΩ̂

]
(12)

Since 𝑒𝑁
3
𝑠𝜆

∗
𝑐𝑑0 does not affect the calculation of expectation values, multiplying 𝑤(𝑥) by 〈cos 𝜃〉

in Eq. (11) is the same as replacing 𝜆∗𝑐 of the phase quenched QCD with 𝜆∗𝑐 (1 − 𝑑1). Even when
tanh (𝜇/𝑇) = 1, 𝑑1 is about −0.015. If the effect of complex phase is added, 𝜆∗𝑐 ∼ 𝜅𝑁𝑡

𝑐 will be
reduced by at most 1.5%. Therefore, for 𝑁𝑡 = 6, the complex phase reduces 𝜅𝑐 by 0.25%. The
change from the phase quenched QCD is about the thickness of the lines in the left panel of Fig. 2.

5. Conclusions

We discussed how to efficiently determine the critical point of 2+1-flavor QCD in the heavy
quark region, including the case of finite density. When the quark determinant is expanded with the
hopping parameters 𝜅, a strong correlation between the expansion terms is observed. This leads us
to a useful approximation for Polyakov-loop-type terms: 2𝐿+(𝑁𝑡 , 𝑛) ≈ 𝐿0(𝑁𝑡 , 𝑛)𝑐𝑛Ω̂.

If we ignore the complex phase of the quark determinant, using this approximation, we obtain
an effective theory with the action of 𝑆eff = −6𝑁site𝛽

∗�̂� − 𝑁3
𝑠𝜆

∗ReΩ̂. We performed numerical
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simulations with this effective theory, and we determined the critical value of 𝜆∗ at which the phase
transition changes from first-order to crossover. Since there are only two parameters, 𝛽∗ and 𝜆∗,
once 𝜆∗𝑐 is determined at 𝜇 = 0, the critical line at finite 𝜇 in phase quenched QCD can be determined
for any 𝑁f including the case of 2 + 1 flavor QCD from the relation between 𝜆∗, 𝜅, and 𝜇.

Then, by estimating the magnitude of the complex phase of the quark determinant on the
critical line at finite 𝜇, we investigated how much the critical line shifts from that of phase quenched
QCD. We found that the shift of the critical line due to the complex phase is very small for 𝑁𝑡 = 6.
The first-order phase transition region becomes narrower exponentially as the chemical potential
increases. We are planning to calculate the critical line at smaller lattice spacings to determine the
critical quark mass in the continuum limit.
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