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1. Introduction

The phase diagram of lattice QCD with staggered fermions in the strong coupling regime has
been studied since decades for 𝑁 𝑓 = 1 in the 𝜇𝐵 − 𝑇 plane, both via mean field theory [1–3] based
on a 1/𝑑 expansion, and via Monte Carlo [4–6] based on the dual representation where the degrees
of freedom are color singlets, such as mesons and baryons. This dual representation is obtained by
integrating out the gauge fields and the Grassmann variables analytically, resulting in a much milder
finite density sign problem, as the sign only depends on the the geometry of baryonic world-lines.
This effective theory of lattice QCD can be very efficiently simulated by the worm algorithm [6]
and has been extended via the strong coupling expansion to non-zero values of the inverse gauge
coupling 𝛽 =

2𝑁𝑐

𝑔2 [7].
The drawback of the dual representation is that the sign problem is gradually re-introduced as
the lattice gets finer, hence the continuum limit is out of reach. The phase diagram in the strong
coupling regime features a critical endpoint at finite quark mass (tricritical in the chiral limit [8]),
which for moderate quark masses is located at values much larger than 𝜇𝐵,𝑐/𝑇𝑐 > 3 [9]. Whether
the chiral critical point still exists in the continuum limit is still unknown.

To vary the temperature continuously for 𝛽 = 0, it is necessary to use anisotropic lattices, with
𝛾 the bare anisotropy and 𝑎/𝑎𝑡 ≡ 𝜉 (𝛾), the physical anisotropy, such that the temperature in lattice
units is 𝑎𝑇 = 𝜉/𝑁𝜏 . We make use of the continuous Euclidean time limit, discussed in detail in
[10, 11], where 𝑎𝑡 → 0 and 𝑁𝑡 → ∞ are taken simultaneously, while the temperature remains
fixed. It is then possible to map the corresponding partition function to a Quantum Hamiltonian
formulation of lattice QCD, where the Euclidean time extend corresponds to the inverse of the
temperature T . This is computationally advantageous (using Quantum Monte Carlo instead the
discrete time Worm algorithm) and the Hamiltonian can also be used to construct a set of quantum
circuits that potentially can run on a quantum computer [12].

In this proceedings we report on the progress on the strong coupling phase diagram for 𝑁 𝑓 = 2:
the dual formulation is only sign-problem free in the continuous Euclidean time limit. Again, in this
limit, a quantum Hamiltonian formulation can be established, and simulated via Quantum Monte
Carlo, which has been outlined in [13]. In this study, we perform simulations at both non-zero
baryon and isospin density, and preliminary results on the phase diagram in the 𝜇𝐵 − 𝜇𝐼 − 𝑇 are
presented.

2. Hamiltonian formulation in the strong coupling limit for 𝑁 𝑓 = 2

While it is possible to derive a Hamiltonian formulation for gauge group SU(3) for any number
of flavors, for definiteness we will here restrict to the formulation for 𝑁 𝑓 = 2 in the chiral limit. It
should be noted that the number of hadronic states quickly grows with the number of flavors, the
dimension 𝑑 of the local Hilbert space Hh (=states per spatial site) is 𝑑 = 6 for 𝑁 𝑓 = 1, 𝑑 = 92 for
𝑁 𝑓 = 2 and 𝑑 = 2074 for 𝑁 𝑓 = 3. The full Hilbert space has thus dimension 𝐷 = 𝑑Ω with Ω = 𝑁3

𝑠

the spatial lattice volume. To refine the 92 states for 𝑁 𝑓 = 2 further, the one-link integral in the
presence of the 3 × 3-dimensional quark matrices M, M† (summed over flavors 𝑓 , 𝑔) has to be
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computed:

J (M,M†) =
∫

SU(3)

𝑑𝑈𝑒tr[𝑈M†+𝑈†M] =
2∑︁

𝐵=−2

∑︁
𝑛1,𝑛2,𝑛3

𝐶𝐵,𝑛1,𝑛2,𝑛3

𝐸𝐵

|𝐵|!

3∏
𝑖=1

𝑋
𝑛𝑖
𝑖

𝑛𝑖!
, 𝐸 =


detM 𝐵 > 0
1 𝐵 = 0
detM† 𝐵 < 0

(M)𝑖 𝑗 = �̄�
𝑓

𝑖
(𝑥)𝜒 𝑓

𝑖
(𝑦), (M†)𝑘𝑙 = 𝜒

𝑔

𝑘
(𝑦) �̄�𝑔

𝑙
(𝑥),

𝑋1 = 𝑀𝜋𝑈 + 𝑀𝜋𝐷 + 𝑀𝜋+ + 𝑀𝜋− , 𝐷2 = 𝑀𝜋𝑈𝑀𝜋𝐷 + 𝑀𝜋+𝑀𝜋− − 𝑀
(2)
𝜋+𝜋− ,𝑈𝐷

− 𝑀
(2)
𝑈𝐷,𝜋+𝜋−

𝑋2 = 𝑋2
1 − 𝐷2, 𝑋3 = 𝑋3

1 − 2𝑋1𝐷2,

detM = 𝐵𝑢𝑢𝑢 + 𝐵𝑢𝑢𝑑 + 𝐵𝑢𝑑𝑑 + 𝐵𝑑𝑑𝑑 , detM† = �̄�𝑢𝑢𝑢 + �̄�𝑢𝑢𝑑 + �̄�𝑢𝑑𝑑 + �̄�𝑑𝑑𝑑 (1)

where the invariants 𝑋𝑖 and coefficients 𝐶𝐵,𝑛1,𝑛2,𝑛3 were discussed in [13]. The 𝑀𝜋𝑖 are meson
hoppings (with 𝜋1 = 𝜋𝑈 , 𝜋2 = 𝜋𝐷 , 𝜋3 = 𝜋𝜋+ , 𝜋4 = 𝜋−) between nearest neighbor sites ⟨𝑥, 𝑦⟩, the
𝐵 𝑓 𝑔ℎ are baryons hopping from 𝑥 to 𝑦 and �̄� 𝑓 𝑔ℎ anti-baryons hopping from 𝑦 to 𝑥. After Grassmann
integration, negative weights occur within the invariant 𝑋2, 𝑋3 due to non-trivial Wick contractions
from 𝐷2. However, in the continuous time limit, only single meson exchange survives and in
particular the two-meson hoppings 𝑀

(2)
𝜋+𝜋− ,𝑈𝐷

, 𝑀 (2)
𝑈𝐷,𝜋+𝜋− can only appear in temporal direction.

After diagonalization of the transfer matrix only 92 distinct hadronic states survive, which all have
positive weight. Few of these states with the same quark content are two-fold degenerated, e.g. :

|𝜋2
1⟩ =

√
3|𝑀𝜋𝑈𝑀𝜋𝐷 ⟩ + |𝑀 (2)

𝑈𝐷,𝜋+𝜋− ⟩, |𝜋2
2⟩ =

√
3|𝑀𝜋+𝑀𝜋− ⟩ + |𝑀 (2)

𝜋+𝜋− ,𝑈𝐷
⟩ (2)

The 92 quantum states are classified by baryon number 𝐵, isospin number 𝐼 and mesons occupation
numberm. Since we are restricted to the chiral limit, a conservation law for each of the pion currents
of 𝜋𝑈 , 𝜋𝐷 , 𝜋+, 𝜋− holds. The role of spatial dimers at a bond location ⟨𝑥, 𝑦⟩ is to transfer pion
charge from one site 𝑥 to site 𝑦. Due to the even-odd ordering for staggered fermions, such dimers
can be consistently oriented from an emission site 𝑥 to an absorption site 𝑦. As a consequence,
if a occupation number m𝜋𝑖 (𝑥) is raised/lowered by a spatial dimer, then at the site connected by
the spatial meson hopping the meson occupation number m𝜋𝑖 (𝑦) is lowered/raised. With those
interactions derived from a high temperature series, the resulting partition sum can be expressed in
terms of a Hamiltonian that is composed of mesonic annihilation and creation operators 𝐽±

𝑄
:

𝑍CT(T , 𝜇B , 𝜇I ,Ω) = TrhΩ
[
𝑒 (Ĥ+N̂𝐵𝜇B+N̂𝐼𝜇I )/T

]
h ∈ Hh

Ĥ =
1
2

∑︁
⟨ ®𝑥, ®𝑦⟩

∑︁
𝜋𝑖∈{𝜋+, 𝜋− , 𝜋𝑈 , 𝜋𝐷 }

(
𝐽+
𝜋𝑖 , ®𝑥𝐽

−
𝜋𝑖 , ®𝑦 + 𝐽−

𝜋𝑖 , ®𝑥𝐽
+
𝜋𝑖 , ®𝑦

)
N̂𝐵 = diag(−2,−1, . . . 1, 2), N̂𝐼 = diag

(
0,−3

2
, . . .

3
2
, 0
)

(3)

where the matrices per spatial site, 𝐽+𝜋𝑖 , 𝐽
−
𝜋𝑖

, N̂𝐵 and N̂𝐼 are 92 × 92 - dimensional and the tensor
product over all spatial sites Ω is implied andHh is the 92-dimensional local Hilbert space. For the
transition h1 ↦→ h2, the matrix elements ⟨h1 |𝐽±𝜋𝑖 |h2⟩ are determined from Grassmann integration
and diagonalization, only those matrix elements are non-zero which are consistent with current
conservation of all 𝜋𝑖 .
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Since meson occupation numbers are not just bounded from below, but also from above due to
the Grassmannian nature of the underlying quarks, they fulfill an algebra that exhibits a particle-hole
symmetry. The matrices 𝐽±𝜋𝑖 hence span a 3

2 (2 − |𝐵|)-dimensional representation of a SU(2) Lie
algebra (for details see [13]). The representation for 𝐽±𝜋𝑈 and 𝐽±𝜋𝐷 is a direct product representation,
likewise 𝐽±

𝜋+ and 𝐽±𝜋− , and they fulfill the following identities:

[𝐽+𝜋𝑖 , 𝐽
−
𝜋𝑖
] = 2

𝑁𝑐

𝐽
(3)
𝜋𝑖 , [𝐽+𝜋𝑖 , 𝐽

−
𝜋 𝑗
] = 0 for 𝑖 ≠ 𝑗 . (4)

We label all 92 hadronic states of the local Hilbert space by their quark content in lexicographical
order: first ordered by 𝐵, 𝐼 and m and then by the sequence of occupations in �̄�, 𝑢, 𝑑, 𝑑. However,
the quark content is not sufficient to distinguish those 6 states that are two-fold degenerate: here we
introduce an additional index 𝑞 ∈ {0, 1}.

3. Quantum Monte Carlo Simulation and Results on the Phase Diagram

The 𝑁 𝑓 = 2 QMC algorithm is an extension of the 𝑁 𝑓 = 1 QMC and is also realized as
a continuous time version of the worm algorithm for strong coupling LQCD [10] and has been
described in [13]. The essential part is that for each of the the possible states {𝜋𝑈 , 𝜋𝐷 , 𝜋+, 𝜋−},
chosen randomly, 𝐽+𝜋𝑖 , 𝐽

−
𝜋𝑖

will be fixed during worm evolution until the worm closes. The worm
evolution in continuous Euclidean time is essentially a Poisson process. The baryon and isospin
densities can be measured on each configuration after each worm update. Also the chiral and pion
susceptibilities can be obtained from the integrated 2-point correlation functions measured during
worm evolution as so-called improved estimators.

The thermodynamic observables in the chiral limit we investigate are: the baryon density,
⟨𝑛𝐵⟩ = T

Ω
𝜕 ln 𝑍
𝜕𝜇𝐵

, which signals the nuclear transition at ⟨𝑛𝐵⟩ ≃ 1 for 𝑇 < 1.0, and is its Pauli
saturation at ⟨𝑛𝐵⟩ = 2; the isospin density ⟨𝑛𝐼⟩ = T

Ω
𝜕 ln 𝑍
𝜕𝜇𝐼

, which is only non-zero in the nuclear
transition region, and is expected to vanish in the chirally broken and Pauli saturated phase (this
is a lattice artifact at strong coupling that should not hold in the continuum limit); the interaction
energy: the density of spatial pion exchange ⟨∑𝜋𝑖

𝑀
spat
𝜋𝑖 ⟩/Ω, which is a measure for chiral symmetry

breaking.

At non-zero isopsin chemical potential 𝜇𝐼 , it is expected from mean field theory [3] that there
are two chiral transition at zero temperature: 𝜇

(𝑢)
𝐵,𝑐

where the chiral condensate ⟨�̄�𝑢⟩ vanishes, and
𝜇
(𝑑)
𝐵,𝑐

where ⟨𝑑𝑑⟩ vanishes, and 𝜇
(𝑑)
𝐵,𝑐

> 𝜇
(𝑢)
𝐵,𝑐

as the 𝜇𝐼 > 0 favors up quarks over down quarks.
From a scan in the parameters 𝜇𝐵, 𝜇𝐼 and T , the observables could be measured in vari-

ous planes as shown in Fig. 1. They indicate phase transitions between a vacuum and a finite
baryon/isopin density phase, and a chirally broken phase. A preliminary phase diagram that sum-
marizes the location of the transitions could be established ans is shown in Fig. 2. We find that
the nuclear transition 𝜇𝑐

𝐵
depends strongly on 𝜇𝐼 , but weakly on temperature T . The location of

the critical endpoint is not yet established: all data based on 83 volume, the order of the transition
requires finite size scaling using isospin and baryon susceptibilities, which we will carry out after

4
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𝜇𝐵-𝑇-plane for various isospin chemical potential 𝜇𝐼 :

Figure 1: Observables: baryon density (left), isospin density (center), interaction energy (right) in the
𝜇𝐵 − 𝜇𝐼 -plane for temperatures 𝑇 = 1.0 (first row) and 𝑇 = 0.5 (second row), and in the 𝜇𝐵 − 𝑇 plane for
isospin chemical potential 𝜇𝐼 = 1.0 (third row) and 𝜇𝐼 = 2.0 (last row).
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Figure 2: Preliminary result for the scans in 𝜇𝐵, 𝜇𝐼 and 𝑇 . Left: 𝜇𝐵 − 𝜇𝐼 plane for various temperatures.
Right: 𝜇𝐵 − 𝑇 plane for various isospin chemical potential.
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Figure 3: Baryon density for the lowest temperature obtained so far, T = 0.5, indicating a strong first order
transition that increases with isospin chemical potential. There is an indication for plateau of the baryon
density ⟨𝑛𝐵⟩ = 1, which might be more pronounced at lower temperatures.

further improvements on performance are implemented. The lowest temperature obtained so far is
𝑎𝑇 = 0.5, which features a first order nuclear transition. Although the simulations do not yet show
a plateau at ⟨𝑛𝐵⟩ = 1, two two regimes are present in Fig. 3 that possibly indicated two transitions
at lower temperatures, which are computationally expensive.
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4. Summary and Outlook

We have used the Hamiltonian formulation of strong coupling lattice QCD for 𝑁 𝑓 = 2 staggered
fermions to perform continuous time quantum Monte Carlo simulations that have no sign problem,
even for both non-zero baryon and isospin chemical potential. We mapped out the enlarged phase
diagram in the 𝜇𝐵 − 𝜇𝐼 − 𝑇-space in the chiral limit, based on the baryon and isospin densities.
All results have been obtained on spatial lattice 83 and continuous time. The finite size scaling
analysis to determine the order of the transition in the thermodynamic limit will be presented in
a forthcoming publication. We will also address pion condensation and the chiral transitions, and
determine the nuclear interactions, which are purely entropic for 𝑁 𝑓 = 1, but allow for pion exchange
between nucleons for 𝑁 𝑓 = 2. It should be noted that these findings are qualitatively in agreement
with 𝑁 𝑓 = 2 Mean field theory at strong coupling, but not in agreement with expectations in the
continuum limit for zero 𝜇𝐵 and non-zero 𝜇𝐼 [14]. However, the strong coupling limit gives further
insights in the nature of the phases.

Recently, the 𝑁 𝑓 = 1 quantum Hamiltonian has been mapped on quantum circuits [12]: since
the degrees of freedom are already discrete, it can be easily qubitzed. Gauge group SU(3) only
required three qubits. As Gauss’s law is fulfilled implicitly due to the occupation number basis,
it can be readily applied to 3 spatial dimensions. For 𝑁 𝑓 = 2 the mesonic sector U(3) requires
6 qubits per lattice site, and at most 6 additional qubits per site when baryons are included. The
quantum gates corresponding to the set of mutually commuting families still need to be worked out.
For the future, we also plan to extend the Hamiltonian framework to address finite quark masses,
and to include the gauge corrections to the strong coupling limit. It is not yet guaranteed that these
extensions are sign-problem free, but it is in any case much milder than on a lattice with discrete
time.

The author gratefully acknowledge the funding of this project by computing time provided
by the Paderborn Center for Parallel Computing (PC2). This work is supported by the Deutsche
Forschungsgemeinschaft (DFG) through the CRC-TR 211 ’Strong-interaction matter under extreme
conditions’– project number 315477589 – TRR 211.
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