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1. Introduction

In various important systems such as finite-density QCD, strongly correlated electron systems,

frustrated spin systems, and the real-time dynamics of quantum many-body systems, the sign

problem has been a major obstacle to first-principle calculations based on the Markov chain Monte

Carlo method. Recently, several approaches that utilize the complexification of dynamical variables

have been attracting attention. Among them, the Lefschetz thimble method [1–16] deforms the

integration surface into the complex space. The deformation is designed such that the deformed

surface approaches a union of Lefschetz thimbles, on each of which the imaginary part of the action

is constant, and thus the sign problem is expected to be alleviated there. Although the potential

barriers among thimbles cause the ergodicity problem, it can be controlled by tempering the system

with respect to the deformation parameter, which is realized as the tempered Lefschetz thimble

method in Ref. [10]. A drawback of this method is its high numerical cost of $ (#3) (# : degrees

of freedom) coming from the need to compute the Jacobian of the deformation. The Worldvolume

Hybrid Monte Carlo method (WV-HMC method) [1, 15, 16] is introduced to solve this issue, where

the HMC updates are performed on a continuous accumulation R of the deformed surfaces. The

region R is named worldvolume à la string theory by regarding it as the orbit of the integration

surface in the target space C
# . The WV-HMC algorithm realizes the low computational cost

because it does not require the explicit evaluation of the Jacobian in generating configurations.

In this article, we apply the WV-HMC method to the finite-density q4 model as well as to the

Hubbard model away from half filling. For the former model, we show that the computational cost

is $ (#1) when using an iterative solver (such as BiCGStab) in linear inversions. For the Hubbard

model, the computational cost increases due to the presence of the nonlocal fermion determinant,

but we argue that the computational cost will not exceed $ (#2) with the use of pseudofermions.

2. Worldvolume Hybrid Monte Carlo

Our aim is to evaluate the expectation values of observables O(G) defined by the path integral,

〈O〉 ≡
∫
R#

3G 4−( (G) O(G)
∫
R#

3G 4−( (G)
, (1)

where R
#

= {G} is the configuration space and ((G) ∈ C the complex action. Since 4−( (G) is

complex-valued, it cannot be regarded as defining a probability density. A simple prescription is

the naive reweighting method that uses the real part of the action for the probability density:

〈O〉 =
∫
R#

3G 4−Re ( (G) (4−8Im ( (G) O(G)
)

∫
R#

3G 4−Re ( (G) 4−8Im ( (G)
. (2)

However, for systems with large degrees of freedom (# ≫ 1), the numerator and the denominator

become highly oscillatory integrals, which makes difficult numerical evaluations based on the

Markov chain Monte Carlo method. In fact, statistical errors are hard to be made smaller than the

means of order 4−$ (# ) .

A way to avoid this problem is to continuously deform the integral surface so that the sign

problem is alleviated on the new integral surface Σ (see Fig. 1). In fact, when 4−( (I) and 4−( (I) O(I)
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Figure 1: Deformation of the integration surface using the flow (figure taken from [16]).

are entire functions over C# (as is the case for most models of interest), the integrals do not change

under the deformation due to Cauchy’s theorem, and the expectation value (1) can be written to

〈O〉 =
∫
Σ
3I 4−( (I) O(I)
∫
Σ
3I 4−( (I)

, (3)

and thus the oscillatory behavior will be much relaxed if Im ((I) is almost constant on Σ. Such

deformation can be realized by integrating the following flow equations:

¤I = m((I), I |C=0 = G, (4)

¤E = � (I)E, E |C=0 = E0, (5)

¤= = � (I)=, =|C=0 = =0, (6)

where E ∈ )IΣC (= ∈ #IΣC ) is the tangent (normal) vector, and �8 9 (I) ≡ m8m 9((I) is the Hessian

matrix. This flow sends the original integration surface Σ0 = R
# to a vicinity of a union of Lefschetz

thimbles, on each of which Im ((I) is constant, and thus the oscillatory behavior is expected to be

reduced on each connected component of ΣC at a large flow time C. A Hybrid Monte Carlo algorithm

on ΣC with fixed C has been proposed in Refs. [13, 14], which is a HMC version of the generalized

thimble method [9] and will be referred to as the GT-HMC method in this article.

Since both the numerator and the denominator in (3) do not depend on C, we can take averages

over C with an arbitrary weight function , (C),

〈O〉 =

∫
3C 4−, (C ) ∫

ΣC

3I 4−( (I) O(I)
∫
3C 4−, (C )

∫
ΣC

3I 4−( (I)
. (7)

We write this as a ratio of reweighted averages 〈· · · 〉R on the worldvolume R ≡ ∪CΣC = {IC (G) | C ∈
R, G ∈ R

# } (see Fig. 2):

〈O〉 = 〈F (I) O(I)〉R
〈F (I)〉R

, (8)

〈6(I)〉R ≡
∫
R |3I |R 4−+ (I) 6(I)
∫
R |3I |R 4−+ (I)

. (9)

Here, |3I |R is the invariant volume element of R, + (I) ≡ Re ((I) +, (C (I)) is the potential, and

F (I) is the associated reweighting factor,

F (I) ≡ 4−( (I)−, (C (I) ) 3C 3I

4−+ (I) |3I |R
=

3C 3I

|3I |R
4−8 Im( (I) . (10)
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Figure 2: A molecular dynamics step on the worldvolume (figure taken from [16]).

The reweighted average (9) can be written to the phase space integral of the form

〈6(I)〉R =

∫
)Σ

l̂#+1 4−� (I,c ) 6(I)
∫
)Σ

l̂#+1 4−� (I,c ) , (11)

where c ∈ )IR is the conjugate momentum, l̂ ≡ Re 3c83I8 is the symplectic form of the tangent

bundle )R = {(I, c) | I ∈ R, c ∈ )IR}, and � (I, c) is the Hamiltonian of the form

� (I, c) = 1

2
c†c + + (I). (12)

The molecular dynamics is given by RATTLE of the following form [1]:

c1/2 = c − ΔB m+ (I) − _/ΔB, (13)

I′ = I + ΔB c1/2, (14)

c′ = c1/2 − ΔB m+ (I′) − _′/ΔB. (15)

Here, the Lagrange multipliers _ ∈ #IR and _′ ∈ #I′R are determined such that I′ ∈ R and

c′ ∈ )I′R, respectively. This transformation satisfies the reversibility and the symplecticity (l̂′
= l̂)

[and thus the volume preservation (l̂′#+1
= l̂#+1)]. One can further show that it preserves the

Hamiltonian to $ (ΔB2): � (I′, c′) = � (I, c) + $ (ΔB3).
The extent of the worldvolume R to the flow time direction can be effectively constrained to a

finite interval [)0, )1] by adjusting the functional form of , (C), which we set as follows [16, 17]:

, (C) =




− W(C − )0) + 20

(
4 (C−)0 )2/232

0 − 1
)

for C < )0

− W(C − )0) for )0 ≤ C ≤ )1

− W(C − )0) + 21

(
4 (C−)1 )2/232

1 − 1
)

for C > )1,

(16)

where W is the tilt, 20 (21) the height at )0 ()1), and 30 (31) the penetration depth. These parameters

are tuned so that configurations distribute almost uniformly over different flow times. The lower

boundary )0 is chosen such that the ergodicity is ensured on surfaces ΣC with C ∼ )0, while the

4
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upper boundary )1 is taken to be large enough such that the oscillatory behavior is well relaxed at

flow time C ∼ )1, which is judged by looking at the average reweighting factor 〈F (I)〉ΣC
computed

with the GT-HMC method. The signals of observables can be improved by using configurations

retrieved from a subinterval C ∈ [)̃0, )̃1] ()0 ≤ )̃0 < )̃1 ≤ )1) [1, 15] (see Fig. 2). Here, )̃0 works

as a cutoff to eliminate configurations contaminated with the sign problem, and )̃1 is for discarding

configurations coming from a region in R which may be hard to sample because of its complicated

geometry.

The computational cost of the GT-HMC and the WV-HMC algorithms is dominated by solving

the linear equation �F0 = F with F0 = E0 + =0, F = E + = (see Fig. 1). Direct solvers following

the computation of all the matrix elements of � require the computational cost of $ (#3). On

the other hand, for iterative solvers such as BiCGStab, the multiplication of � can be replaced by

the integration of the vector flow equations (5) and (6) [18]. Thus, if the convergence of iteration

depends on the system size only weakly, the computational cost is expected to be reduced from

$ (#3) to $ (#) when the Hessian matrix is sparse (as is the case for the finite-density q4 model). If

the Hessian is nonlocal (as is the case of the Hubbard model in a bosonized form with the fermion

determinant), the computational cost increases, but we argue that it may not exceed $ (#2) if we

use pseudofermions from the beginning.

3. Application to a field theory with a local action

We apply the WV-HMC method to the finite-density q4 model as a typical example of a local

field theory whose Hessian matrix �8 9 = m8m 9( is sparse.

Following the strategy given in Sect. 2, we first use the GT-HMC method to determine the

upper flow time )1 by investigating whether the average reweighting factor 〈F 〉Σ)1
is consistent to

being nonzero within statistical errors. Then, setting )0 = 0, we generate configurations on R using

WV-HMC with this flow time interval [)0, )1] and make measurements of observables.

We also investigate the computational cost scaling for this model. We here employ GT-HMC

(instead of WV-HMC) because one can make a more precise statement about the scaling when the

flow time is fixed. Since most of the flow times C of WV-HMC are smaller than the flow time set in

GT-HMC (= )1), the computation time for GT-HMC can be regarded as giving an upper bound on

that for WV-HMC.

For the weight function , (C) [see Eq. (16)], we set the parameters to W = 20−100, 20 = 21 = 1,

30 = 31 = 0.02 for 44 lattice, and W = 160 − 180, 20 = 21 = 1, 30 = 31 = 0.02 for 64 lattice. For

comparison, we also perform simulations using the complex Langevin method, which avoids the

wrong convergence for the current model parameters. A further study of the finite-density q4 model

will be made in Ref. [17].

3.1 Complex scalar q4 model at finite density

The complex q4 scalar model at finite density has been used as a testbed of methods towards

solving the sign problem [4, 5, 19–24]. Its continuum action in four dimensions is given by

(cont [q] ≡
∫

34G
[
|maq |2 + <2 |q |2 + _ |q |4 + `(q̄(m0q) + (m0q̄)q)

]
, (17)

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
7
8

WV-HMC for the finite-density q4 and Hubbard models Masafumi Fukuma and Yusuke Namekawa

where < is the mass, _ the self-coupling, and ` the chemical potential. The discretized action in

lattice units [19] is

((q) ≡
∑

G

[
−

3∑

a=0

(
q̄G+a 4

+`Xa0qG + q̄G 4
−`Xa0qG+a

)
+ (8 + <2)q̄GqG + _(q̄GqG)2

]
. (18)

The number density operator = is defined by

=(q) ≡ − 1

#3
B#C

m((q; `)
m`

, (19)

where #B (#C ) is the size of the spatial (temporal) extent of the lattice.

We set the model parameters to < = 0.1, _ = 1 with ` = 0.40 − 0.90 for 44 lattice and

` = 0.65 − 0.75 for 64 lattice. These parameters cover the region suffering from the severe sign

problem, which is the vicinity of the critical chemical potential (`2 ∼ 0.7) where the number

density starts to grow from zero. Figure 3 displays the average phase factors obtained with the naive

reweighting method (2). They are consistent with zero in ` = 0.60 − 0.80, which shows the sign

problem is actually severe for this parameter region.
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Figure 3: Average phase factor with the naive reweighting method.

3.2 Simulations

3.2.1 Determination of )1

Figure 4 shows the ) -dependence of the average reweighing factor obtained with the GT-HMC

method. We see that it takes nonzero values at ) = 0.08 for ` = 0.40 − 0.90. Based on this result,

we set )1 = 0.08 in the WV-HMC simulations.

3.2.2 Configuration generation and measurement

Figure 5 is a set of the histograms of the flow time C with the tuned, (C) [Eq. (16)], showing that

the flow times distribute almost uniformly over the entire region [)0, )1]. The average reweighting

factors (10) are plotted in Fig. 6, which confirms that they are nonzero within two standard deviations

throughout the simulation parameter region.

We measure the number density = [Eq. (19)] and the field squared |q |2. Figure 7 shows the

)̃0-dependence of 〈=〉. The statistical errors decrease as we increase )̃0, reflecting the sign problem

6
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Figure 4: Average phase factor with the GT-HMC method.
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Figure 5: Histogram of the flow times C (WV-HMC).

is reduced along the flow. From this figure and the observation that )̃1-dependence is mild, we set

)̃0 = 0.03 and )̃1 = )1 = 0.08 in the statistical analysis. Figure 8 shows the obtained results for 〈=〉
and 〈|q |2〉. They agree with those obtained with the complex Langevin method, which we confirm

is free from the wrong convergence for these model parameters.1

3.2.3 Computational cost scaling

In Fig. 9, we plot the elapsed computer times of the BiCGStab and the RATTLE parts in the GT-

HMC method. These elapsed times are measured on 256 nodes (8192 cores) of the supercomputer

“Fugaku”. We confirm that the elapsed time shows the $ (#1) scaling in the region # > 5 × 107.

1The data of the tensor renormalization group are taken from Ref. [24]. A discrepancy from other results may be due

to the small �cut (= 50) [26].
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Figure 6: Average reweighting factors.
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Figure 7: )̃0-dependence of number density.

The data at small # deviate from the $ (#1) scaling, because the elapsed time is dominated by the

communication time there.

4. Application to a field theory with the fermion determinant

In this section, we consider the application of the WV-HMC algorithm to dynamical fermion

systems. As a simple example we take the Hubbard model away from half filling, whose basic

structure is similar to that of finite-density QCD.

4.1 Hubbard model

The Hamiltonian of the 3-dimensional Hubbard model is given by

� = −^
∑

〈x,y〉

∑

f

2
†
x,f2y,f − `

∑

x

(=x,↑ + =x,↓) +*
∑

x

=x,↑=x,↓, (20)

where ^ is the hopping parameter, ` the chemical potential, and * the on-site repulsion strength.

The symbol 〈x, y〉 represents the nearest-neighbor sites on a 3-dimensional periodic lattice of size

#3
B , and =x,f ≡ 2

†
x,f2x,f is the number operator. The (1 + 3)-dimensional Euclid action after the

Trotter decomposition (V = #Cn) and the Hubbard-Stratonovich transformation takes the following

8
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Figure 8: Number density and field squared, in comparison with the complex Langevin and the tensor

renormalization group results [24].
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form with two-flavor fermions kG = (kG,↑, kG,↓)) :

((�, k̄, k) = 1

2

∑

G

�2
G +

∑

G

k̄G (� (�)k)G . (21)

Here, G = (G0, x) is (1 + 3)-dimensional coordinates, �G is the Hubbard-Stratonovich field, and the

fermion operator � (�) is given by

(� (�)k)G = 4n (`+*/2)+8
√
n*�G kG − kG+0̂ + n^

3∑

9=1

(kG+ 9 + kG− 9) . (22)

We impose the periodic (anti-periodic) boundary condition in the spatial (temporal) direction. The

ground canonical partition function is then given by

/ =

∫
(3� 3k̄ 3k) 4−(1/2)�) �− k̄� (�)k

=

∫
(3�) 4−(1/2)�) �

(
det � (�)

)2
. (23)

In addition to this “chiral form,” the partition function can also be written in a “nonchiral form,”

/ =

∫
(3�) 4−(1/2)�) � det �′

+ (�) det �′
− (�) (24)

9
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with

(�′
±(�)k)G ≡ 4±n (`−*/2)±8

√
n*�G kG − kG±0̂ + n^

3∑

9=1

(kG+ 9 + kG− 9) . (25)

Note that the latter gives a positive (semi-)definite Boltzmann weight at the half filling (` = */2),

and is useful when investigating parameters near half filling.

There can be two approaches to dealing with the fermion determinant. One is to use �

as the only dynamical variable and consider the action ((�) = (1/2)�)� − 2 tr ln det � (�) (or

(′ (�) = (1/2)�)�− tr ln det �′
+ (�) − tr ln det �′

− (�)). In this case, the numerical cost of RATTLE

is $ (#3) with # = #C × #3
B . The other is to introduce pseudofermions and use iterative solvers to

invert the fermion matrix � (or �′
±). In this case, the numerical cost is expected to be $ (#2) at

most if the convergence of iteration does not depend on the system size significantly. We use the

first approach when investigating the sign problem, while we use the second when discussing the

numerical cost scaling.

4.2 Existence of the sign problem

In Fig. 10, we plot the average phase factor of the naive reweighting method. It is consistent

with zero in 2f on #C × #B = 24 × 6 lattice for the parameter region −4 ≤ ` ≤ 8 except near half

filling, indicating that the sign problem is severe there.

0.0

0.2

0.4

0.6

0.8

1.0

-6 -4 -2 0 2 4 6 8 10

Hubbard
κ=1, U=4, ε=0.2

|〈e
i θ

〉|

µ

Naive reweighting, 24×6 (Nconf=100)

Figure 10: Average phase factor with the naive reweighting method.

In contrast to the finite-density q4 model, the complex Langevin method suffers from the

singular drift problem, as shown in Fig. 11 (left panel). The drift histogram of the fermion part is

plotted in Fig. 11 (right panel) and exhibits power-law tails, which violate the justification criterion

[25].

4.3 Computational cost scaling

We investigate the computational cost scaling for the GT-HMC method when using pseudo-

fermions. The scaling is expected to be$ (#2) if the convergence of the Newton method in RATTLE

with iterative solvers depends on the system size only weakly.

In Fig. 12, we show the elapsed computer times of the BiCGStab and the molecular dynamics

parts in GT-HMC. We observe that the scaling is shifting from $ (#3) to $ (#2) at larger # .

10
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Figure 11: Eigenvalue distribution of the fermion matrix � (left panel), and fermion drift histogram (right

panel) with the complex Langevin method.
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Figure 12: Elapsed time scaling of the BiCGStab part (left panel) and the molecular dynamics part (right

panel) with respect to # (degrees of freedom).

5. Conclusion

In this article, we have applied the WV-HMC algorithm [1] to the q4 model at finite density as

well as to the Hubbard model away from half filling. For the finite-density q4 model, we confirmed

that the obtained results for 〈=〉 and 〈|q |2〉 agree with those of the complex Langevin method (free

from the wrong convergence for this case). We also estimated the computational cost of both

models by using the GT-HMC method. For the finite-density q4 model we found the expected

$ (#1) scaling in the elapsed time for configuration generation, while for the Hubbard model we

argue that the computational cost does not exceed $ (#2) if one uses pseudofermions in treating the

fermion determinant.

In parallel to the study of these models, we are applying the WV-HMC algorithm to other

systems that have serious sign problems, such as finite density QCD, strongly correlated electron

systems, frustrated spin systems, and the real-time dynamics of quantum many body systems. The

study of these models will be reported elsewhere.

11



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
7
8

WV-HMC for the finite-density q4 and Hubbard models Masafumi Fukuma and Yusuke Namekawa

Acknowledgments

The authors thank Shinichiro Akiyama, Sinya Aoki, Ken-Ichi Ishikawa, Daisuke Kadoh, Is-

saku Kanamori, Yoshio Kikukawa, and Nobuyuki Matsumoto for valuable discussions. This work

was partially supported by JSPS KAKENHI (Grant Numbers 20H01900, 21K03553, 23H00112,

23H04506) and by MEXT as “Program for Promoting Researches on the Supercomputer Fugaku”

(Simulation for basic science: approaching the new quantum era, JPMXP1020230411) and used

computational resources of the supercomputer Fugaku provided by the RIKEN Center for Compu-

tational Science (Project ID: hp230207).

References

[1] M. Fukuma and N. Matsumoto, “Worldvolume approach to the tempered Lefschetz thimble

method,” PTEP 2021, no.2, 023B08 (2021) [arXiv:2012.08468 [hep-lat]].

[2] E. Witten, “Analytic continuation of Chern-Simons theory,” AMS/IP Stud. Adv. Math. 50,

347-446 (2011) [arXiv:1001.2933 [hep-th]].

[3] M. Cristoforetti, F. Di Renzo and L. Scorzato, “New approach to the sign problem in quantum

field theories: High density QCD on a Lefschetz thimble,” Phys. Rev. D 86, 074506 (2012)

[arXiv:1205.3996 [hep-lat]].

[4] M. Cristoforetti, F. Di Renzo, A. Mukherjee and L. Scorzato, “Monte Carlo simulations on

the Lefschetz thimble: Taming the sign problem,” Phys. Rev. D 88, no. 5, 051501(R) (2013)

[arXiv:1303.7204 [hep-lat]].

[5] H. Fujii, D. Honda, M. Kato, Y. Kikukawa, S. Komatsu and T. Sano, “Hybrid Monte Carlo

on Lefschetz thimbles - A study of the residual sign problem,” JHEP 1310, 147 (2013)

[arXiv:1309.4371 [hep-lat]].

[6] H. Fujii, S. Kamata and Y. Kikukawa, “Lefschetz thimble structure in one-dimensional lattice

Thirring model at finite density,” JHEP 11, 078 (2015) [erratum: JHEP 02, 036 (2016)]

[arXiv:1509.08176 [hep-lat]].

[7] H. Fujii, S. Kamata and Y. Kikukawa, “Monte Carlo study of Lefschetz thimble structure in

one-dimensional Thirring model at finite density,” JHEP 12, 125 (2015) [erratum: JHEP 09,

172 (2016)] [arXiv:1509.09141 [hep-lat]].

[8] A. Alexandru, G. Başar and P. Bedaque, “Monte Carlo algorithm for simulating fermions on

Lefschetz thimbles,” Phys. Rev. D 93, no. 1, 014504 (2016) [arXiv:1510.03258 [hep-lat]].

[9] A. Alexandru, G. Başar, P. F. Bedaque, G. W. Ridgway and N. C. Warrington, “Sign prob-

lem and Monte Carlo calculations beyond Lefschetz thimbles,” JHEP 1605, 053 (2016)

[arXiv:1512.08764 [hep-lat]].

[10] M. Fukuma and N. Umeda, “Parallel tempering algorithm for integration over Lefschetz

thimbles,” PTEP 2017, no. 7, 073B01 (2017) [arXiv:1703.00861 [hep-lat]].

[11] A. Alexandru, G. Başar, P. F. Bedaque and N. C. Warrington, “Tempered transitions between

thimbles,” Phys. Rev. D 96, no. 3, 034513 (2017) [arXiv:1703.02414 [hep-lat]].

12



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
7
8

WV-HMC for the finite-density q4 and Hubbard models Masafumi Fukuma and Yusuke Namekawa

[12] M. Fukuma, N. Matsumoto and N. Umeda, “Applying the tempered Lefschetz thimble method

to the Hubbard model away from half filling,” Phys. Rev. D 100, no. 11, 114510 (2019)

[arXiv:1906.04243 [cond-mat.str-el]].

[13] A. Alexandru, “Improved algorithms for generalized thimble method,” talk at the 37th inter-

national conference on lattice field theory, Wuhan, 2019.

[14] M. Fukuma, N. Matsumoto and N. Umeda, “Implementation of the HMC algorithm on the

tempered Lefschetz thimble method,” [arXiv:1912.13303 [hep-lat]].

[15] M. Fukuma, N. Matsumoto and Y. Namekawa, “Statistical analysis method for the worldvolume

hybrid Monte Carlo algorithm,” PTEP 2021, no.12, 123B02 (2021) [arXiv:2107.06858 [hep-

lat]].

[16] M. Fukuma, “Simplified algorithm for the Worldvolume HMC and the Generalized-thimble

HMC,” [arXiv:2311.10663 [hep-lat]].

[17] M. Fukuma and Y. Namekawa, “Applying the Worldvolume Hybrid Monte Carlo method to

the complex scalar field theory at finite density,” in preparation.

[18] A. Alexandru, G. Basar, P. F. Bedaque and G. W. Ridgway, Phys. Rev. D 95, no.11, 114501

(2017) [arXiv:1704.06404 [hep-lat]].

[19] G. Aarts, “Can stochastic quantization evade the sign problem? The relativistic Bose gas at

finite chemical potential,” Phys. Rev. Lett. 102, 131601 (2009) [arXiv:0810.2089 [hep-lat]].

[20] C. Gattringer and T. Kloiber, “Lattice study of the Silver Blaze phenomenon for a charged

scalar q4 field,” Nucl. Phys. B 869, 56-73 (2013) [arXiv:1206.2954 [hep-lat]].

[21] O. Orasch and C. Gattringer, “Canonical simulations with worldlines: An exploratory study

in q4
2

lattice field theory,” Int. J. Mod. Phys. A 33, no.01, 1850010 (2018) [arXiv:1708.02817

[hep-lat]].

[22] Y. Mori, K. Kashiwa and A. Ohnishi, “Application of a neural network to the sign problem

via the path optimization method,” PTEP 2018, no.2, 023B04 (2018) [arXiv:1709.03208

[hep-lat]].

[23] D. Kadoh, Y. Kuramashi, Y. Nakamura, R. Sakai, S. Takeda and Y. Yoshimura, JHEP 02, 161

(2020) doi:10.1007/JHEP02(2020)161 [arXiv:1912.13092 [hep-lat]].

[24] S. Akiyama, D. Kadoh, Y. Kuramashi, T. Yamashita and Y. Yoshimura, “Tensor renormaliza-

tion group approach to four-dimensional complex q4 theory at finite density,” JHEP 09, 177

(2020) [arXiv:2005.04645 [hep-lat]].

[25] K. Nagata, J. Nishimura and S. Shimasaki, “Argument for justification of the complex Langevin

method and the condition for correct convergence,” Phys. Rev. D 94, no.11, 114515 (2016)

[arXiv:1606.07627 [hep-lat]].

[26] S. Akiyama, D. Kadoh, Y. Kuramashi, T. Yamashita and Y. Yoshimura, private communication.

13


	Introduction
	Worldvolume Hybrid Monte Carlo
	Application to a field theory with a local action
	Complex scalar 4 model at finite density
	Simulations
	Determination of T1
	Configuration generation and measurement
	Computational cost scaling


	Application to a field theory with the fermion determinant
	Hubbard model
	Existence of the sign problem
	Computational cost scaling

	Conclusion

