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We perform a finite-size scaling analysis of the critical point in the heavy-quark region of QCD at
nonzero temperature. Our previous analysis on the Binder cumulant at 𝑁𝑡 = 4 is extended to finer
lattices with 𝑁𝑡 = 6 and 8. The aspect ratio is also extended up to 15 to suppress the non-singular
contribution. High-precision analysis of the Binder cumulant is realized by an efficient Monte-
Carlo simulation with the hopping-parameter expansion (HPE). Effects of higher-order terms in
the HPE are incorporated by the reweighting method.
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1. Introduction

An interesting feature of the medium described by Quantum Chromodynamics (QCD) is that
appearances of critical points (CPs) are expected with variations of various parameters such as
temperature (𝑇), baryon chemical potential (𝜇B), and quark masses. CPs are expected to exist
on the QCD phase diagram on the 𝑇–𝜇B plane with physical quark masses. Their experimental
search is one of the main goals of relativistic heavy-ion collisions [1, 2]. CPs are also expected to
appear when the quark masses are varied from the physical ones at 𝜇B = 0 both in the light- and
heavy-quark regions [3]. However, their locations and even existence remain controversial [4–10].

In this proceeding, we report on our recent study of the (fourth-order) Binder-cumulant analysis
of the CP in the heavy-quark region [9, 11]. The Binder cumulant, 𝐵4, is a useful quantity to
investigate the CPs in numerical simulations [12]. It is known from the finite-size scaling argument
that 𝐵4 obtained on numerical simulations with different spatial volumes has a crossing at the CP.
Moreover, the behavior of 𝐵4 around the crossing point is determined by the universality class to
which the CP belongs. One thus can investigate the universality class of a CP with the use of 𝐵4.

In our previous study Ref. [9], we investigated the behavior of 𝐵4 near the CP in the heavy-quark
region at the temporal lattice extent 𝑁𝑡 = 4. To accelerate the numerical simulations, we employed
the simulation based on the hopping-parameter expansion (HPE). The Monte-Carlo simulations are
performed with respect to the action at leading order (LO) of the HPE, and the effects at next-to-
leading (NLO) order are incorporated in the analysis by the reweighting method. We found that this
method works quite effectively to obtain high-precision data up to the aspect ratio 𝑁𝑠/𝑁𝑡 = 𝐿𝑇 = 12,
where 𝐿 = 𝑁𝑠𝑎 is the spatial lattice extent in physical units and 𝑇 = 1/𝑁𝑡𝑎 is the temperature with
𝑎 the lattice spacing.

In this proceeding, we extend the analysis to 𝑁𝑡 = 6 and 8 [11]. We find that the violation
of the finite-size scaling of 𝐵4 becomes stronger as 𝑁𝑡 becomes larger, which suggests that larger
aspect ratios are needed to investigate the CP on finer lattices properly.

2. Formalism

We start from the lattice action 𝑆 = 𝑆g + 𝑆q where the Wilson gauge action 𝑆g and Wilson
quark action 𝑆q are

𝑆g = −6𝑁site 𝛽 �̂�, 𝑆q = 𝑁f
∑︁
𝑥, 𝑦

�̄�𝑥 𝑀𝑥𝑦 (𝜅) 𝜓𝑦 , (1)

for degenerate 𝑁f flavors of quarks, �̂� is the plaquette operator, 𝑁site = 𝑁3
𝑠 × 𝑁𝑡 is the lattice

space-time volume, 𝛽 = 6/𝑔2 is the gauge coupling, 𝜅 is the quark hopping parameter, and

𝑀𝑥𝑦 (𝜅) = 𝛿𝑥𝑦 − 𝜅𝐵𝑥𝑦 , (2)

𝐵𝑥𝑦 =

4∑︁
𝜇=1

[
(1 − 𝛾𝜇)𝑈𝑥,𝜇 𝛿𝑦,𝑥+�̂� + (1 + 𝛾𝜇)𝑈†

𝑦,𝜇 𝛿𝑦,𝑥− �̂�
]
, (3)

is the Wilson quark kernel. In the following, we consider the case 𝑁f = 2. Generalization to other
𝑁f or non-degenerate cases is easy with our method [9].
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In the heavy-quark region 𝜅 ≪ 1, it is a good approximation to express ln det𝑀 by the hopping-
paramter expansion (HPE) as ln det 𝑀 (𝜅) = −∑∞

𝑛=1(1/𝑛)Tr [𝐵𝑛] 𝜅𝑛. The 𝑛th-order term in the HPE
is graphically represented by the closed trajectories of length 𝑛 [9], and one obtains the effective
action

𝑆eff = 𝑆g − 𝑁f ln det 𝑀 = 𝑆g − 𝑁f𝑁site

∞∑︁
𝑛=1

(
�̂� (𝑛) + �̂� (𝑁𝑡 , 𝑛)

)
𝜅𝑛 (4)

= 𝑆𝑔 + 𝑆LO + 𝑆NLO + · · · , (5)

where �̂� (𝑛) and �̂� (𝑁𝑡 , 𝑛) are contributions from trajectories without and with windings along the
temporal direction, provided that the spatial extent is sufficiently large. Here, 𝑆LO and 𝑆NLO are the
leading-order (LO) and next-to-leading order (NLO) contributions defined by

𝑆LO = − 𝑁f𝑁site
(
�̂� (4)𝜅4 + �̂� (𝑁𝑡 , 𝑁𝑡 )𝜅𝑁𝑡

)
, (6)

𝑆NLO = − 𝑁f𝑁site
(
�̂� (6)𝜅6 + �̂� (𝑁𝑡 , 𝑁𝑡 + 2)𝜅𝑁𝑡+2) , (7)

where �̂� (4) = 288�̂� and �̂� (𝑁𝑡 , 𝑁𝑡 ) = (2𝑁𝑡+1𝑁c/𝑁𝑡 )ReΩ̂ with the Polyakov loop Ω̂. In the 𝑆NLO,
�̂� (6) is given by the 6-step Wilson loops, and �̂� (𝑁𝑡 , 𝑁𝑡 +2) is given by (𝑁𝑡 +2)-step bent Polyakov
loops [7].

3. Numerical setup

We perform Monte-Carlo simulations for the leading-order action

𝑆𝑔+LO = 𝑆g + 𝑆LO = −6𝑁site𝛽
∗�̂� − 𝜆𝑁3

𝑠ReΩ̂, (8)

with 𝛽∗ = 𝛽+48𝑁f𝜅
4 and𝜆 = 2𝑁𝑡+1𝑁c𝑁f𝜅

𝑁𝑡 , and incorporate the effects of 𝑆NLO by the reweighting.
Gauge configurations are generated by the pseudo heat bath and over relaxation algorithms. We
found that this method enables high-precision numerical analyses around the CP in the heavy-quark
region thanks to efficient Monte-Carlo updates avoiding the overlapping problem in reweighting [9].

The temporal and spatial lattice sizes are varied within the range 𝑁𝑡 = 4, 6, 8 and 𝑁𝑠/𝑁𝑡 =

𝐿𝑇 ≤ 15. For each (𝑁𝑠, 𝑁𝑡 ), gauge configurations are generated for 3–6 sets of (𝛽∗, 𝜆), which are
chosen to be close to the transition point at LO. For each parameter, we perform the measurements
typically 106 times. The statistical errors of observables are estimated by the jackknife method
with the binsize of 10, 000–25, 000 measurements, which is sufficiently larger than the estimated
autocorrelation lengths.

4. Numerical results

In this study, to investigate the CP in the heavy-quark region we study the Binder cumulant of
the real part of the Polyakov loop Ω̂R = ReΩ̂,

𝐵4 =
⟨Ω̂4

R⟩c

⟨Ω̂2
R⟩

2
c
+ 3 =

⟨𝛿Ω̂4
R⟩

⟨𝛿Ω̂2
R⟩2

, (9)

3



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
9
0

Critical point in heavy-quark region of QCD on fine lattices Masakiyo Kitazawa

0.003 0.004 0.005 0.006 0.007
λ

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0
B

Ω 4

NLO, Nf = 2

LT= 6

LT= 8

LT= 9

LT= 10

LT= 12

0.0048 0.0050 0.0052
λ

1.58

1.60

1.62

1.64

1.66

1.68

B
Ω 4

NLO, Nf = 2

LT= 12, 10, 9

LT= 12− 8

LT= 12− 6

LT= 6

LT= 8

LT= 9

LT= 10

LT= 12

Figure 1: 𝜆 dependence of the Binder cumulant near the CP in the heavy-quark region at 𝑁𝑡 = 4 [9]. The
right panel is an enlargement of the left one near the crossing point.

on the transition line as a function of 𝜆. It is known that this quantity observed at different spatial
volumes has a crossing at the CP [12]. Moreover, from the finite-size scaling it is known that this
quantity behaves around the CP of the 𝑍 (2) universality class, to which the QCD critical point is
believed to belong, as

𝐵4(𝜆, 𝐿𝑇) = 𝑏4 + 𝑐(𝜆 − 𝜆c) (𝐿𝑇)1/𝜈 , (10)
𝑏4 = 1.604, and 𝜈 = 0.630. (11)

In Fig. 1, we first show our previous result at 𝑁𝑡 = 4 on the Binder cumulant 𝐵Ω
4 = 𝐵4 along

the transition line as a function of 𝜆 for five values of 𝐿𝑇 [9]. The right panel is an enlargement of
the left panel around the crossing point. The figure shows that 𝐵4 has a crossing at 𝜆 = 𝜆c ≃ 0.005,
suggesting the existence of the CP around there. The result for 𝐿𝑇 = 6 has a small but visible
deviation from the crossing, while the larger volume results at 𝐿𝑇 ≥ 8 are more stable.

To determine the parameters in Eq. (10) quantitatively, we fit the numerical results of 𝐵4 by
the fitting function (10) with 𝑏4, 𝜆c, 𝜈, 𝑐 being the fit parameters. The result of the fit gives [9]

𝑏4 = 1.630(24) (2), 𝜈 = 0.614(48) (3), 𝜆𝑐 = 0.00503(14) (2), for 𝐿𝑇 = 12, 10, 9, (12)
𝑏4 = 1.643(15) (2), 𝜈 = 0.614(29) (3), 𝜆𝑐 = 0.00510(10) (2), for 𝐿𝑇 = 12, 10, 9, 8, (13)

which are indicated by open symbols with error bars in the right panel of Fig. 1. One finds that
the values of 𝑏4 and 𝜈 obtained with the three largest volumes, 𝐿𝑇 = 12, 10, 9, are consistent with
those in the 𝑍 (2) universality class, Eq. (11), almost within statistics. However, the result including
𝐿𝑇 = 8 has statistically-significant deviations from the 𝑍 (2) values. This result suggests that the
violation of the finite-size scaling is not suppressed well even at 𝐿𝑇 = 8.

Next, let us see our new results at 𝑁𝑡 = 6 [11]. In Fig. 2, we show the 𝜆 dependence of
𝐵4 obtained at the several aspect ratios up to 𝐿𝑇 = 15 at 𝑁𝑡 = 6. The right panel is again the
enlargement of the left one around the crossing point. From the figure, one sees that the crossing
of 𝐵4 occurs around 𝜆 ≃ 0.00082, but the result at 𝐿𝑇 = 8 has a statistically significant deviation
from the crossing point of the results of yet larger 𝐿𝑇 . This result indicates that the violation of the
finite-size scaling at the same 𝐿𝑇 becomes larger as the lattice spacing becomes finer.
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Figure 2: 𝜆 dependence of the Binder cumulant near the CP in the heavy-quark region at 𝑁𝑡 = 6 [11]. The
right panel is an enlargement of the left one near the crossing point.
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Figure 3: Distribution of the Polyakov loop Ω̂ at the CP at 𝑁𝑡 = 6 [11].

To determine the parameters in Eq. (10), we performed the four-parameter fit to the numerical
results in Fig. 2 with Eq. (10). The result of the fit with the three largest volumes 𝐿𝑇 = 15, 12, 10 is

𝑏4 = 1.630(9), 𝜈 = 0.624(19), 𝜆𝑐 = 0.000818(10), for 𝐿𝑇 = 15, 12, 10. (14)

One sees that the value of 𝑏4 has a statistically-significant deviation from Eq. (11), while the value
of 𝜈 is consistent with the 𝑍 (2) universality class. This result may imply that 𝐿𝑇 = 10 is not large
enough to suppress the violation of the finite-size scaling at 𝑁𝑡 = 6.

By converting the value of 𝜆𝑐 in Eq. (14) to the hopping parameter, we obtain 𝜅NLO
𝑐 =

0.09003(19). Using the method proposed in Ref. [10] to incorporate the yet higher order contri-
butions of the HPE, this value is converted to 𝜅𝑐 = 0.08781(17) [11]. In Ref. [5], the value of 𝜅𝑐
has been investigated by the Monte Carlo simulations with dynamical fermions and they obtained
𝜅𝑐 = 0.0877(9). Our result is consistent with this previous result within statistics.

To understand the origin of the strong violation of the finite-size scaling at 𝑁𝑡 = 6, in Fig. 3 we
show the contour map of the distribution of Ω̂ on the complex plane near the CP at 𝐿𝑇 = 6 (left),
10 (middle), 15 (right). From the left panel, one finds that the distribution has a triangular form at
𝐿𝑇 = 6, which is understood as the remnant of 𝑍 (3) center symmetry at 𝜆 = 0. As a result, the
distribution of Ω̂R is not symmetric between two peaks. One thus can understand that this causes
the violation of the finite-size scaling of the 𝑍 (2) universality class. The remnant of 𝑍 (3) symmetry
is visible even at 𝐿𝑇 = 10 and 15, although the distribution approaches a symmetric one as 𝐿𝑇
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Figure 4: 𝜆 dependence of the Binder cumulant near the CP in the heavy-quark region at 𝑁𝑡 = 8 [11].

becomes larger. One possible explanation for why such an effect is more prominent at 𝑁𝑡 = 6 than
𝑁𝑡 = 4 is to attribute the result to the strength of the first-order phase transition at 𝜆 = 0. It is known
that the latent heat in pure 𝑆𝑈 (3) YM theory is large at 𝑁𝑡 = 4 due to the lattice artifact [8]. This
fact implies the stronger first-order transition at 𝜆 = 0 and that a stronger external field is needed to
make the transition crossover. As a result, the CP is located at larger 𝜆 at 𝑁𝑡 = 4, where the effects
of the original 𝑍 (3) symmetry are more suppressed.

In Fig. 4, we finally show our preliminary result of 𝐵4 at 𝑁𝑡 = 8 at LO [11]. We note that this
numerical result does not include the NLO terms. From the figure, one finds that the crossing point
of 𝐵4 converges to 𝑏4 in Eq. (11) as 𝐿𝑇 becomes larger.

5. Conclusions

In this proceeding, we performed the Binder-cumulant analysis of the CP in the heavy-quark
QCD [9, 11]. In our numerical analysis, we employed the HPE to reduce the numerical costs, where
the LO terms are included in the Monte-Carlo simulations and the effects of the NLO terms are
incorporated by reweighting. We found that this method is quite effective in reducing statistical
errors by avoiding the overlapping problem of the reweighting method.

From the Binder cumulant analysis, we found that the crossing point 𝑏4 and the critical exponent
𝜈 tend to converge to the values in the 𝑍 (2) and the value of the Polyakov-loop Binder cumulant 𝐵4
at the critical point is consistent with the 𝑍 (2) universality class when 𝐿𝑇 ≥ 9 data are used for the
analysis. On the other hand, a statistically significant deviation from the 𝑍 (2) scaling is observed
when the data at 𝐿𝑇 = 8 is included, which suggests that this spatial volume is not large enough to
apply the finite-size scaling.
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