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The complex Langevin (CL) method shows great promise in enabling the calculation of observables
for theories with complex actions. Nevertheless, real-time quantum field theories have remained
largely unsolved due to the particular severity of the sign problem. In this contribution, we discuss
our recent progress in applying CL to a thermal SU(2) Yang-Mills theory on a 3+1 dimensional
lattice. We present our anisotropic kernel that stabilizes the CL approach for real times longer
than the inverse temperature — a first for Yang-Mills theory. We provide explicit evidence of
reproducing symmetries and relations among different types of propagators when the complex
time path approaches the Schwinger-Keldysh contour. This method paves the way for calculating
transport coefficients and other real-time observables from first principles.
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1. Introduction

The quark-gluon plasma characterizes the state of matter of strongly interacting quarks and
gluons. It is formed in the earliest instants in ultrarelativistic heavy-ion collisions in collider
experiments such as RHIC and the LHC and has likely existed in the early (hot and dense) stages of
our universe.

Despite ongoing advances in theoretical development, first principle computations of the
evolution of the quark-gluon plasma are still unattainable. This is largely due to the presence of
the numerical sign problem when simulating gauge theories in real time. Of particular interest are
unequal-time correlation functions of the energy-momentum tensor. These correlations are essential
in the determination of the transport coefficients of the quark-gluon plasma such as shear and bulk
viscosities or the speed of sound. We can extract these quantities from unequal time correlation
functions, which can be expressed in terms of a path integral along the Schwinger-Keldysh (SK)
contour visualized in blue in Fig. 1:
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where Z denotes the partition function and A are the gauge fields along the forward and backward
branches of the SK contour while Euclidean fields Ag are defined on the thermal path whose extent
corresponds to the inverse temperature 8 = 1/T. We have periodicity A(t = 0) = A(t = —if3) for
thermal equilibrium. In the path integral (1), the sign problem becomes evident when we consider
that the action is real along the real-time part of the SK contour. This leads to a complex phase
exp (iS[A4, A_]) as the weight factor for which traditional Monte Carlo techniques are inapplicable.
In the recent past, new methods and computational strategies have nevertheless been proposed to
obtain results [1].

In this conference contribution, we use the complex Langevin (CL) method that is based on
stochastic quantization [2]. We present results from our recent studies [3, 4] for non-Abelian SU(N)
gauge theories on complex time contours. As detailed there, we introduce an anisotropic kernel
that originates from a careful rederivation of the CL equation and stabilizes the CL dynamics. This
enables the first direct lattice calculation of an unequal-time correlation function. In particular,
we compute correlations of the magnetic contribution to the energy density in 3+1 dimensions for
SU(2) gauge theory in thermal equilibrium.

Figure 1: Visualization of the Schwinger-
- Keldysh (SK) contour in the continuum
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2. Theoretical Background

In this section, we briefly discuss the most important concepts that underlie the complex
Langevin method. We further list the most pressing difficulties associated with this technique and
how we address them in the simulations of real-time non-Abelian gauge theories. This lays the
fundament for our computation of unequal time correlation functions.

2.1 Concepts underlying the CL method

The complex Langevin method is formulated by continuing the physical theory from the real
to the complexified manifold as its configuration space. In the case of SU(N,) gauge theory, this
generalizes the gauge potential to a non-unitary field:

su(Ne) 2 Ap(x) — Au(x) € sI(Ne, C) = su(Ne) +isu(Ne). 2)

We note that this requires the action and all observables to be infinitely differentiable and their
power series to converge at every point. This poses a strong assumption on the theory and is not
satisfied in general. In the presence of fermions, the action is non-holomorphic at the roots of the
fermion determinant. Nonetheless, progress has been achieved in QCD at finite density and it has
been argued that the aforementioned assumption can be weakened in certain scenarios [5].

The centerpiece of this method is the CL equation

0A oS Al
O (r,) = SIAC] F7(x,0), 3)

0Aj(x) A(x)=A(x,0)

where Sy is the Yang-Mills action and we have added a fifth coordinate to the gauge potential, the
Langevin time 8. The Gaussian noise, which makes this equation a stochastic differential equation,
is characterized by

Me(x,0) =0,  (e(x, 005 (x',0')) = 26""6,,6(x = x')5(0 - ). 4)

The complex Langevin method is motivated by the correspondence between Fokker-Plank and
Langevin equations in the real-valued case. This correspondence allows the determination of the
probability density, that describes the stochastic process in the limit of &8 — oo and is given by
its stationary solution [2]. It has been shown that under certain assumptions this connection can
be generalized to complex stochastic differential equations [6]. In accordance, the fields after a
‘thermalization’ Langevin time 6 are characterized by p[A] « exp (iSym[A]). This leads to

Oo+A0

(O[A]) = / DAp[A]O[A] ~ lim doO[A(0)], 5)

Gy— 00 AQ 6

for the expectation value of an observable O and sufficiently large sampling interval A@. Note that
the difficulties associated with traditional Monte Carlo techniques due to the complex weights are
circumvented by sampling gauge configurations from the complex stochastic process.
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2.2 Complex Langevin on the lattice

We numerically solve the complex Langevin equation by discretizing the Yang-Mills action by
the Wilson plaquette action,

SwlUl == D purTr [Up (0 = 1], (©)
8 X,MEV

with the lattice spacing dependent anisotropy factors po; (x) = —as/a;(x), pij(x) = a,(x)/as. The
gauge link fields and plaquette variables are given by

Uu(x) =~ exp [iga,(x)Au(x + 2/2)] € SL(N¢, C) «~ SU(N.), (7)
Upy (x) = Up(0) Uy (x + DU, (x + 9)U; (). (8)

The above formulation is analytic and agrees with the SU(N,) version for unitary fields.

Note that the temporal lattice spacing a,(x) exhibits time dependence due to the discretization
of the complex time contour. For brevity, we write this as a general x-dependence to avoid
the need for differentiating between temporal and spatial dependencies. We further introduced
a;(x) = (a;(x) + a;(x + 0)/2 to retain the time-reversal symmetry of the Wilson action also on
general complex time contours.

The solution of the CL equation (3) is obtained by the Euler-Maruyama scheme in terms of the
gauge link formalism:

oSw

it?
0Af(x)

Uu(x,0+¢€) = exp €

+ Ve (x, 0)

A(x)=A(x,0)

Uy(x,6). (©)]

Details on the derivation of the CL formalism and the drift term on general complex time contours
can be found in our recent work [3].

2.3 Instabilities

Although there have been remarkable advances in the development of the CL method, situations
exist where CL is limited in its applicability. The main reason is the emergence of two types of
issues: numerical runaways and wrong convergences. The former have been traced back to the
instability of numerical schemes [7-9], which are applied to solve the complex Langevin equation,
while the latter are due to the appearance of non-vanishing boundary terms during the evolution
and the spectrum of the Fokker-Plank evolution operator [6, 10—12]. Earlier studies of real-time
Yang-Mills theory [13] have shown that CL simulations suffer from both issues. Nevertheless, in
the past two decades, the CL method has been improved by applying stabilization techniques with
the aim of removing these complications.

In this work, we take advantage of the kernel freedom of Langevin equations. This allows
the transformation of the drift and the noise term without altering the stationary solution of the
stochastic differential equation, but it can drastically improve the stability of the dynamics [14, 15].
In particular, we apply the anisotropic kernel that is motivated by a contour parametrization-
dependent CL formulation and was derived in our earlier paper [3]. This kernel effectively rescales
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the time step of the Langevin evolution for different directions

P 1)

In the aforementioned work, we have shown that this modification systematically improves the
stability of the CL algorithm by tuning the anisotropy.

Moreover, we utilize the gauge cooling method that uses the gauge invariance of Yang-Mills
theory to minimize the non-unitarity of the gauge configurations. This is commonly quantified by
the unitarity norm

= 4N1N3 DT [(Uu () U (x) = 1)] (11)

N X,

F[U]

The norm F[U] vanishes for unitary configurations and a large F[U] is often understood as a
measure of the instability of complex Langevin simulations. Other than gauge invariance, the effect
of gauge cooling profits from the compactness of the original unitary configuration space. Hence,
gauge cooling can further be interpreted as a “quasi-compactification” of the sampling space. We
remark that although it is non-holomorphic, it was shown that gauge-invariant observables are
unaffected by this cooling procedure [16].

2.4 Simulation strategy

It has been found that the discretized path integral along the Minkowski action leads to an ill-
defined temporal continuum limit when the Wilson action is employed [17]. It has been therefore
suggested to rotate the gauge coupling by a complex phase factor to regulate the integral. In the
context of this work, we interpret this phase as a tilt of the real-time contour to effectively regularize
the path integral on the lattice. In particular, we tilt the forward and backward time branches towards
the Euclidean time direction. This is visualized in Fig. 1 by the dotted gray lines, where we hold
the real-time extent 7,,x and the inverse temperature S of the contour fixed while decreasing the
angle . In addition, this adds a real part to the action of the path integral, thus weakening the
severity of the sign problem and allowing for more stable CL simulations. However, we need to
extrapolate towards the Schwinger-Keldysh contour (illustrated by a black arrow in Fig. 1), which
requires simulations at various tilt angles.

The anisotropic kernel in Eq. (10) allows us to counteract the instabilities for shrinking tilt
angles. This is achieved by increasing the bare anisotropy a,/|a,| such that the kernel in conjunction
with the gauge cooling technique stabilizes the CL dynamics for the smallest necessary angle to
perform an extrapolation @ — 0. This anisotropy is imposed for all simulations (at different tilt
angles) to obtain sufficient data for the extrapolation.

2.5 Correlations of the magnetic energy density

Transport coefficients of the QGP such as the shear and bulk viscosities or the speed of sound
can be expressed in terms of the unequal-time correlation function of the energy-momentum tensor
Ty Closely related to this quantity, we consider the (chromo-)magnetic contribution to the energy
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density %BZ. We approximate this quantity by expanding the relation of the field strength tensor
and plaquette variables

Uij(x) = exp [ia; Fi;(x) + O(a))] . (12

In terms of cloverleaves, which are averages of four neighboring planar plaquettes,

1
Cij(x) = Z[Uij(x) +Uj—j)(x) + Uiy jy (x) + Uiy j (x)], (13)

we obtain the magnetic energy density as

. 1 )
B (x) = Tr[Fy () FY ()] ~ —— 3T {Palcyl’}, (14)
) l,J
where P4 projects on the anti-hermitian trace-zero part of a given matrix. This expression is used
to reduce observable-based cutoff effects compared to the analogous definition using plaquette
variables directly.
In our study, we calculate unequal-time correlations of %BZ averaged over the spatial lattice,

C(t,t') = ﬁ Z (B*(t,x)BX(', X)) . (15)

The choice of this observable is mainly motivated by its improved statistical properties due to the
average over X and serves as a first study of correlations in Yang-Mills theory in 3+1 dimensions.
As the spatial sum is a linear operation, it still allows us to explicitly check different analytic features
of the correlation function in thermal equilibrium. In turn, we give evidence for the correctness of
our CL simulations footed on this non-local observable.

3. Results

In this section, we first summarize the numerical setup and model parameters employed in our
CL simulations of real-time Yang-Mills theory. These simulations are performed to compute the
real-time correlation function of the magnetic energy density C(z,¢") given in Eq. (15). We then
justify our extrapolation procedure and introduce the nomenclature for different parts of C(z,t’).
Finally, we show the obtained real-time correlation function and argue that it satisfies a non-trivial
consistency relation expected from the continuum theory. For more details, we refer to Ref. [4].

3.1 Numerical setup

We simulate SU(2) pure gauge theory on an N; X N lattice with Ny = 16 that respects
the tilted real-time contour by introducing a time-dependent complex temporal lattice spacing
as(x). All dimensionful quantities presented in this work are given in units of a;,. We impose
a lattice anisotropy of a,/|a;| ~ 16, which suffices to stabilize contours with inverse temperature
Blas = 1/(Tas) = 1 and real-time extent of #,,x = 1.58 by using the anisotropic kernel (10). We
further assume g = 0.5 for the gauge coupling in all simulations. In addition, we perform one gauge
cooling step with a step size of 0.05 after each CL update (see Appendix in [3] for details). We
consider tilted time contours with angles @ ranging from tan(«) = 1/3 to tan(a) = 1/96.
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Figure 2: The figure shows the real (leff) and imaginary (right) parts of the Feynman propagator of the
magnetic contribution to the energy density. We present this correlation for various tilt angles a for the
complex time contour from tan(a) = 0.33 to 0.01. The change of the curve slows down for small «
indicating convergence towards the real-time correlation function.

We evolve the gauge fields starting at € = 0 with configurations of identity matrices and use
an improved Langevin step [18] with a step size of € = 107*. For the numerical evaluation of
unequal time correlations, we simulate until the thermalization of the Langevin evolution has been
ensured and draw 100 independent equidistant configurations in the Langevin time interval 8 = 10
to 20. To counteract increasingly noisy data for shrinking tilt angles, we also average over 100 (for
tan(a) = 1/3) up to 1000 (for tan(a) = 1/96) independent Langevin trajectories.

3.2 Extrapolation towards the Schwinger-Keldysh contour

In Fig. 2 we show the real (left panel) and imaginary (right panel) part of the Feynman
propagator D that is defined as the correlator on the forward time branch

DY (At=t-1)=DF(1,1) = C(1,,7)). (16)

We show all correlations as functions of the time difference At = ¢ — ¢’ as the time-translation
invariance in thermal equilibrium imposes the independence of the central time coordinate (z+¢") /2.
We observe that the observables converge for shrinking angles. Notably, we have checked and
observed the same behavior independently for the correlations on the backward path as well as
the correlations between forward and backward branches. This strongly supports our approach to
obtain real-time correlations by extrapolating @ — O.

We use a cubic polynomial extrapolation with respect to @ to obtain the correlation of the
magnetic energy density on the real-time path. The result is visualized in Fig. 3, where the forward
and backward paths are indicated by ¢.., respectively. The figure can be divided into four separate
quadrants, each corresponding to a propagator

D(t,t') = C(ty,t"), DF(1,t)=C(t_,1.),

17
DY (1,t) = C(t,,1,), D (t,1') =C(t_,1}), o

where D¥, DF denote time ordered and anti-time ordered Feynman propagators and D~, D< are
known as the forward and backward Wightman functions. Moreover, the symmetric structure in
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(Re[C(t,1)])

Figure 3: The figure shows the real (left) and imaginary (right) parts of the correlation function C(t,t")
extrapolated towards the SK contour (¢« — 0) restricted to the real-time branches. The axis labels 7. indicate
the forward and backward path while the labels in the quadrants specify the corresponding correlation
function defined in Eq. (17).

these Figures stems from the time-translation invariance of the observable. Statistical errors were
examined using a bias-corrected “delete-one” Jackknife method, confirming their small magnitude.
This underscores that the extrapolation is well-behaved.

3.3 Correspondence between Feynman propagator and Wightman functions

To further confirm our numerical results, we study analytic features that are manifest in quantum
field theory. We explicitly check the relation between the Feynman and Wightman propagators,

DF (1, =031 -)D>(t,t') +O(' —t)D=(1,1"), (18)

where © is the Heaviside step function. Our numerical results are presented in Fig. 4 where we
show the left- and right-hand side of Eq. (18) by separate lines. We show the correlations based on
the extrapolated data @ — 0 and at finite tilt angle tan(a) = 1/12. Strikingly, the relation is only
satisfied to very good accuracy for the former. At a finite tilt angle, we see large deviations between
both sides of the relation. This further supports the correctness of our extrapolation strategy.

4. Conclusion

In this proceeding, we have presented the first direct computation of real-time correlation
functions in 3+1 dimensional SU(2) Yang-Mills theory, summarizing our results from [4]. These
were achieved by utilizing the CL method based on our recent work [3]. Despite the presence
of a hard sign problem in the calculation of real-time observables, our strategy of combining the
anisotropic kernel with the gauge cooling method allows us to perform stable CL simulations, which
enables the extraction of real-time observables.

In particular, we have calculated the correlation function of the magnetic contribution to the
energy density on discretized Schwinger-Keldysh contours with a real-time extent of f.x = 1.5
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Figure 4: The figure shows the real (leff) and imaginary (right) part of Eq. (18), which relates the Feynman
propagator and the Wightman sectors of C(z,¢"). In both panels, we show that this relation is well-satisfied for
the extrapolated data @ — 0. This relation is not satisfied for finite tilt angles, exemplified by tan(a) = 1/12,
where both sides of the relation deviate strongly from each other.

and inverse temperature 3/a; = 1. The investigation of non-trivial consistency relations shows the
correctness of our results and supports the applicability of CL to real-time simulations.

In future work, one of our goals is to increase the real-time extent #p,x and coupling g while
keeping our simulations stable. This is needed to gain a detailed understanding of the correlation
function in frequency space. This may culminate in the calculation of transport coefficients and
spectral functions in the future, which are of high phenomenological interest to heavy-ion collision
and quark-gluon plasma research.

We note that a renormalization procedure is currently missing for real-time lattice simulations
and was not conducted in this work. This is needed to extract physical quantities for such simulations.
Our advances in the field and other recent progress in the realm of scalar field theory [19] underscore
the need for a systematic approach to the determination of a scale in real-time lattice simulations.
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