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The deconfinement transition in non-Abelian gauge theory is understood as spontaneous breaking
of Z𝑁 symmetry at high temperatures. Accordingly, quark-gluon plasma generally includes some
partial cells called center domains, each with a homogeneous Polyakov-loop expectation value. In
this work, constructing an effective action describing the deconfinement vacuum of Yang-Mills
theory with 𝑁 colors, we discuss the properties of center domains. First, we evaluate the spatial
correlation of local Polyakov-loop fluctuation and demonstrate that some fluctuation becomes
a Nambu-Goldstone-like mode in the large-𝑁 limit. We also discuss surface tension between
two Z𝑁 center domains. Second, we estimate the global vacuum-to-vacuum transition in a single
center domain. We find that some threshold volume exists, where a domain larger than this volume
is stable, and vice versa. Identifying the threshold as the lower bound of a stable center domain
volume, we quantitatively argue the typical volume scale of center domains.
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1. Introduction

Color confinement, a distinctive feature of quantum chromodynamics (QCD), ceases to exist
under high temperatures. Both theoretical and experimental physicists have extensively investigated
the deconfined system with keen interest. From a symmetry standpoint, the deconfinement is
explained as spontaneous symmetry breaking (SSB) of the global Z𝑁 symmetry, which corresponds
to the center of the gauge group SU(𝑁) [1]. This results in a nontrivial Z𝑁 structure in the
deconfinement Yang-Mills vacuum due to its spontaneous breaking.

This study aims to examine the deconfinement vacuum structure utilizing the Polyakov-loop
effective model of the SU(𝑁) Yang-Mills theory. We construct an effective model that includes the
traced Polyakov-loop field 𝜙(𝒙) and investigate its fluctuation properties beyond a spatially uniform
vacuum. Our initial objective revolves around a quantitative assessment of the correlation length
of the Polyakov loop phase Arg (𝜙(𝒙)). At elevated temperatures, the theory exhibits 𝑁 different
degenerate vacua, reflective of the spontaneously broken Z𝑁 symmetry. In the large-𝑁 limit, we
expect the potential wall between these vacua to vanish, transforming the global Z𝑁 symmetry into
an approximately continuous U(1) symmetry. Consequently, the massive mode is reduced into a
massless mode, akin to an extension of the Nambu-Goldstone theorem.

This paper also explores the typical volume of center domains within a quenched quark-gluon
plasma. The system is envisioned to be divided into numerous small-volume center domains,
as depicted in Fig. 1. Each domain is characterized by its Polyakov-loop expectation value ⟨𝐿⟩,
representing one of the 𝑁 degenerate vacua. We estimate the timescale for the domains to persist
in one of the potential minima, elucidating how their volumes are evaluated from the perspective
of stability.

Figure 1: The Polyakov-loop effective potential and the center domain of the quark-gluon plasma. The
arrows symbolize the phases of the vacuum expectation value of the Polyakov loop. Each domain in quark-
gluon plasma, separated by potential walls, is characterized by its Polyakov-loop configuration.
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2. Formulation and Symmetry

Our formulation begins from the lattice action for SU(𝑁) Yang-Mills theory

𝑆YM [𝑈] = − 2
𝑔2

∑︁
𝑠

∑̀︁
<a

Re Tr □`a (𝑠). (1)

The thermal average of the Polyakov loop

𝐿𝑖 =

𝑁𝜏∏
𝑖𝜏=1

𝑈𝜏 (𝑖𝜏 , 𝑖) ∈ SU(𝑁) (2)

serves as an order parameter characterizing the confinement.
The action (1) is invariant under the spatially globalZ𝑁 transformation: 𝑈𝜏 (𝜏0, 𝑖) → 𝑧𝑈𝜏 (𝜏0, 𝑖)

(𝑧 = 𝑒𝑖
2𝜋𝑛
𝑁 , 𝑛 = 0, 1, ..., 𝑁−1), under which the Polyakov loop (2) changes as 𝐿𝑖 → 𝑧𝐿𝑖 . An effective

action that includes the Polyakov loop as its dynamical variable is expected to take over the original
Z𝑁 invariance, and the symmetry undergoes spontaneous breaking at high temperatures. Employing
a strong coupling approximation [2], we integrate out all space-like link variables, resulting in

𝑍YM =

∫ (
𝑁𝜏∏
𝑖𝜏=1

∏
𝑖

d𝑈𝜏 (𝑖𝜏 , 𝑖)
)

exp
_−𝑁𝜏

YM

∑︁
⟨𝑖, 𝑗 ⟩

Tr(𝐿†
𝑖
) Tr(𝐿 𝑗)

 (3)

up to the leading order, where ’t Hooft coupling is denoted as _YM = 𝑔2𝑁 . The summation Σ⟨𝑖, 𝑗 ⟩
covers all nearest-neighbor variables. The effect of the SU(𝑁) group integration can be taken into
account by expressing the Haar measure as part of an effective potential. Then, one finds

𝑍YM =

∫
D𝜙 exp

[
−𝜙†Ĵ −1𝜙 +

∑︁
𝑖

lnH (𝑁 )

] (
𝜙𝑖 ≡

1
𝑁

Tr(𝐿𝑖)
)
. (4)

Here 𝜙 = (𝜙1, 𝜙2, ...), and the string tension at zero temperature is given as 𝜎 ≡ 𝑎−2 ln_YM. We can
write the Haar measure H (𝑁 ) as a function of the traced Polyakov loop 𝜙𝑖 by taking the Polyakov
gauge. See [3] for further information including the explicit form of the kernel Ĵ −1.

Coarse graining of the short-wavelength modes results in the effective action

𝑆YM [𝜙(𝒙)] = 𝐶

∫
d3𝒙

(
|∇𝜙(𝒙) |2 − 6

𝑎2 |𝜙(𝒙) |
2 − 𝑒𝜎𝑎/𝑇

𝑁2𝑎2 lnH (𝑁 ) (𝜙(𝒙))
)
. (5)

The corresponding partition function is given by 𝑍YM =
∫
D𝜙 𝑒−𝑆YM [𝜙 (𝒙) ] , where 𝐶 is a constant.

Although this model is constructed on a lattice, it can be treated as a continuous field model,
focusing specifically on long-range correlations in the infrared region where |𝒌 | ≪ 𝑎−1.

Next, we proceed to a crucial component in (5): the effective potential lnH (𝑁 ) (𝜙), which is
invariant under the global Z𝑁 transformation 𝜙 ↦→ 𝑒𝑖

2𝜋𝑛
𝑁 𝜙. Since the effective potential for SU(2)

and one for SU(3) are exactly known [4], our focus now shifts to examining the scenario for 𝑁 ≥ 4.
In the absence of a known explicit form for these cases, we opt for the simplest form that preserves
Z𝑁 symmetry in our model, aligning with Sannino’s proposal [5]

H (𝑁 ) (𝜙) = 1 − 𝑏2 |𝜙 |2 − 𝑏4 |𝜙 |4 + 𝑏𝑁Re 𝜙𝑁 . (6)
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As a caution, this form may not be suitable for analyses on the deconfinement phase transition, for
(6) shows second-order transitions for even 𝑁’s, whereas they are expected to be first-order ones.
Nevertheless, we see no issues as long as the discussion is limited to the deconfinement phase.

As shown below, the effective action (5) suggests the emergence of a massless mode in the
large-𝑁 limit [3]. We delve into the fluctuations around one of the potential minima and examine
the angle \ (𝒙) correlation function. Assuming a frozen amplitude i.e. 𝜙(𝒙) = 𝑙0𝑒

𝑖 \ (𝒙)/𝑙0 with
𝑙0 ≡ ⟨|𝜙(𝒙) |⟩ ∈ (0, 1), we expand (5) in terms of \ (𝒙) to acquire

𝑆YM ∼ 2𝐶
∫

d3𝒙

[
1
2
(∇\)2 +𝑉YM(\)

]
, (7)

where 𝑏 ≡ 1 − 𝑏2𝑙
2
0 − 𝑏4𝑙

4
0 + 𝑏𝑁 𝑙

𝑁
0 and

𝑉YM(\) ≡
𝑚2

YM𝑙20
𝑁2

(
1 − cos

(
𝑁

𝑙0
\

))
, 𝑚YM ≡

√︄
𝑒𝜎𝑎/𝑇

2𝑎2

𝑏𝑁 𝑙
𝑁−2
0
𝑏

. (8)

For a small \ fluctuation around \ = 0, the correlation function of \ (𝒙) is given by

⟨\ (𝒙)\ (0)⟩ =
∫
D\ \ (𝒙) \ (0) 𝑒−𝑆YM∫

D\𝑒−𝑆YM
∝ 1

|𝒙 | 𝑒
−𝑚YM |𝒙 | . (9)

This mode exhibits a Yukawa-type spatial correlation with a range of 𝑚−1
YM, where 𝑚YM is called

the screening mass. Considering (8) and the upper bound constraint 𝑙0 < 1, we conclude

lim
𝑁→∞

𝑚YM = 0 (10)

in the large-𝑁 limit. A Coulomb-type spatial correlation with an infinite range emerges, akin to a
Nambu-Goldstone mode.

Moreover, we can calculate the surface tension 𝛼 between the adjacent domains using the
parameters shown in (7). The surface tension for the model with cosine-type potential is analytically
known [6], and we obtain

𝛼 =
𝑁

2𝑎3
𝑏𝑁

𝑏
𝑙𝑁0 . (11)

This tension diminishes in the large-𝑁 limit, indicating the vanishing of the potential barrier between
adjacent vacua in this limit.

Both of these outcomes give us circumstantial evidence that a Nambu-Goldstone-like mode
emerges in this model. In other words, these results suggest that under the large-𝑁 limit the Z𝑁 -
symmetric potential is transformed into a U(1)-symmetric one, and the structure of symmetry of
the action is qualitatively changed.

3. Center Domain Volume

Next, we proceed to estimate the lifetime of a domain and the volume of the center domain based
on (7). To simplify the analysis, we assume that the dominant path occurs along the circumference
|𝜙 | = 𝑙0, reducing the transition on the 𝜙-plane to a one-dimensional system.
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Figure 2: The total transition rate of the domain as a function of 𝑉1/3 and 𝑁 in the left panel, while the right
panel focuses on the 𝑁 = 3 case. These rates are computed using the following parameter set: lattice spacing
𝑎 = 0.4 fm, temperature 𝑇 = 400 MeV, string tension at zero temperature 𝜎 = 1.0 GeV/fm, the vacuum
expectation value 𝑙0 = 0.5, and 𝑏𝑁/𝑏 = 7.52 (the value when 𝑁 = 3). Taken from [3].

Figure 3: The lifetime of the domain as a function of 𝑉1/3 and 𝑁 in the left panel, with a focus on the case
where 𝑁 = 3 in the right panel. Here the same set of parameters as in Fig. 2 are used. Taken from [3].

In the subsequent discussion, we assume that the field \ (𝒙) exhibits an imaginary-time depen-
dence, and specifically, that \ (𝜏, 𝒙) is homogeneous concerning the spatial coordinate 𝒙:

𝑆QM =

∫
d𝜏

[
𝑀

2

(
𝜕\

𝜕𝜏

)2
+ 𝑉0

2

(
1 − cos

(
𝑁

𝑙0
\

)) ]
, (12)

where

𝑀 (𝑉, 𝑁) ≡
(
𝑁

𝑎

)2
· 2𝑉𝑒𝜎𝑎/𝑇 , 𝑉0(𝑉, 𝑁) ≡

2𝑉
𝑎4

𝑏𝑁

𝑏
𝑙𝑁0 (13)

It is noteworthy that in (13) the 𝑁 dependence manifests in 𝑏𝑁/𝑏 and 𝑙𝑁0 , with the dominant
contribution arising from the latter exponentiation. The action can be interpreted as that of a (1+0)-
dimensional quantum mechanical system, and we understand the vacuum-to-vacuum transition as
the dynamics of a virtual particle following this action.

The transition between two adjacent potential minima can take place through both thermal
transitions and tunneling processes. The total transition rate per unit of time, denoted as Γtot(𝑉, 𝑁),
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is expressed as the sum of these two rates

Γtot(𝑉, 𝑁) = Γth(𝑉, 𝑁) + ⟨Γtun(𝑉, 𝑁; 𝐸)⟩ . (14)

The first term is obtained on the assumption that the trapped virtual particles have energy following
the canonical distribution, and particles with energy above the potential depth can surpass the wall.
The second term, the tunneling rate, is calculated based on WKB approximation, and ⟨•⟩ represents
the thermal expectation value. Consequently, we obtain the transition rates Γtot(𝑉, 𝑁) analytically
and use them to estimate the lifetime of a domain, denoted as 𝜏𝑣 (𝑉, 𝑁) = 1/Γtot(𝑉, 𝑁). See [3] for
further information.

Figure 2 illustrates the dependence of the total transition rate Γtot on (𝑉, 𝑁). Along a specific
curve, the transition rate experiences a sharp decrease. The corresponding lifetime 𝜏𝑣 is depicted in
Fig. 3. This figure reveals that the (𝑉1/3, 𝑁)-plane divides into two different regions: the stable and
unstable-domain regions. The boundary between these two phases is a fuzzy crossover, defined by
the rapid increase in lifetime. The "critical curve," where the lifetime intersects 1.0 fm, is presented
in Fig. 4 for 𝑇 = 300MeV, 400MeV, 500MeV, and 600MeV.

In high-energy heavy-ion collision experiments, the system undergoes division into numerous
small center domains, each characterized by a different Polyakov-loop configuration. Since domains
smaller than the "critical volume" tend to decay, the typical lower bound of center domain volumes
aligns with this "critical volume."

Figure 4: The fuzzy boundaries between the unstable-domain and stable-domain regions are depicted for
various temperatures: 𝑇 = 300MeV, 400MeV, 500MeV, and 600MeV. On the transition curves, the domain’s
lifetime extends to 1.0 fm, corresponding to the typical timescale of hadrons. Domains smaller than the
transition thresholds, or unstable domains, are anticipated to shrink and vanish, whereas those surpassing the
thresholds are expected to be stabilized. Taken from [3].

4. Conclusion

In this paper, we have analytically modeled the non-trivial Z𝑁 structure of the deconfinement
phase in SU(𝑁) Yang-Mills theory and obtained an interesting depiction of the dynamics of center
domains based on Polyakov-loop effective action.

In the initial part, we developed the Polyakov-loop effective action for the theory with a
finite number of colors. We explored the correlation function of the Polyakov loop and derived
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the fluctuation mass as a function of the color number based on the model. The analysis also
encompassed the metamorphosis of the global symmetry structure in the large-𝑁 limit, with a focus
on the fluctuation of the Polyakov loop along its angle direction and the surface tension between
adjacent domains. The results affirm that this limit transforms the Z𝑁 -symmetric theory into a
U(1)-symmetric theory.

In the subsequent part, we delved into the global Z𝑁 structure in the finite-volume quark-
gluon plasma. Our study focused on the typical volume scale of one of the center domains in the
quark-gluon plasma as a function of the color number and volume. The findings revealed that the
(𝑉1/3, 𝑁)-plane can be divided into two regions: stable-domain and unstable-domain regions. This
indicates that a center domain is stable if its volume exceeds a certain threshold, while a center
domain with a volume below it is unstable.

As a technical improvement, beyond the strong coupling expansion in this paper, it is important
and desired to perform lattice QCD Monte-Carlo simulations to numerically verify our results.
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