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We propose three independent methods to compute the hadron mass spectra of gauge theories
in the Hamiltonian formalism. The determination of hadron masses is one of the key issues
in QCD, which has been precisely calculated by the Monte Carlo method in the Lagrangian
formalism. We confirm that the mass of hadrons can be calculated by examining correlation
functions, the one-point function, or the dispersion relation in Hamiltonian formalism. These
methods are suitable for quantum computation and tensor network approaches. The methods are
demonstrated with the tensor network (DMRG) in the 2-flavor Schwinger model, which shares
important properties with QCD. We show that the numerical results are consistent with each other
and with the analytic prediction of the bosonization technique. We also discuss their efficiency
and potential applications to other models. This talk is based on the paper [1].
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1. Introduction

Numerical simulation of quantum field theories in the Hamiltonian formalism would be a
promising approach thanks to recent developments in quantum computing and tensor network
methods. These methods are expected to be complementary frameworks to Monte Carlo simula-
tions in the Lagrangian formalism since they are free from the sign problem originating from the
importance sampling. Taking advantage of the numerical methods in the Hamiltonian formalism, we
develop three distinct ways to compute the mass spectrum of gauge theories; the correlation-function
scheme, the one-point-function scheme, and the dispersion-relation scheme. We summarize the
properties of these methods based on the results in Ref. [1], where the methods are demonstrated by
applying them to the 2-flavor massive Schwinger model using the density-matrix renormalization
group (DMRG) [2–5].

In the 2-flavor Schwinger model, there are three composite particles (mesons), pions 𝜋𝑎, sigma
meson 𝜎, and eta meson 𝜂. The corresponding operators and quantum numbers are given by,

𝜋𝑎 = −𝑖𝜓̄𝛾5𝜏𝑎𝜓
(
𝐽𝑃𝐺 = 1−+

)
, 𝜎 = 𝜓̄𝜓

(
𝐽𝑃𝐺 = 0++

)
, 𝜂 = −𝑖𝜓̄𝛾5𝜓

(
𝐽𝑃𝐺 = 0−−

)
, (1)

where 𝐽, 𝑃, and 𝐺 represent isospin, parity, and 𝐺-parity, respectively. We compute the mass
spectrum to test the validity of the three methods and find that the results mostly agree with each
other. Our numerical results indicate that the sigma meson is stable unlike QCD since its mass
is lighter than twice the pion mass. This result is consistent with the analytic calculation using
the WKB approximation of the bosonized model [6], where the ratio of 𝜋 and 𝜎 mass is given by
𝑀𝜎/𝑀𝜋 =

√
3. Indeed, our computations give roughly consistent results of the mass ratio.

2. Hamiltonian and calculation method

Let us consider the Hamiltonian of the 𝑁 𝑓 = 2 Schwinger model on the lattice with the
staggered fermion [7, 8]. In the Hamiltonian formalism, the physical Hilbert space is constrained
by the Gauss law condition. We choose the open boundary condition so that the lattice Gauss law
equation can be solved explicitly. Then the electric field operator is replaced by the integration of
the charge density, which consists of fermion bilinear operators. Furthermore, we can remove all
the degrees of freedom of link variables from the Hamiltonian since they can be absorbed into the
U(1) phase of the fermions by gauge fixing. Thus, the Hamiltonian is written only by the fermionic
operators. Finally, we map the lattice Hamiltonian to the spin Hamiltonian using the Jordan-Wigner
transformation, which is convenient for applying tensor network methods or quantum computations.
As a result, we obtain the spin Hamiltonian with a finite-dimensional Hilbert space,

𝐻 =
𝑔2𝑎

8

𝑁−2∑︁
𝑛=0


𝑁 𝑓∑︁
𝑓 =1

𝑛∑︁
𝑘=0

𝜎𝑧
𝑓 ,𝑘

+ 𝑁 𝑓

(−1)𝑛 + 1
2

+ 𝜃
𝜋


2

− 𝑖

2𝑎

𝑁−2∑︁
𝑛=0

(
𝜎+

1,𝑛𝜎
𝑧
2,𝑛𝜎

−
1,𝑛+1 + 𝜎

+
2,𝑛𝜎

𝑧
1,𝑛+1𝜎

−
2,𝑛+1 − h.c.

)
+ 𝑚lat

2

𝑁 𝑓∑︁
𝑓 =1

𝑁−1∑︁
𝑛=0

(−1)𝑛𝜎𝑧
𝑓 ,𝑛
. (2)

Here the mass 𝑚 of the continuum theory is replaced by 𝑚lat := 𝑚 − 𝑁 𝑓 𝑔
2𝑎/8 in the lattice

Hamiltonian, following the proposal [9] for eliminating 𝑂 (𝑎) correction.
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We use the DMRG method to obtain the ground state of the spin Hamiltonian. The DMRG
is a variational algorithm using the matrix product state (MPS) as an ansatz, where the MPS is
updated to decrease the energy 𝐸 = ⟨Ψ | 𝐻 |Ψ⟩. In addition, the low-rank approximation by the
singular value decomposition (SVD) is performed. We introduce a cutoff parameter 𝜀 to determine
the bound dimension such that the truncation error by SVD is smaller than 𝜀. The approximation
by MPS is improved by setting 𝜀 smaller, whereas it requires more computational cost due to the
growth of the bond dimension. It is also possible to obtain the low-energy excited states using
DMRG. For this purpose, we change the Hamiltonian in DMRG for the ℓ-th excited state as

𝐻ℓ = 𝐻 +𝑊
ℓ−1∑︁
ℓ′=0

|Ψℓ′⟩ ⟨Ψℓ′ | , (3)

where 𝑊 > 0 is a weight to impose the orthogonality. We can obtain the eigenstates of the
Hamiltonian up to any level step by step. We used the C++ library of ITensor [10] to perform the
tensor network calculation.

3. Simulation results

In this section, we show the numerical results of the mass spectrum of the 2-flavor Schwinger
model at 𝜃 = 0 obtained by the three methods. From now on, we set the gauge coupling 𝑔 = 1 to
measure the energy scale in this unit since 𝑔 has mass dimension 1. The fermion mass is fixed to
𝑚 = 0.1.

3.1 Correlation-function scheme

The mass spectrum is obtained from the spatial correlation function as we do in the conventional
Euclidean lattice gauge theory. First, we focus on the pion. We measure the spatial correlation
function for the ground state, 𝐶𝜋 (𝑟) = ⟨𝜋(𝑥)𝜋(𝑦)⟩, by changing the distance 𝑟 = |𝑥 − 𝑦 |. To
investigate its exponential behavior, we compute the so-called effective mass 𝑀𝜋,eff (𝑟). The 3-
point average of 𝑀𝜋,eff (𝑟) is shown in the left panel of Fig. 1 for the various values of the cutoff
parameter 𝜀.

One usually regards the plateau value of 𝑀𝜋,eff (𝑟) as the pion mass in the Monte Carlo study
on the Euclidean lattice. Although the result with the largest cutoff 𝜀 = 10−10 is almost flat for
𝑟 ≳ 10, this plateau behavior is an artifact of the low-rank approximation. Here the asymptotic form
of the spatial correlator should be the Yukawa type, 𝐶𝜋 (𝑟) ∼ 𝑒−𝑀𝜋𝑟/𝑟𝛼, not purely exponential.
Thus, the corresponding effective mass is given by 𝑀𝜋,eff (𝑟) ∼ 𝛼/𝑟 +𝑀𝜋 . To see this behavior, we
plot 𝑀𝜋,eff (𝑟) against 1/𝑟 in the right panel of Fig. 1. We find that the asymptotic behavior of the
effective mass is sensitive to 𝜀. In fact, we can see the 1/𝑟-behavior of 𝑀𝜋,eff (𝑟) for sufficiently
small 𝜀, namely the sufficiently large bond dimension. The mass 𝑀𝜋 should be estimated by the
linear extrapolation to 1/𝑟 → 0. We fitted the data points for 𝜀 = 10−16 by 𝛼/𝑟 +𝑀𝜋 , and obtained
𝑀𝜋 = 0.431(1) and 𝛼 = 0.477(9) with the systematic error from the uncertainty of the fitting range.

Similarly, we can obtain the mass of the iso-singlet mesons. We compute the effective mass
of the sigma and eta mesons, 𝑀𝜎,eff (𝑟) and 𝑀𝜂,eff (𝑟), and confirm that they behave as ∝ 1/𝑟 for
smaller 𝜀. The results for 𝜀 = 10−16 are fitted by 𝛼/𝑟 + 𝑀 . Then we obtained 𝑀𝜎 = 0.722(6) with
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Figure 1: (Left) The 3-point average of the pion effective mass 𝑀𝜋,eff (𝑟) is plotted against the distance
𝑟 for different cutoff 𝜀. The number of lattice sites is 𝑁 = 160 and the lattice spacing 𝑎 is determined so
that 𝐿 = 𝑎(𝑁 − 1) = 39.8. (Right) The effective mass 𝑀𝜋,eff (𝑟) is plotted against 1/𝑟. The data points for
𝜀 = 10−16 are fitted by 𝛼/𝑟 + 𝑀 inside the region 0.075 ≤ 1/𝑟 ≤ 0.15. The shaded band depicts the fitting
result with the systematic error.

𝛼 = 0.83(5) for sigma meson and 𝑀𝜂 = 0.899(2) with 𝛼 = 0.51(2) for eta meson in the same way
as for the pion.

3.2 One-point-function scheme

The second method to compute the meson mass does not rely on the two-point correlation
functions. Instead, we use the open boundary as a source of excitation from the thermodynamic
ground state. In the gapped system, the boundary effect decays exponentially with the distance 𝑥 from
the boundary. Thus, the one-point function of a local operator should behave as ⟨O(𝑥)⟩ ∼ 𝑒−𝑀𝑥 .
Here 𝑀 corresponds to the mass of the lightest particle of the same quantum number as O(𝑥).

Let us first focus on the iso-singlet particles. Since the 𝐺-parity is not spontaneously broken,
the one-point functions of 𝜎 and 𝜂 should be ⟨𝜎(𝑥)⟩ = const. and ⟨𝜂(𝑥)⟩ = 0 in the thermodynamic
limit. However, the open boundary violates the 𝐺-parity, which is encoded as the one-unit lattice
translation in the staggered fermion formalism. Therefore, the boundary state is a source of the
singlet mesons and gives nontrivial contributions to their one-point functions. For example, the
left panel of Fig. 2 shows the numerical result of ⟨𝜂(𝑥)⟩ evaluated for the ground state with various
cutoff parameters 𝜀. The one-point functions decay exponentially as expected. Thus, we compute
ln | ⟨𝜎(𝑥) − 𝜎(𝐿/2)⟩ | and ln | ⟨𝜂(𝑥)⟩ | and fit them by −𝑀𝜎𝑥 + 𝐶 and −𝑀𝜂𝑥 + 𝐶, respectively, in
the range 7 ≤ 𝑥 ≤ 13.1 Then we obtain 𝑀𝜎 = 0.761(2) with 𝐶 = −2.71(2) for the sigma meson
and 𝑀𝜂 = 0.9014(1) with 𝐶 = −1.096(1) for the eta meson with the smallest cutoff 𝜀 = 10−16. We
find that the results with the other values of 𝜀 are consistent within the fitting error. Thus, the cutoff
dependence is negligible, unlike the case of the correlation functions.

Next, we turn to the analysis of the pion. Since the boundary state at 𝜃 = 0 is invariant under
the isospin rotation, it does not produce any single pion state. As a result, we have ⟨𝜋(𝑥)⟩ = 0
everywhere. To induce the nontrivial ⟨𝜋(𝑥)⟩, we need a boundary state that transforms nontrivially
under the isospin rotation. At 𝜃 = 2𝜋, the ground state has a such property while the bulk property
remains the same as 𝜃 = 0. The ground state at 𝜃 = 2𝜋 can be regarded as a nontrivial SPT state
protected by the isospin symmetry. Thus, there are boundary states with the isospin 1/2, which

1For the sigma meson, we subtract the value ⟨𝜎(𝐿/2)⟩ at the center 𝑥 = 𝐿/2 of the lattice from ⟨𝜎(𝑥)⟩ to remove the
constant shift.
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Figure 2: The one-point functions of the eta meson ln | ⟨𝜂(𝑥)⟩ | at 𝜃 = 0 (left) and the pion ln | ⟨𝜋(𝑥)⟩ | at
𝜃 = 2𝜋 (right) are plotted against the distance 𝑥 from the boundary for different cutoff 𝜀. The number of
lattice sites is 𝑁 = 160, and the lattice spacing 𝑎 is determined so that 𝐿 = 𝑎(𝑁 − 1) = 39.8. The fitting
results −𝑀𝜂𝑥 +𝐶 and −𝑀𝜋𝑥 +𝐶 for 𝜀 = 10−16 are depicted by the solid lines inside the fitting range and by
the broken lines outside.

can be a source of the pion, so that ⟨𝜋(𝑥)⟩ ≠ 0. The one-point function ⟨𝜋(𝑥)⟩ evaluated at 𝜃 = 2𝜋
are shown in the right panel of Fig. 2. We confirm the result decays exponentially and fit the data
points of ln | ⟨𝜋(𝑥)⟩ | by −𝑀𝜋𝑥 + 𝐶 in the range 7 ≤ 𝑥 ≤ 13. The fitting results, 𝑀𝜋 = 0.4175(9)
and 𝐶 = 0.203(9), are independent of 𝜀 up to the fitting error as before.

3.3 Dispersion-relation scheme

The third method to compute the spectrum is based on a different idea from the previous ones
and is specific to Hamiltonian formalism. We compute the energy gaps Δ𝐸 and momentum square
𝐾2 of the various excited states by generating them by DMRG. Then we measure their quantum
numbers to identify the type of meson. The mass spectrum can be obtained from the dispersion
relation Δ𝐸 ≃

√
𝐾2 + 𝑀2.

We generated the MPS up to the 23rd excited state at 𝜃 = 0 and measured the square of total
momentum 𝐾2. The result is shown in the left panel of Fig. 3. From the energy gap and the total
momentum, we find triply degenerated states, which seem to be the pion states. There are also some
singlet states, which will be the eta or sigma mesons.

Practically, we identify each state by measuring the expectation values of the isospin operators
𝑱2 and 𝐽𝑧 , the parity 𝑃, and the 𝐺-parity 𝐺 = 𝐶𝑒𝑖 𝜋𝐽𝑦 . We find that the expectation values of the
isospin operators are 𝑱2 = 2 with 𝐽𝑧 = 0,±1 for the triplets and 𝑱2 = 0 with 𝐽𝑧 = 0 for the singlets
precisely. On the other hand, we have |𝑃 |, |𝐺 | ≠ 1 due to the boundary effect. Hopefully, it can be
assumed that the sign of 𝑃 and 𝐺 remember the original quantum number [11].2 We identify the
triplets which have the quantum numbers consistent with 𝐽𝑃𝐺 = 1−+ and 𝑱2 = 2 as the pion states.
From the iso-singlet states with 𝑱2 = 0, we find the both states of sigma meson 𝐽𝑃𝐺 = 0++ and eta
meson 𝐽𝑃𝐺 = 0−−.

After each meson is identified, we obtain the dispersion relation, namely the relation between
the energy gap Δ𝐸ℓ = 𝐸ℓ − 𝐸0 and the momentum square Δ𝐾2

ℓ
=
〈
𝐾2〉

ℓ
−
〈
𝐾2〉

0 as shown in the
right panel of Fig. 3. Then the data points are fitted by Δ𝐸 =

√
𝑏2Δ𝐾2 + 𝑀2 with fitting parameters

2We check that the 𝑃 and 𝐶 give well-defined expectation values for the low-lying states of the Schwinger model on
the open lattice in the continuum limit. We also find |𝑃 |, |𝐶 | → 1 in the continuum limit of the free staggered fermion
on the periodic lattice.

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
2
0
5

Three ways of calculating mass spectra in the Hamiltonian formalism Akira Matsumoto

0 2 4 6 8 10 12 14 16 18 20 22
-th excited state

0.0

0.1

0.2

0.3

0.4

0.5

0.6

K2
K2

0

L=19.8, N=100, m=0.1, = 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6
K2 K2 0

0.0

0.2

0.4

0.6

0.8

1.0

E
E 0

L=19.8, N=100, m=0.1, = 0

ground state
J2 = 2, G > 0
J2 = 0, G > 0
J2 = 0, G < 0

M
M
M

Figure 3: (Left) The square of total momentum Δ𝐾2
ℓ
=
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𝐾2〉

ℓ
−
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𝐾2〉

0 is plotted against the level of the
excited state ℓ after subtracting the result of the ground state. (Right) The energy gap Δ𝐸ℓ is plotted against
Δ𝐾2

ℓ
. The state with the same isospin and 𝐺-parity is represented by the same symbol. The fitting results of

the dispersion relations are depicted by the broken lines.

𝑀 and 𝑏, where the meson mass is given by 𝑀 as an extrapolation to Δ𝐾2 → 0. The results
are 𝑀𝜋 = 0.426(2), 𝑏𝜋 = 1.017(4) for the pion; and 𝑀𝜎 = 0.7456(5), 𝑏𝜎 = 1.087(2) for the
sigma meson with the fitting error. For the eta meson, we simply solved an equation and obtained
𝑀𝜂 = 0.904 and 𝑏𝜂 = 0.962.

4. Conclusion and Discussion

In this work, we examine three distinct methods to compute the mass spectrum of lattice
gauge theories in the Hamiltonian formalism for implementation to tensor networks and quantum
computation. We demonstrate the methods using DMRG in the massive 2-flavor Schwinger model
at 𝜃 = 0, which shares some properties with 4d QCD. There are composite particles (mesons) as
triplets or singlets of the isospin symmetry.

We computed the masses of the pion, sigma, and eta meson by the three methods. The results are
shown in Fig. 4. They are almost consistent with each other up to possible systematic errors, such as
the continuum and infinite-volume limits. The results are also consistent with the analytic calculation
by the bosonization method. Indeed, the relation 𝑀𝜋 < 𝑀𝜎 < 𝑀𝜂 is satisfied, and the order of the
eta meson mass 𝑀𝜂 ∼ 0.9 is close to 𝑀𝜂 ∼ 𝜇 = 𝑔

√︁
2/𝜋 since 𝜇 ∼ 0.8 in the current setup. We

obtained the ratio of the pion and sigma meson mass as 𝑀𝜎/𝑀𝜋 = 1.68(2), 1.821(6), 1.75(1) from
the correlation function, the one-point function, and the dispersion relation, respectively.3 These
results agree with the specific value 𝑀𝜎/𝑀𝜋 =

√
3 given by the WKB approximation [6] within not

more than a 5% deviation. The reason why the semiclassical analysis gives such an almost correct
answer beyond its validity range remains a theoretically interesting question.

So far we have computed the mass spectrum at 𝜃 = 0. It is interesting to extend our work to
𝜃 ≠ 0, where the Monte Carlo simulation suffers from the sign problem [12]. We expect the three
methods to be useful in computing the mass spectrum at 𝜃 ≠ 0 as well.

3Note that the errors in the above values only contain the fitting error, and there should be further systematic errors
potentially coming from the finite lattice spacing, the finite-volume effect, the open boundary condition, the cutoff of the
bond dimension, etc.
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Figure 4: The masses of the pion, sigma, and eta meson computed by the three methods are compared.
Each result is obtained with the given finite lattice spacing. Although we also put the error bars of the fitting
error, they are too small to be seen.
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