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Quantum computation often suffers from artificial symmetry breaking. We should strive to sup-
press the artifact both by theoretical and technological improvements. The theoretical formalism
of the lattice fermion with exact chiral symmetry is called the chiral fermion. In this presentation,
we show how the chiral fermion describes chiral physics in quantum computing. We also show
that, although a drawback of the chiral fermion is large computational cost, there is a loophole in
one dimension.
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1. Introduction

In the quantum computation of lattice gauge theory, symmetry is artificially broken for many
reasons; e.g., quantum noise, truncation, lattice discretization, etc. A famous example is artificial
gauge symmetry breaking. Many artifact-robust schemes, such as gauge fixing and dual variable
representation, were suggested. What about chiral symmetry? Chiral symmetry is theoretically
complicated on a lattice. The standard lattice fermion, the Wilson fermion, breaks chiral symmetry
even on classical computation. The lattice fermion has to be formulated so as to respect chiral
symmetry. Such a formulation is called the chiral fermion formalism. Here we discuss the chiral
fermion in the Hamiltonian lattice gauge theory and its application to quantum computation. The
contents of this presentation are based on two papers: Sec. 2 is based on Ref. [1] and Sec. 3 is based
on Ref. [2].

2. Overlap fermion

The overlap fermion is the most renowned example of the chiral fermion. The Hamiltonian
formalism of the overlap fermion was given long ago [3]. The massless overlap fermion is described
by the Hamiltonian

𝐻 𝑓 = 𝜓†𝛾0𝐷𝜓 (1)

and the overlap Dirac operator
𝐷 = 1 + 𝐷𝑊√︃

𝐷
†
𝑊
𝐷𝑊

(2)

with the Wilson Dirac operator 𝐷𝑊 . Note that 𝐷 and 𝐷𝑊 are the three-dimensional quantum Dirac
operators, not the four-dimensional classical Dirac operators in the path integral formalism. We
can define two types of chiral charge operators: the “naive” chiral charge

𝑄naive = 𝜓†𝛾5𝜓 (3)

and the “conserved” chiral charge

𝑄 = 𝜓†𝛾5
(
1 − 1

2
𝐷

)
𝜓. (4)

We can algebraically show that the naive one does not commute with the Hamiltonian,

[𝐻 𝑓 , 𝑄naive] ≠ 0, (5)

but the conserved one commutes with the Hamiltonian,

[𝐻 𝑓 , 𝑄] = 0. (6)

Thus the chiral charge ⟨𝑄⟩ is conserved even for nonzero lattice spacing. The commutation relation
(6) or the existence of the conserved chiral charge defines the chiral fermion in the Hamiltonian
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formalism. This definition is clear and intuitive. Unlike in the path integral formalism, we do not
need the Ginsparg-Wilson relation to define the chiral fermion.

The commutation relation (6) implies that the two operators are simultaneously diagonalizable.
Let us write the eigenvalue equations as

𝐻 𝑓 |Ψ𝑛⟩ = 𝜀𝑛 |Ψ𝑛⟩ (7)
𝑄 |Ψ𝑛⟩ = 𝑞𝑛 |Ψ𝑛⟩. (8)

We can draw the two-dimensional plot, 𝜀𝑛 vs 𝑞𝑛, and analyze how the eigenvalue spectrum reflects
the chiral property of a system. In the continuous theory, the chirality of a Dirac fermion is
independent of its energy, and 𝑞𝑛 = ±1 if the fermion is massless. On the lattice, the energy and
the chiral charge are correlated. The one-particle eigenvalue spectrum satisfies(𝜀𝑛

2

)2
+ (𝑞𝑛)2 = 1 (9)

and thus is distributed on a unit circle.
The physical states can be constructed by filling the one-particle eigenvalue spectrum. The

examples are shown in Fig. 1. In the vacuum, the Fermi level is 𝜀 = 0 and negative energy states are
occupied. The total chiral charge is zero because of parity symmetry, i.e., the inversion symmetry
of 𝑞𝑛. We can make the chiral charge nonzero by introducing a chiral chemical potential. The chiral
chemical potential tilts the Fermi level and breaks the inversion symmetry. A more interesting
case is the eigenvalue spectrum with external gauge field. Let us consider the parallel electric
and magnetic fields in the same direction. (Since the electric field is nonzero, the system evolves
in time. The figure is a snapshot at a certain time.) The inversion symmetry is broken and the
chiral charge is dynamically generated. This is interpreted as the chiral anomaly in the continuum
limit. This observation is surprising. The chiral anomaly comes from ultraviolet divergence in the
conventional understanding. On a lattice, however, there is no ultraviolet divergence, or no chiral
anomaly. In the overlap fermion formalism, the chiral anomaly can be observed even on a finite
lattice.

Figure 1: Eigenvalue spectra of the three-dimensional overlap fermion in the non-interacting vacuum (left),
with a chiral chemical potential (center), and with external electromagnetic gauge field (right) [1].

In the above analysis, we discussed the non-interacting fermion and the fermion coupled
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with external (classical) gauge field because the computation is easy. When the fermions do not
interact with each other, we only need the one-particle eigenvalue spectrum of the fermion. The
computational cost is just a polynomial function of the system size. In general, however, the
computation is not so easy. When the fermion couples with quantum gauge field, we need to treat
the full Hilbert space to compute the eigenvalue spectrum. The computational cost is exponentially
large. The computation gets out of hand on classical computers and we need the help of quantum
computers.

3. Quantum simulation

Let us consider the quantum simulation of real-time evolution

|Ψ(𝑡)⟩ = 𝑒−𝑖 (𝐻𝑔+𝐻 𝑓 )𝑡 |Ψ(0)⟩. (10)

In general, the advantage of the overlap fermion is exact chiral symmetry and the disadvantage is
large computational cost. For near-term quantum computers, the simulation of one-dimensional
gauge theory is realistic and favored. In one dimension, there is a special property; the overlap
fermion is equivalent to the Wilson fermion [4]. Because of this property, the simulation with exact
chiral symmetry is possible. We just replace the naive chiral charge operator by the conserved chiral
charge operator. We can use the standard quantum circuit of the one-dimensional Wilson fermion
for the time evolution (10).

Figure 2 shows the simulation results obtained by a noiseless emulator. The simulation was
done on a periodic three-site lattice. The left panel is the time evolution of the free Wilson fermion.
As explained above, the naive chiral charge ⟨𝑄naive⟩ is not conserved and the conserved chiral charge
⟨𝑄⟩ is really conserved. The right panel shows the interacting case. Although we are eventually
interested in continuous gauge theory, such as QED or QCD, here we consider the 𝑍2 lattice gauge
theory. We write down the conserved chiral charge operator

𝑄 =
∑︁
𝑥

{
1
2
𝜓†(𝑥)𝛾5𝜓(𝑥)+1

4
𝜓†(𝑥)𝛾5(1−𝛾1)𝜎3(𝑥)𝜓(𝑥+1)+1

4
𝜓†(𝑥+1)𝛾5(1+𝛾1)𝜎3(𝑥)𝜓(𝑥)

}
, (11)

the fermion Hamiltonian

𝐻 𝑓 =
∑︁
𝑥

{
𝜓†(𝑥)𝛾0𝜓(𝑥)−1

2
𝜓†(𝑥)𝛾0(1−𝛾1)𝜎3(𝑥)𝜓(𝑥+1)−1

2
𝜓†(𝑥+1)𝛾0(1+𝛾1)𝜎3(𝑥)𝜓(𝑥)

}
, (12)

and the gauge field Hamiltonian
�̂�𝑔 = −

∑︁
𝑥

𝜎1(𝑥). (13)

The Pauli matrices,𝜎3(𝑥) and𝜎1(𝑥), are gauge field operators. The chiral charge operator commutes
with the fermion Hamiltonian, [𝑄, 𝐻 𝑓 ] = 0, but does not commute with the gauge Hamiltonian,
[𝑄, 𝐻𝑔] ≠ 0, due to the Pauli matrices. Because of this non-commutativity, the chiral charge
shows non-trivial time evolution, as seen in the figure. The further interpretation of this time
evolution is unclear in the 𝑍2 lattice gauge theory because the theory does not have the continuum
limit. Nevertheless, our demonstration is successful. The conserved chiral charge works well. It is

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
2
0
9

Chiral fermion on quantum computers Arata Yamamoto

conserved for the free fermion and dynamically generated by the gauge interaction. When we apply
this analysis to the quantum simulation of one-dimensional QED or QCD, we will be able to study
dynamical chirality generation by the chiral anomaly, probably, in the near future. In Fig. 2, the
naive chiral charge shows a similar behavior, but we should not use it because we cannot distinguish
the physical effect and the lattice artifact.
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Figure 2: Time evolution of the conserved and naive chiral charges [2].
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