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This note discusses a method for computing the energy spectra of quantum field theory utiliz-
ing digital quantum simulation. A quantum algorithm, called coherent imaging spectroscopy,
quenches the vacuum with a time-oscillating perturbation and then reads off the excited energy
levels from the loss in the vacuum-to-vacuum probability following the quench. As a practical
demonstration, we apply this algorithm to the (1+1)-dimensional quantum electrodynamics with
a topological term known as the Schwinger model, where the conventional Monte Carlo approach
is practically inaccessible. In particular, on a classical simulator, we prepare the vacuum of
the Schwinger model on a lattice by adiabatic state preparation and then apply various types
of quenches to the approximate vacuum through Suzuki-Trotter time evolution. We discuss the
dependence of the simulation results on the specific types of quenches and introduce various
consistency checks, including the exact diagonalization and the continuum limit extrapolation.
The estimation of the computational complexity required to obtain physically reasonable results
implies that the method is likely efficient in the coming era of early fault-tolerant quantum com-
puters.
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1. Introduction

A recent technological advance in the quantum computation industry draws the attention of
the theoretical physics community, including the high-energy and lattice gauge theory community
[1]. The digital quantum simulation of quantum field theory is, in particular, of interest because
it naturally embeds the Hamiltonian formulation of quantum field theory in its architecture [2, 3].
A great advantage of simulating quantum field theory in the Hamiltonian formulation over the
conventional Monte Carlo approach is the absence of the infamous sign problem (e.g. [4]). Instead
we typically have to deal with a huge vector space corresponding to the Hilbert space but one may
be able to overcome that by utilizing quantum computer in future. Therefore it is worth to extend
and demonstrate utility of quantum simulation in the context of high energy physics.

In this note, we will discuss the spectroscopy of field theory as an application of quantum
simulation to the problems in lattice gauge theories [5]. Inspired by the experimental technique,
called coherent imaging spectroscopy [6], we provide a quantum algorithm that captures the energy
eigenvalues of the lattice Hamiltonian. The key idea is to consider and simulate a dynamic process
involving a state transition from the ground state to an excited state with the control over the energy
and frequency.

For the demonstration of our spectroscopy heuristics, we consider the Scwhinger model, (1+1)-
dimensional quantum electrodynamics with non-trivial topological angle 𝜃 [7, 8], which is a good
test ground of quantum simulations in the context of high energy physics [9–27]. The Lagrangian
density of the Schwinger model reads

L0 =
1

2𝑔2 𝐹
2
01 +

𝜃

2𝜋
𝐹01 + 𝜓𝑖𝛾𝜇

(
𝜕𝜇 + 𝑖𝐴𝜇

)
𝜓 − 𝑚𝜓𝜓 , (1)

where 𝑚, 𝑔, and 𝜃 stand for the mass of the electron, the coupling constant and the topological angle,
respectively. The two-component Dirac spinor associated with the electron is denoted by 𝜓 and
the electric field strength is by 𝐹01. Since the Schwinger model carries the non-trivial topological
term in general, sign problem makes it hard to measure the observable with Monte Carlo sampling.
Thus, it is nice to perform the digital quantum simulation in order to unveil its physics which has
not been captured with the aid of Monte Carlo techniques.

2. Lattice formulation of the Schwinger model

To put the theory on quantum computer, we first put the Schwinger model on a lattice and map
it to a spin system. Here, rather than directly working with (1), we consider another equivalent
Lagrangian obtained by the chiral rotation 𝜓 → 𝑒𝑖 𝜃𝛾5/2𝜓 to absorb the 𝜃-term as in [14, 28]:

L =
1

2𝑔2 𝐹
2
01 + 𝜓𝑖𝛾𝜇

(
𝜕𝜇 + 𝑖𝐴𝜇

)
𝜓 − 𝑚𝜓𝑒𝑖 𝜃𝛾

5
𝜓, (2)

via the transformation of the path integral measure [29]. Then we put the theory on a lattice
with 𝑁-sites and open boundary condition. In the temporal gauge, the lattice Hamiltonian in the
staggered fermion formalism [30, 31] is given by

𝐻 = 𝐽

𝑁−2∑︁
𝑛=0

𝐿2
𝑛 − 𝑖

𝑁−2∑︁
𝑛=0

(
𝑤 − (−1)𝑛𝑚lat

2
sin 𝜃

) [
𝜒†
𝑛𝑈𝑛𝜒𝑛+1 − h.c.

]
+ 𝑚lat cos 𝜃

𝑁−1∑︁
𝑛=0

(−1)𝑛𝜒†
𝑛𝜒𝑛 , (3)
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where the lattice fields satisfy the commutation relations

{𝜒†
𝑛, 𝜒𝑚} = 𝛿𝑚𝑛, {𝜒𝑛, 𝜒𝑚} = 0, [𝑈𝑛, 𝐿𝑚] = 𝑖𝛿𝑚𝑛𝑈𝑛, (4)

and physical states are subject to the Gauss law: 𝐿𝑛 − 𝐿𝑛−1 = 𝜒
†
𝑛𝜒𝑛 − 1−(−1)𝑛

2 . The parameters are
defined in terms of lattice spacing 𝑎 and coupling constant 𝑔 as follows.

𝐽 =
𝑔2𝑎

2
, 𝑤 =

1
2𝑎

, 𝑚lat = 𝑚 − 𝑔2

16𝑤
, (5)

where we measure all the dimensionful quantities in the unit of 𝑔 and the last relation is ac-
cording to [32, 33]. Solving the Gauss law and applying the Jordan-Wigner transformation [34]:
𝜒𝑛 =

(∏
ℓ<𝑛 −𝑖𝑍ℓ

)
𝑋𝑛−𝑖𝑌𝑛

2 with the Pauli spins (𝑋𝑛, 𝑌𝑛, 𝑍𝑛) at site 𝑛, we obtain the following spin
Hamiltonian

𝐻 = 𝐻𝑍𝑍 + 𝐻± + 𝐻𝑍 , (6)

where

𝐻𝑍𝑍 =
𝐽

2

𝑁−2∑︁
𝑛=1

∑︁
0≤𝑘<𝑙≤𝑛

𝑍𝑘𝑍𝑙 =
𝐽

2

𝑁−2∑︁
𝑛=1

∑︁
𝑘<𝑛

(𝑁 − 𝑛 − 1)𝑍𝑘𝑍𝑛 ,

𝐻± =
1
2

𝑁−2∑︁
𝑛=0

{
𝑤 − (−1)𝑛𝑚lat

2
sin 𝜃

}
(𝑋𝑛𝑋𝑛+1 + 𝑌𝑛𝑌𝑛+1) ,

𝐻𝑍 =
𝑚lat cos 𝜃

2

𝑁−1∑︁
𝑛=0

(−1)𝑛𝑍𝑛 +
𝐽

2

𝑁−2∑︁
𝑛=0

(𝑛 + 1 mod 2)
𝑛∑︁
𝑙=0

𝑍𝑙 .

(7)

This is the qubit description of the Schwinger model.

3. Simulation method for spectroscopy

We first outline the procedures of our simulation method for the spectroscopy of the lattice
regularized theory. The main idea is to quench the ground state of the theory by an operator
periodically oscillating in time with a particular frequency 𝜔 and measure the survival probability
of the ground state. If 𝜔 is close to energy differences between an excited state and the ground
state, then we have a transition to the excited state and the vacuum persistent probability becomes
small at some time. Repeating this for various values of 𝜔, one can estimate the energy spectrum.
Here we consider an algorithm to do the above procedures that can be implemented on a digital
quantum computer. We basically have freedom of choice in quantum algorithms at two moments:
the ground state preparation and implementation of time evolution. In this note we simply adopt
the adiabatic state preparation for the ground state and Suzuki-Trotter approximation for the time
evolution [35–37] while one could use different algorithms like variation-based ones depending on
purposes. The schematic cartoon of our simulation is drawn in Figure 1.

Coming back to the Schwinger model, we prepare the ground state of the spin Hamiltonian (7)
by adiabatically changing the initial state |vac0⟩ = |1010 · · · 101⟩ , which is the ground state of the
simpler initial Hamiltonian: 𝐻0 := 𝐻 |𝑤=0, 𝜃=0,𝑚lat=𝑀0 with 𝑀0 > 0 as in [14, 16, 18]. By dialing the
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Figure 1: The cartoon of our simulation. The red line schematically represents the coefficients in the
Hamiltonian. In the first stage of the simulation (orange), we ramp the coefficients so that the coefficients are
dialled from the initial Hamiltonian 𝐻0 to the target Hamiltonian (7). The next stage (green) simulates the
sinusoidal oscillation of the parameters, either triggered by the pseudo-scalar condensate operator insertion
or topological angle quench. At the end we measure the vacuum persistent probability.

coefficients of terms in the Hamiltonian so that each coefficient interpolates the value in the initial
Hamiltonian 𝐻0 and the value in the target Hamiltonian (7), we can prepare the ground state of the
target Hamiltonian (7).

Next, we introduce the gauge-invariant operator quench at a particular frequency to the prepared
vacuum state. Specifically, we will consider the pseudo-chiral condensate 𝑉 =

∫
𝜓𝛾5𝜓. With the

spatial modulation introduced by 𝑓𝑛 taken into account, the quench on the lattice is translated into
the following Pauli spin operators on qubits,

Δ𝐻 (𝑡) =
𝐵𝑝

2

𝑁−2∑︁
𝑛=0

(−1)𝑛+1 𝑓𝑛 sin(𝜔𝑡) (𝑋𝑛𝑋𝑛+1 + 𝑌𝑛𝑌𝑛+1) . (8)

The coefficient 𝐵𝑝 controls the strength of the external quench.
Besides the operator-type quench, time-sinusoidal fluctuation of physical parameters in the

Hamiltonian can also play the role of quench. For instance, we consider the fluctuation in the
topological angle, of which profile on the lattice is given in general,

𝜃̃ (𝑡, 𝑛) = 𝜃 + 𝐵𝑝 𝛿𝜃 (𝑡, 𝑛) = 𝜃 + 𝐵𝑝 𝑓𝑛 sin(𝜔𝑡) . (9)

Such a parameter fluctuation is not a simple finite-term perturbation to the Hamiltonian. But its
effect on the Hamiltonian can be expanded in terms of the strength 𝐵𝑝, and the leading term reads

Δ0𝐻 (𝑡) = 𝑚lat
4

cos 𝜃
𝑁−2∑︁
𝑛=0

(−1)𝑛 𝑓𝑛 sin(𝜔𝑡) (𝑋𝑛𝑋𝑛+1 + 𝑌𝑛𝑌𝑛+1) +
𝑚lat
2

sin 𝜃
𝑁−1∑︁
𝑛=0

(−1)𝑛 𝑓𝑛 sin(𝜔𝑡) 𝑍𝑛 .

(10)

The spatial modulation factor can decorate the quench by considering site-dependent function
𝑓𝑛 in (8). A canonical choice on the basis function of spatial modulation is{

𝑓
(𝑘 )
𝑛

}
𝑘=0,1,2· · ·

≡
{
cos

(
𝑘𝜋𝑛

𝑁 − 1

)}
, (11)

which is the discrete version of {f(𝑘 ) | f(𝑘 ) (𝑥) = cos
(
𝜋𝑘𝑥
𝐿

)
for 𝑘 = 0, 1, 2, · · · } . We call the integer

𝑘 above as the mode number.

4
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Figure 2: The five low-lying excited spectra of Schwinger model with 𝑔𝐿 = 10 = (𝑁 − 1)𝑔𝑎 for 𝑁 =

9 , 11 , 13 , 15 , and 17 qubits, obtained by exact diagonalization. The dashed horizontal lines are drawn at
the analytic energy level of massless Schwinger model on the interval; 𝐸2

𝑛 = 𝑀2
𝑆
+ (𝑛𝜋/𝐿)2 for 𝑛 = 1, 2, 3, 4

where 𝑀𝑆 = 𝑔/
√
𝜋 and 𝐸 (2) = 2𝐸1 for black dashed horizontal line. The solid lines denote the linear fits

over the five data points for each color while the two dashed-dotted lines denote the fits for the selected data
points.

Finally, we carry the measurement of the vacuum persistent probability1 |⟨vac|𝑒−𝑖
∫
𝑑𝑡 (𝐻+Δ𝐻 (𝑡 ) ) |vac⟩|2.

Technically, the last measurement procedure requires the adiabatic preparation of vacuum on the
bra vector ⟨vac| at the end of the quantum circuit for the simulation.

3.1 Parameter set-up

This section discusses how we set up the parameters of digital quantum simulation of spec-
troscopy. Above all, we set the length scale parameters like the length of the spatial interval 𝐿,
by confirming the agreement of analytic continuum spectra and the lattice result obtained by the
exact diagonalization at the massless case with 𝜃 = 0. Figure 2 shows the comparison between
analytic spectra and the result of the exact diagonalization of the spin Hamiltonian, computed by
python-based package QuSpin [38, 39], and its extrapolation to the continuum limit 𝑎 → 0.

Based on the 𝑎 → 0 extrapolation, the five low-lying excited spectra, obtained by the exact
diagonalization, are believed to capture the four different one-particle states of Schwinger meson
(denoted in yellow, green, blue, and red) and one two-particle excitation (marked in black) at the
interval length choice 𝑔𝐿 = 10.

Before setting up the hierarchy among temporal scales of quantum simulation, we identify
four different kinematic (angular) frequency scales: (i) Trotterization frequency 𝜔𝑆𝑇 = 2𝜋

Δ𝑡𝑆𝑇
from

Suzuki-Trotter approximation, (ii) quench frequency 𝜔 ∼ Δ𝐸gap, (iii) resolution in frequency
domain Δ𝜔 , and (iv) simulation time scale 𝑇 = 𝑀Δ𝑡𝑆𝑇 and its scale in frequency domain Ω where
𝑀 stands for the number of Trotterization steps. The perturbation theory suggests another dynamic
frequency scale 𝛾 = |⟨ 𝑓 |Δ𝑉 | vac⟩| where the contribution of sinusoidal quench to the Hamiltonian
is assumed to be Δ𝐻 (𝑡) = Δ𝑉 sin(𝜔𝑡). The brackets |vac⟩ and ⟨ 𝑓 | stand for the initial vacuum state
and target excited energy eigenstate, respectively.

1In [6], the authors used the various energy eigenstates ⟨𝐸𝑛 | for the basis of measurement following the quench. This
was possible because they considered a Hamiltonian of which the form of eigenstate is well-known. In the case of the
Schiwinger model, such information is not available so we could just observe the loss of ground state at best.

5
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parameters symbol value remark parameters symbol value remark
the number of qubits 𝑁 9 odd integer the length of interval 𝐿 10.000 𝐿 = (𝑁 − 1)𝑎

lattice spacing 𝑎 1.250 the inverse lattice constant 𝑤 0.400 𝑤 = 1/(2𝑎)
the number of shots 𝑁𝑠 2000 quench frequency gap Δ𝜔 0.050 ∼ Ω

the number of steps 𝑀 1000 steps for adiabatic preparation 𝑀adia 2500 𝑀adia/𝑀 = 2.5
simulation time 𝑇 73.000 IR frequency cutoff Ω 0.086 Ω = 2𝜋/𝑇

Trotterization time Δ𝑡𝑆𝑇 0.073 Δ𝑡𝑆𝑇 = 𝑇/𝑀 Trotteriztation frequency 𝜔𝑆𝑇 0.860 𝜔𝑆𝑇 = 2𝜋/Δ𝑡𝑆𝑇

Table 1: The choice of the simulation parameters.

The perturbation theory says that the transition probability between the vacuum and target state
| 𝑓 ⟩ is given by [40],

𝑃vac→ 𝑓 (𝑡) = 𝛾2 sin2 [ (Δ𝐸gap − 𝜔
)
𝑡
](

Δ𝐸gap − 𝜔
)2 . (12)

Therefore, in the short time range in which the perturbation is valid, the simulation time, probability
threshold 𝑃, and the dynamic scale 𝛾 has the relation Ω ∼

√︃
1
𝑃
𝛾 ≥ 𝛾. In addition, the resolution

of the probe should follow the same scaling with Ω due to the property of Fourier transform on a
finite time domain, Δ𝜔 ∼ 𝛾.

In the case of the lattice field theory with a translation symmetry, the resolution of probe
frequency Δ𝜔 should be smaller than the difference of the excitation energy, which is mostly
attributed to the higher modes of the single-particle eigenstate. In the regime of small electron
mass and small topological angle 𝑚 ≃ 0 , 𝜃 ≃ 0, we have Δ𝜔/𝜔 < (𝜋/𝐿)/𝑀𝑆 = 𝜋

√
𝜋/(𝑁 − 1)𝑔𝑎

where 𝑀𝑆 stands for the mass of dual scalar Schwinger meson at 𝜃 = 0. Then, the scaling of probe
frequency 𝜔 comes as 𝜔 ∼ 𝛾𝑁 .

For the validity of Suzuki-Trotter approximation, the following inequality should hold; 𝜔 ≪
𝜔𝑆𝑇 . More accurately, the order of magnitude of accumulative error arising from Suzuki-Trotter
approximation scales as 𝜖𝑆𝑇 ∼ O

(
𝑀

(
Δ𝐸gapΔ𝑡𝑆𝑇

)3) ∼ O
(
𝜔3𝜔−2

𝑆𝑇
Ω−1) . Thus, the reliable simula-

tion requires the accumulative error 𝜖𝑆𝑇 to be less than order 1 number, independent of the system
size, or the number of qubits. Therefore, we find

𝜔𝑆𝑇 ∼ Ω− 1
2𝜔

3
2 ∼ 𝛾𝑁

3
2 . (13)

Synthesizing the scaling laws obtained above, we obtain the hierarchy between frequency scales;
Δ𝜔 ∼ Ω ≪ 𝜔 ≪ 𝜔𝑆𝑇 . This is consistent with the numerics given in Table 1.

4. The result of simulation

In this section we present our simulation results of spectroscopy using a classical simulator
(IBM Qiskit) for two types of quenches: pseudo-chiral condensate quench and topological angle
quench. Note that the momentum is not a conserved quantity in our simulation set-up on the interval
since we impose the open boundary condition on both ends. On the other hand, the mode number,
introduced with the spatial modulation in the form of (11), turns out to label and distinguish the
low-energy eigenstates.

6
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(d) 𝑘 = 3

Figure 3: The density plot for the vacuum persistent probability for𝑚 = 0.100 and for the various topological
angle under the pseudo-chiral condensate quench Δ𝑉 =

∫
𝑑𝑥 f(𝑥) 𝜓(𝑥)𝛾5𝜓(𝑥). Solid lines denote the exact

diagonalization result with QuSpin. The coefficient in the quench of the form (8) is chosen as 𝐵𝑝 = 0.011 .
In each plot, the quench operator carries the distinct mode number (a) 𝑘 = 0 , (b) 𝑘 = 1 , (c) 𝑘 = 2, and (d)
𝑘 = 3 when the continuum limit of the modulation is defined by f(𝑥) = cos(𝑘𝜋𝑥/𝐿) .

4.1 Pseudo-chiral condensate quench

Figure 3 shows the vacuum persistent probability under the pseudo-chiral condensate quench
of particular frequency and spatial modulation at the electron mass 𝑚 = 0.1 and various values
of topological angle 𝜃 ∈ {0 , 𝜋/6 , 2𝜋/6 , · · · , 2𝜋} . Quench with the mode number 𝑘 induces the
excitation to (𝑘 + 1)-th lowest excited state.

When the topological angle vanishes, the intuition based on dual scalar Schwinger meson [7, 8]
tells that a low-energy excited states are the higher-mode excitations of a single scalar particle, thus
their energy is given by 𝐸𝑛 = 𝑀2

𝑆
+ (𝑛𝜋/𝐿)2, where 𝑀𝑆 = 𝑔/

√
𝜋. Moreover, since each 𝑛-th

excited state is excited by the quench of mode number (𝑛 − 1), one can interpret this in terms of
particle-in-a-box solution of Schrödinger equation. In such a quantum mechanics problem of single
particle, the wave function of 𝑛-th excited state carries (𝑛 − 1) nodes, the number of which is the
same to the mode number necessary for the excitation of the corresponding state. Through the
simulation of small electron mass regime, the intuition at the vanishing topological angle proves its
applicability to the regime of the non-trivial topological angle, since the quench of the same mode
number successfully induces the excitation of the vacuum.

4.2 Topological angle quench

Figure 4 shows the density plot of the vacuum persistent probability after Trotterized time
evolution with theta fluctuation quench (9). Unlike the pseudo-chiral condensate case, Figure 4
exhibits the excitations at higher energy near 𝜃 = 𝜋

2 and 3𝜋
2 , which are conjectured to become 2-

particle states under 𝜃 → 0 limit. This implies that the transition amplitude between the 2-particle
state and the vacuum under the theta fluctuation is non-trivial whereas its counterpart amplitude with
the pseudo-chiral condensate operator almost vanishes. From the form of the 1st order truncated
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Figure 4: A similar plot to Figure. 3 for the topological angle quench 𝜃̃ (𝑥) = 𝜃 + 𝛿(𝑡, 𝑥). The coefficient in
the quench of the form (9) is chosen as 𝐵𝑝 = 0.500.

perturbation Hamiltonian in (8) and (10), one can infer that

⟨2-particle state|
𝑁−1∑︁
𝑛=0

(−1)𝑛 𝑍𝑛 |vac⟩ ≠ 0 ,

⟨2-particle state|
𝑁−1∑︁
𝑛=0

(−1)𝑛 (𝑋𝑛𝑋𝑛+1 + 𝑌𝑛𝑌𝑛+1) |vac⟩ ≃ 0 .

(14)

Its continuum interpretation will be the subject of future investigation.

5. Conclusion and Outlook

In this note, we observed that quench-induced state transition of quantum mechanical system
can be used to capture the excited state spectra of abelian lattice gauge theory in (1+1)-dimensions.
We introduced two distinct types of gauge-invariant quenches and observed the low-energy excited
spectra can be read off from the loss in the vacuum persistent probability at specific frequency.

The analysis in Section 3.1 further allows the estimation of how many controlled-Z (CZ) or
CNOT is necessary to identify the excited state at a particular energy level. Because the number
of the controlled gates at each Trotterized time evolution step depends quadratically on the number
of qubits, as shown in (7), the total number of controlled gates for 𝑀 = 𝑇/Δ𝑡𝑆𝑇 times Trotterized
evolution is given by N𝐶𝑍 ∼ O

(
𝑀𝑁2) = O

(
𝑁

7
2

)
. This is independent of the dynamically

generated scale from the perturbation theory 𝛾.
There are various interesting future directions. First of all, it should be interesting to implement

the simulation on a real quantum device. It is of future interest that how the selection rule or
symmetry property of the excited states can be confirmed by the spectroscopy heuristics described
in this note. Another interesting direction is to compare the computational complexity of our
algorithm with those of similar algorithms based on tensor network, which is another powerful
approach to the Schwinger model with topological angle [32, 41–44]. It would be also illuminating
to apply our method to the two-flavor Schwinger model and estimate the mass spectrum of the
composite particles whose DMRG simulation was recently done based on different methods [45].
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