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1. Introduction

With the rapid development of quantum hardware we can start to explore the first applications
of quantum computing algorithms to physics problems using real devices. Real-time dynamics [1],
ground state calculations [2] and the calculation of thermal averages [3–6] are just a few examples of
potential applications. Despite the intriguing prospects for this emerging new technology, quantum
computers in the current noisy intermediate-scale quantum (NISQ) era suffer from noise which
hampers the accuracy and reliability of the calculations. In this work we compare different error
mitigation strategies using some simple quantum systems as test bench.

2. Error mitigation strategies

We can categorize quantum error mitigation strategies into two classes. There are approaches
that aim to mitigate the noise that comes from specific quantum error channels and agnostic
approaches that do not strictly depend on the nature of the noise that affects the system. Here we
focus on one method that belongs to the first type, i.e. global depolarizing noise mitigation and
three methods that belong to the second type, i.e. zero-noise extrapolation, measurement error
mitigation and general error mitigation.

2.1 Zero noise extrapolation

In zero noise extrapolation (ZNE) [7–9] one runs 𝑁 copies of the original circuit where the
noise has been increased by 𝑁 factors {𝜆𝑖}𝑁𝑖=1. The noise can be increased by unitary folding: given
a circuit 𝐶 with gate decomposition 𝐶 = 𝑈𝑀 . . . 𝑈0, a subset of the circuit gates {𝑈 𝑗} is replaced
by 𝑈 𝑗 ↦→ (𝑈 𝑗𝑈

†
𝑗
) 𝑈 𝑗 . One obtains a circuit with more noise, but functionally equivalent to the

original one. The ideal result ⟨𝑂⟩ is estimated by extrapolating the noisy results {⟨𝑂⟩𝑖}𝑁𝑖=1 to the
𝜆 → 0 limit.

2.2 Measurement error mitigation and general error mitigation

Measurement error mitigation (MEM) [10] mitigates readout noise, which is the dominant
source of noise for very short circuits. The mitigation is done using a calibration matrix such that

®𝑓𝑛𝑜𝑖𝑠𝑦 = 𝑀 ®𝑓𝑖𝑑𝑒𝑎𝑙 , (1)

where ®𝑓𝑖𝑑𝑒𝑎𝑙 are the ideal count probabilities and ®𝑓𝑛𝑜𝑖𝑠𝑦 are the count probabilities that are actually
measured in the presence of noise. The 𝑖-th column of 𝑀 is estimated by the count probabilities of
a measurement taken just after preparing the state |𝑖⟩. Once 𝑀 is known, the noisy results ®𝑓𝑛𝑜𝑖𝑠𝑦
from a measurement done after the execution of a generic circuit can be mitigated by minimizing
| |𝑀®𝑥 − ®𝑓𝑛𝑜𝑖𝑠𝑦 | |22 while imposing the normalization condition

∑
𝑖 𝑥𝑖 = 1 and positive definiteness

condition 𝑥𝑖 ∈ [0, 1].
General error mitigation (GEM) [11] generalizes measurement error mitigation to take into

account gate noise. This is done heuristically. The original circuit 𝐶 is split into two parts having
(approximately) equal depth, 𝐶 (1) and 𝐶 (2) , and two calibration circuits are built out of these,
𝐶

(1)
𝑐𝑎𝑙𝑖𝑏

= 𝐶 (1)† 𝐶 (1) and 𝐶
(2)
𝑐𝑎𝑙𝑖𝑏

= 𝐶 (2)† 𝐶 (2) . These circuits are functionally equivalent to the
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identity and carry information about the noise from the first and second half of the original quantum
circuit. For each calibration circuit, one builds the associated calibration matrix following the
same procedure as in MEM: initialize the system to the state |𝑖⟩, then apply the calibration circuit
and finally measure. The count probabilities are estimates for the entries of the 𝑖-th column of
the calibration matrix. At the end one has two calibration matrices that are averaged to get the
calibration matrix that is actually used for the mitigation.

Given an 𝑁-qubits circuit these methods require the execution of respectively 2𝑁 and 2 · 2𝑁

mitigation runs and the computational cost of mitigation scales exponentially with the number of
qubits. This cost can be lowered assuming that qubits are affected by uncorrelated noise. In this
case a 2𝑁 × 2𝑁 calibration matrix 𝑀 = 𝑄𝑁−1 ⊗ 𝑄𝑁−2 ⊗ . . . ⊗ 𝑄1 ⊗ 𝑄0 is built by tensoring
𝑁 2 × 2 calibrations matrices 𝑄 𝑗 tailored to the individual qubits. As for GEM one actually
builds two calibration matrices, one for each half of the original circuit, and takes the average of
these two. The matrices 𝑄 𝑗 are constructed using the same calibration circuits used for GEM,
𝐶

(1)
𝑐𝑎𝑙𝑖𝑏

= 𝐶 (1)† 𝐶 (1) and 𝐶
(2)
𝑐𝑎𝑙𝑖𝑏

= 𝐶 (2)† 𝐶 (2) . For every qubit 𝑗 one sets the initial state to
|0⟩𝑁−1 ⊗ . . . ⊗ |0⟩ 𝑗+1 ⊗ |𝑖⟩ 𝑗 ⊗ |0⟩ 𝑗−1 ⊗ . . . ⊗ |0⟩0, then executes the calibration circuit and finally
measures the 𝑗-th qubit. The count probabilities estimate the entries of the 𝑖-th column of 𝑄 𝑗 . This
tensored version of general error mitigation (TGEM) requires the execution of 2 · 2𝑁 calibration
circuits.

2.3 Global depolarizing noise mitigation

Assuming that the dominant noise in a quantum circuit is that of an effective depolarising error
channel that with probability 𝑝 replaces the quantum state with the maximally mixed state,

E(𝜌) = (1 − 𝑝)𝜌 + 𝑝

2𝑁
I2𝑁 ,

the noisy expectation value of an observable 𝑂 is given by

⟨𝑂⟩𝑛𝑜𝑖𝑠𝑦 = 𝑇𝑟 [𝑂E(𝜌)] = (1 − 𝑝)𝑇𝑟 [𝑂𝜌] + 𝑝

2𝑁
𝑇𝑟 [𝑂]

= (1 − 𝑝)⟨𝑂⟩𝑖𝑑𝑒𝑎𝑙 +
𝑝

2𝑁
𝑇𝑟 [𝑂].

The ideal expectation value can be recovered from the depolarizing parameter 𝑝 and the noisy
expectation value using [12–14]

⟨𝑂⟩𝑖𝑑𝑒𝑎𝑙 =
(
⟨𝑂⟩𝑛𝑜𝑖𝑠𝑦 −

𝑝

2𝑁
𝑇𝑟 [𝑂]

)
(1 − 𝑝)−1 . (2)

Conversely the parameter 𝑝 can be estimated using

𝑝 =
(
⟨𝑂⟩𝑖𝑑𝑒𝑎𝑙 − ⟨𝑂⟩𝑛𝑜𝑖𝑠𝑦

) (
⟨𝑂⟩𝑖𝑑𝑒𝑎𝑙 −

𝑇𝑟 [𝑂]
2𝑁

)−1
,

where the noisy expectation value is measured after the execution of a calibration circuit affected by
a noise similar to that of the original circuit but for which the ideal expectation value is known. In
the case of Hamiltonian evolution, for instance, the evolution for 𝑁/2 Trotter steps of time step 𝑑𝑡

followed by 𝑁/2 Trotter steps of time step -𝑑𝑡 can serve as the calibration circuit for the evolution
for 𝑁 Trotter steps of time step 𝑑𝑡 [14].
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The effectiveness of global depolarising noise mitigation (DEP) can be increased with random-
ized compiling. In place of the original quantum circuit one executes 𝑁 Pauli-twirled circuits, i.e.
copies of the circuit where the CNOT gates have been replaced by random combinations of CNOT
and 1-qubits gates (that are functionally equivalent to a CNOT gate). Randomized compiling is
able to convert coherent noise into stochastic depolarizing noise [15] that can be mitigated using
Eq. (2).

3. Applications

We applied these mitigation methods to Hamiltonian simulation and the Variational Quantum
Eigensolver (VQE) [2] for some simple systems such as the two-sites Fermi-Hubbard model, the
transverse-field Ising model on a square and the 𝑍2 gauge theory for a two-plaquettes system
with both periodic and open boundary conditions. Along a similar line of work the application of
quantum error mitigation to the simulation of the 𝑍2 gauge theory was also explored in Refs. [16, 17]
for a 1𝑑 lattice.

3.1 Hamiltonian simulation

The two-sites Hubbard model describes interacting spin 1/2 particles living on a two-sites
lattice. The model is governed by the Hamiltonian

𝐻 = − 𝑡 (𝑐†0↑𝑐1↑ + 𝑐
†
1↑𝑐0↑ + 𝑐

†
0↓𝑐1↓ + 𝑐

†
1↓𝑐0↓) +𝑈 (𝑛0↑𝑛0↓ + 𝑛1↑𝑛1↓) − 𝜇(𝑛0↑ + 𝑛0↓ + 𝑛1↑ + 𝑛1↓),

where 𝑐𝑖,𝑠 are anti-commuting variables for the site 𝑖 and spin 𝑠 and 𝑛𝑖𝑠 = 𝑐
†
𝑖𝑠
𝑐𝑖𝑠 is the occupation

number. The model has been mapped to a quantum computer using a Jordan-Wigner transformation.
The system is representable using 4 qubits and the evolution circuit is depicted in the left picture of
Fig. 2. The circuit comprises 12 CNOT gates per Trotter step for fully connected qubits. On IBM
quantum hardware the circuit uses 18 CNOTs per Trotter step due to the limited qubits connectivity
which requires the execution of SWAP gates. The evolution has been run on ibmq_kolkata using
10000 shots. Numerical results for 2 and 4 Trotter steps are shown respectively in the top left and
center left pictures of Fig. 1. The initial state has been set to |𝑛1↓ 𝑛0↓ 𝑛1↑ 𝑛0↑⟩ = |1010⟩ and we
measured the probability of observing a spin down particle at site 1. Unmitigated data are displayed
in red. With 2 Trotter steps the evolution circuit is already deep enough that measurement error
mitigation (magenta) has little effect. General error mitigation (blue), its tensored version (cyan)
and global depolarizing noise mitigation combined with randomized compiling using 16 Pauli
twirls (green) are effective in mitigating the errors. With 4 Trotter steps the noise increases; global
depolarising noise mitigation still works reliably, while general error mitigation and its tensored
version become less effective. The bottom left picture of Fig. 1 illustrates the results obtained by
ZNE for 4 Trotter steps with a simulator using a noise model calibrated from ibmq_kolkata. Even
on a noisy simulator it has proven difficult to keep under control the systematic uncertainty coming
from the ansatz (linear, polynomial or exponential) chosen for extrapolating to the zero noise limit.

The transverse-field Ising model on a square is another system representable by 4 qubits. It is
described by the Hamiltonian

𝐻 = 𝐽 (𝜎𝑧
0 𝜎

𝑧
1 + 𝜎𝑧

1 𝜎
𝑧
2 + 𝜎𝑧

2 𝜎
𝑧
3 + 𝜎𝑧

0 𝜎
𝑧
3 ) + ℎ(𝜎𝑥

0 + 𝜎𝑥
1 + 𝜎𝑥

2 + 𝜎𝑥
3 ). (3)
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The evolution circuit, depicted in the right picture of Fig. 2, has 8 CNOTs per Trotter step on
ideal hardware and 14 CNOTs per Trotter step on IBM hardware. Numerical results are shown in
the top right and center right picture of Fig. 1 for respectively 2 and 4 Trotter steps. The initial state
has been set to |0⟩ and the observable 𝑂 is the local magnetization ⟨𝜎𝑧

0 ⟩. The evolution was run
on 𝑖𝑏𝑚𝑞_𝑘𝑜𝑙𝑘𝑎𝑡𝑎 using 10000 shots. The overall picture is similar to the one we observed for the
Hubbard model. With 2 Trotter steps all methods except measurement error mitigation are effective.
For 4 Trotter steps global depolarising noise mitigation (with 16 Pauli twirls) is still able to mitigate
the errors, but general error mitigation and its tensorised variant become ineffective. A possible
explanation for the failure of GEM is the lack of randomized compiling. This was investigated by
additional runs whose results are shown in the bottom right picture of Fig. 1. Indeed both GEM
and TGEM, when combined with randomized compiling using respectively 8 and 16 Pauli twirls,
are able to mitigate the errors, though this also increases the number of calibration circuits to run
by a factor 8 and 16.
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Figure 1: Two-sites Hubbard and 4-qubits Ising models: Hamiltonian simulation for 2 and 4 Trotter steps.
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Figure 2: Two-sites Hubbard and 4-qubits Ising models: time evolution circuits.

For the 𝑍2 gauge theory we considered the two-plaquettes system depicted in the top left picture
of Fig. 4, where lattice sites and gauge links are marked respectively by blue and green dots. With
open boundary conditions (OBCs) the system is representable by 7 qubits, one for each link. When
periodic boundary conditions (PBCs) are imposed, only 4 qubits are required. The Hamiltonians
for open and periodic boundary conditions are respectively

𝐻𝑂𝐵𝐶𝑠 = ℎ(𝜎𝑥
0 + 𝜎𝑥

1 + 𝜎𝑥
2 + 𝜎𝑥

3 + 𝜎𝑥
4 + 𝜎𝑥

5 + 𝜎𝑥
6 ) + 𝑔(𝜎𝑧

0 𝜎
𝑧
1 𝜎

𝑧
2 𝜎

𝑧
3 + 𝜎𝑧

3 𝜎
𝑧
4 𝜎

𝑧
5 𝜎

𝑧
6 ) ,

𝐻𝑃𝐵𝐶𝑠 = ℎ(𝜎𝑥
0 + 𝜎𝑥

1 + 𝜎𝑥
2 + 𝜎𝑥

3 ) + 2𝑔 𝜎𝑧
2 𝜎

𝑧
3 .

The evolution circuits, shown in Fig. 3, comprise respectively 12 and 2 CNOTs per Trotter
step. For both boundary conditions we used 10000 shots and we set the initial state to |0⟩. Results
are shown in Fig. 4. For PBC (top right picture) the evolution was done at constant 𝑑𝑡 = 0.3 and we
measured the probability of observing the 0-th link in the state |0⟩. Even for this very simple system
omitting randomized compiling caused GEM and TGEM to fail and the only effective technique
was global depolarizing noise mitigation (which was combined with 16 Pauli twirls). For OBC the
evolution was done with 2 (bottom left) and 4 (bottom right) Trotter steps and we measured the
probability of observing the 0-th link in the state |0⟩. Overall global depolarizing noise mitigation
(combined with 64 Pauli twirls) performed better than general error mitigation, though both were
able to mitigate the errors only to some extent for 4 Trotter steps, where we observed cases of
negative mitigation (i.e. unmitigated results being more accurate the mitigated results).

Figure 3: 𝑍2 gauge theory: time evolution circuits for a 2-plaquettes system with periodic (right) and open
(left) boundary conditions.
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Figure 4: 𝑍2 gauge theory: Hamiltonian simulation for a 2-plaquettes system with periodic (top right) and
open (bottom left and bottom right) boundary conditions. The evolution was done at fixed time step 𝑑𝑡 = 0.3
for PBC and at fixed number of Trotter steps 𝑛𝑡𝑟𝑜𝑡 = 2 (bottom left) and 𝑛𝑡𝑟𝑜𝑡 = 4 (bottom right) for OBC.

3.2 Variational Quantum Eigensolver

The Variational Quantum Eigensolver (VQE) [2] is a hybrid quantum-classical algorithm. It
finds the ground state of a quantum system by parameterizing the state as |𝜓( ®𝜃)⟩ =

∏
𝑖𝑈𝑖 (𝜃𝑖) |0⟩

and minimizing the cost function ⟨𝜓( ®𝜃) |�̂� |𝜓( ®𝜃)⟩, where �̂� is the Hamiltonian. The minimization
itself is done classically, while the cost function is evaluated on a quantum computer.

We tested the general error mitigation and global depolarizing noise mitigation techniques
on the VQE for the Ising model and for the 𝑍2 gauge theory for a two-plaquettes system with
open boundary conditions. We made use of 2-layers Hamiltonian ansätze, i.e. we expressed
the parameterized state as |𝜓( ®𝜃)⟩ =

(∏2
𝑙=1

(∏𝑁
𝑛=1 𝑒

−𝑖 𝜃𝑙𝑛 �̂�𝑛

))
|𝜓0⟩ where �̂�𝑛 are the terms of the

Hamiltonian and |𝜓0⟩ is the eigenstate of a term of the Hamiltonian. For the initial state |𝜓0⟩ we
chose the ground state of the non-diagonal term of the Hamiltonian, which for both theories can be
prepared using Hadamard gates.

We constructed the calibration circuits by splitting the quantum circuit that prepares the ansatz
in half and composing each half with its own inverse. For GEM we obtain two calibration matrices
that are averaged to get the one used for mitigation. Similarly, for DEP we obtain two depolarizing
parameters and we use the average between the two to mitigate the errors. Fig. 5 illustrates the
results obtained for the 2-qubits Ising model on ibm_manila. The left picture shows the results of
the VQE with no mitigation, the center and right pictures show respectively the results obtained with
GEM and DEP. The dashed line is the exact ground energy, while the blue (orange) data points are
the energy expectation values measured (calculated exactly) for the (parameterized) quantum state at
the given iteration of the VQE. General error mitigation and global depolarizing noise successfully
mitigated the errors on the ground energy estimation, but notice that even the unmitigated VQE
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was able to find the parameters corresponding to the ground state. The left and right pictures of
Fig. 6 illustrate the results obtained with a noisy simulator for the 4-qubits Ising model and the 𝑍2

gauge theory. The blue, orange and green data are the energies measured at the given iteration of
the VQE executed respectively with no mitigation, GEM/TGEM and DEP. Both GEM/TGEM and
DEP were able to significantly reduce the noise bias.
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Figure 5: 2-qubits Ising model: calculation of the ground state using the VQE.
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Figure 6: 4-qubits Ising model and 𝑍2 gauge theory for a two-plaquettes system: calculation of the ground
state using the VQE.

4. Conclusions

We used and evaluated different quantum error mitigation methods for the Hamiltonian sim-
ulation of some simple quantum systems. The systematic of zero-noise extrapolation method was
difficult to keep under control. Global depolarising error mitigation, combined with randomized
compiling, was found to be a more reliable technique. For shallow circuits general error mitiga-
tion was also effective and we proposed a tensorised variant to make it more scalable with some
trade-off on its effectiveness. For a successful application to deeper circuits, generalized error
mitigation needs be combined with randomized compiling, though this raises the (already high)
number of calibration circuits to run. Preliminary results show that general error mitigation and
global depolarizing error mitigation can also be helpful for the Variational Quantum Eigensolver
algorithm.
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