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The possibility to use fault-tolerant Quantum Computers in the "Beyond the NISQ era" is a
promising perspective: it could bring the implementation of Markov Chain Monte Carlo (MCMC)
quantum algorithms on real machines. Then, it would be possible to exploit the quantum properties
of such devices to study the thermodynamic properties of the system. This also allows us to avoid
the infamous sign problem, which plagues classical Monte Carlo simulations of several interesting
systems - such as QCD in the presence of an external electric field or a finite chemical potential.
In this work, we discuss the effectiveness of Quantum Metropolis Sampling in the study of
thermodynamic properties of a non-Abelian gauge theory, based on the discrete 𝐷4 symmetry
group. This is the first study of a non-Abelian Lattice Gauge Theory by means of a quantum MCMC
algorithm: we simulate the behavior of an ideal quantum Computer, aiming to demonstrate the
feasibility of such simulations.
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1. Introduction

Numerical computations represent a crucial step in the study of natural phenomena at every
scale, and the invention of digital electronic computers, together with the development of suitable
algorithms, brought a boost in numerical techniques. Such invention represented a revolution in
science, as well as in every field of human activities. Concerning the impact of this technology on
Theoretical Particle Physics, let us limit ourselves to cite the Markov Chain Monte Carlo (MCMC)
algorithms, that allowed us to investigate the properties of strong interactions, as, e.g., the hadron
spectrum, or the QCD vacuum structure, through lattice simulations, relying on first principles
only; and they are still successfully applied in frontier research representing a crucial step in the
computation of observables such as the muon 𝑔 − 2 or the elements of the CKM Matrix.

However, these powerful methods are subject to limitations which, most of the times, are due
to a lack of statistical interpretation: the infamous sign problem. Such restriction prevents us to
compute directly (i.e., without relying on any escamotage) many observables, such as (to list a few
important examples): real-time dynamics, QCD properties at finite density or with a finite theta
term, transport coefficients or scattering amplitudes with more than one hadron in the initial or final
state. Fortunately, nowadays, we are to the verge of a new technological revolution, as quantum
computers have been available to researchers for a few years and their compute capabilities are
steady growing. Soon, they could represent a new powerful tool, capable of facing computations
which cannot be addressed with classical computers and, in particular, restricting to the interests of
the authors, they can run MCMC algorithms that do not suffer for the sign problem.

We are especially interested in the study of thermodynamic properties of lattice gauge theories,
hence we are exploring a variety of strategies and algorithms to compute thermal averages: quantum
MCMC [1], quantum annealing [2], variational-based approaches. In this contribution we focused
on the Quantum Metropolis Sampling (QMS) algorithm, first introduced in [3], a quantum MCMC
algorithm that we applied to a simple toy model: a (2 + 1)D gauge theory on a two sites lattice
with periodic boundary conditions and 𝐷4 symmetry group. This represents the first application
of a quantum MCMC algorithm to the study of thermodynamic properties of a non-Abelian Lattice
Gauge Theory. In Section 2 of this contribution we introduce the QMS, in Section 3 the details on
the system and the simulations are presented and in Sections 4 and 5 we discuss our results and
present the conclusions. More details on this work can be found in Ref. [4].

2. The QMS algorithm

As previously stated, our main interest is the study of thermodynamic properties of lattice
gauge theories, thus a mandatory step is the computation of thermal averages

⟨O⟩𝛽 =
1

𝑍 (𝛽)Tr
[
O𝑒−𝛽�̂�

]
, (1)

where �̂� is the Hamiltonian operator, 𝛽 the inverse temperature and

𝑍 (𝛽) = Tr 𝑒−𝛽�̂� . (2)

In classical simulations, one can use a MCMC algorithm using the path-integral formulation to
compute such observables, but, in many cases, the sign problem arises, as the trace appears as a
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sum of non-positive terms when rewritten in a computational basis which is easily accessible by a
classical computer. In this context, Quantum Computers could be exploited to run MCMC quantum
algorithms that do not suffer for the sign problem.

QMS follows the same logic of a classical Metropolis algorithm [5], as it generates a Markov
Chain that returns a sequence of states distributed according to the Boltzmann distribution, on which
one can compute Eq. (1). The main difference lies in the fact that we can use Quantum Computers
properties to directly access the eigenstates of the Hamiltonian, |𝜙 𝑗⟩, thus Eqs. (1) and (2) can be
rewritten as

⟨O⟩𝛽 =
1

𝑍 (𝛽) ⟨𝜙 𝑗 | O |𝜙 𝑗⟩ 𝑒−𝛽𝐸 𝑗 , 𝑍 (𝛽) =
∑︁
𝑗

𝑒−𝛽𝐸 𝑗 , (3)

where 𝐸 𝑗 is the eigenvalue of |𝜙 𝑗⟩. It is clear that, in such formulation, the sign problem cannot
arise.

In our implementation, the algorithm only requires 3 quantum registers:

|acc⟩3 |𝐸⟩2 |𝜙⟩1 , (4)

where the first register encodes the quantum state, the second one encodes the energy of such state,
and the third one is a single-qubit register that encodes the result of the Metropolis test executed
on the energy register and a classical register, as it is explained below. The state register has to
be initialized to a Hamiltonian eigenstate, |𝜙 𝑗⟩. Such initialization can be easily accomplished by
initializing it to |0⟩, and then performing a Quantum Phase Estimation (QPE), between registers 1
and 2 (that generally requires a Trotterization [6]) and measuring the second register to make the
state collapse on an initial eigenspace. Thus, the initial state of the algorithm is the following

|0⟩3 |𝐸 𝑗⟩2 |𝜙 𝑗⟩1 , (5)

then the energy is copied on a classical register, and the algorithm runs. It consists of three steps:

1. Metropolis proposal. From a set of unitary operators C (whose properties are outlined
below) it is classically and randomly drawn an element 𝐶, which is applied to the state
register. Then, a new phase estimation is performed between registers 1 and 2, but no
measure on the energy register is performed this time. In formulae:

|0⟩3 |𝐸 𝑗⟩2 |𝜙 𝑗⟩1
𝐶−→

∑︁
𝑝

𝑥
(𝐶 )
𝑗 , 𝑝

|0⟩3 |𝐸 𝑗⟩2 |𝜙𝑝⟩1
QPE−−−→

∑︁
𝑝

𝑥
(𝐶 )
𝑗 , 𝑝

|0⟩3 |𝐸𝑝⟩2 |𝜙 𝑗⟩1 , (6)

where 𝑥 (𝐶 )
𝑗 , 𝑝

= ⟨𝜙𝑝 |𝐶 |𝜙 𝑗⟩.

2. Acceptance evaluation. An oracle𝑊 (𝐸𝑝, 𝐸 𝑗) is applied between the registers 2 and 3. Such
oracle stores the condition for acceptance or rejection on the third register, according to the
acceptance probability of transition between eigenstates, given by

𝑝𝜙 𝑗→𝜙𝑝
= min

(
1, 𝑒−𝛽 Δ𝐸𝑝 𝑗

)
, (7)

where Δ𝐸 𝑝 𝑗 is the energy difference between the states 𝑝 and 𝑗 , and the oracle makes use of
the second quantum register and the classically stored initial energy to compute it. Thus the
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state can be now written as∑︁
𝑝

𝑥
(𝐶 )
𝑗 , 𝑝

|0⟩3 |𝐸𝑝⟩2 |𝜙 𝑗⟩1
𝑊 (𝐸𝑝 ,𝐸 𝑗 )−−−−−−−−→

∑︁
𝑝

𝑥
(𝐶 )
𝑗 , 𝑝

|W𝑝 𝑗⟩3 |𝐸𝑝⟩2 |𝜙 𝑗⟩1 , (8)

where |W𝑝 𝑗⟩3 =
√
𝑝𝜙 𝑗→𝜙𝑝

|1⟩3 +
√︁

1 − 𝑝𝜙 𝑗→𝜙𝑝
|0⟩3.

3. Accept/reject. A measurement on the |W𝑝 𝑗⟩3 register is performed, with two possible
outcomes: 1 or 0. In the first case, the proposed state has been accepted, then a measurement
on the energy register is performed, the result is copied in the classical register of the old
energy, and the algorithm is repeated from step 1. In the case 0 is measured in the acceptance
register, the proposal is refused and the state must be reverted trying to project it back on the
old eigenstate. In [3] an iterative procedure is proposed to accomplish such objective.

The iteration of such algorithm gives rise, after a certain number of thermalization steps, to a
sequence of states distributed according to the desired probability distribution, hence it is possible to
perform the measurements in Eq. (3). However, to measure hermitian operators that do not commute
with �̂�, one must corrupt the system state |𝜙⟩1, hence the Markov Chain has to be thermalized
again before taking another measurement. Moreover, in the case of lattice field theories, one should
preserve gauge invariance at every step in the chain. For this reason the measurements and the
set C of “kick operators” should preserve gauge invariance1. Finally, concerning the properties
of the latter, it should contain as many operators as necessary to ensure ergodicity and detailed
balance: it is possible to demonstrate that 2 non-commuting operators are sufficient to generate the
whole unitary group representing the transition between physical states (further details, including
the demonstration, can be found in Ref. [4]).

3. System and Simulation details

We tested this algorithm on a pure-gauge non-Abelian 𝐷4 lattice gauge theory, using the same
toy model introduced in [7] and shown in Fig. 1. It lives on a 2𝐷 lattice with 2 sites and periodic
boundary conditions (PBC) in both directions, thus the sites are connected to each other (and to
themselves) by 4 links. Defining the system state as | ®𝑈⟩ = |𝑈3⟩ |𝑈2⟩ |𝑈1⟩ |𝑈0⟩, the Hamiltonian of
such a system can be written as

�̂� = �̂�𝑉 + �̂�𝐾 , (9)

where
�̂�𝑉 =

1
𝑔2

∑︁
®𝑈

𝑉 ( ®𝑈) | ®𝑈⟩ ⟨ ®𝑈 | and 𝐻𝐾 = −Ln𝑇𝐾 , (10)

where Ln is the matrix logarithm and 𝑇𝐾 is the transfer matrix, defined element-wise as

⟨ ®𝑈 | 𝑇𝐾 | ®𝑈⟩ =
3∏
𝑖=0

𝑒
1
𝑔2 Tr[𝜌(𝑈′

𝑖
)−1𝜌(𝑈𝑖 )]

, (11)

where 𝜌 denotes a fundamental (2-dimensional, irreducible) representation of 𝐷4.

1The original formulation of the QMS requires that the algorithm restarts from step 0 after a measurement, hence
the measurement can spoil the gauge invariance. However, in our implementation, a more efficient rethermalization
procedure, which does not reset the state, is applied [1], thus gauge invariance must be preserved.
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Figure 1: The toy model we studied: it consists of 2 lattice sites connected by 4 link variables with PBC in
a 2 dimensional space.

The extended dimension of this system is |𝐷4 | |𝐸 | = 84 = 4096 (where |𝐸 | is the number of
links in the model), hence a 12-qubits register is needed to describe it. However, due to gauge
invariance with respect to local transformations, the physical Hilbert space of this system can be
computed as [8]

dimHphys =
∑︁

𝑆∈ conj. classes

(
|𝐷4 |
|𝑆 |

) |𝐸 |− |𝑉 |
= 176, (12)

where |𝑆 | and |𝑉 | are, respectively, the cardinality of each conjugacy class and the number of
vertices of the lattice, hence the spectrum of the theory only counts 176 physically distinct states.
Such spectrum has been analytically computed, and we use this result to compute energy density to
compare with QMS results.

Of course, QMS cannot run on current Quantum Computers, as it involves long circuits and
indefinitely long while cycles, that are out of reach for today technologies. Thus, we simulated such
algorithm using SUQA [9], a simulator of quantum algorithms developed by one of the authors
(GC), and used by our collaboration also in other studies [1, 2, 4].

In the next session we briefly present our results. Our goal is to study the deviation of the
sampled energy density distribution and of the measurement from the analytical expectation. Such
measurements are plagued by different caveats, that need to be kept under control. For example,
the Quantum Phase Estimation has a finite resolution, hence it distorts the spectrum affecting both
the energy measurements and the sampled distribution. Another aspect to take care of is the fact
that the plaquette measurement spoils the state, hence it could bias the sampled distribution if the
Markov Chain does not get properly re-thermalized.

4. Results

To perform simulations, we fixed 1
𝑔2 = 0.8 and performed different simulations using several

values of temperatures 𝛽, and number of qubits in the energy register (𝑛𝑒). We performed mea-
surements of the energy and of a plaquette operator (the trace of the product of the links along the
closed square in the left in Fig. 1). Each simulation required to run QMS on 1 + 𝑛𝑒 + 12 qubits.

In Fig. 2 we show the results obtained for the energy density at 𝛽 = 10−7, 0.1 and 0.5, and limit
ourselves to the simulations performed with 𝑛𝑒 = 5, more details can be found in Ref. [4]. In each
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Figure 2: Results for the energy density distribution, computed at (from top to bottom) 𝛽 = 10−7, 0.1 and
0.5, using 𝑛𝑒 = 5. All the curves are subject to a Gaussian KDE smearing with 𝜎 ∼ 0.4. Green and orange
lines represent the exact analytical result, and the distortion caused by QPE. The blue band represents the
statistical error on the simulated results.
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Figure 3: Results for the distribution of the plaquette values at (from top to bottom) 𝛽 = 10−7 and 0.5, using
𝑛𝑒 = 5. In top panels we present the histogram together with the theoretical expectation; in the lower panel
it is shown the relative discrepancy of results and expectation

graph, the exact distribution, the effect of the QPE distortion on it and the results of the simulation,
are shown after a Kernel Density Estimation (KDE) with a Gaussian kernel and smearing radius
𝜎 ∼ 0.4, in order to avoid the usual histogram instabilities due to low statistics and to obtain a
fair comparison between results and theoretical expectations. It can be observed that at 𝛽 = 0 and
0.1, our results reproduce quite well the expected behavior, and the QPE distortion is enough to
explain the deviation from the exact distribution. However, at 𝛽 = 0.5, the sampled distribution
fails in reproducing the exact behavior. This is probably due to a lower acceptance probability in
the Metropolis test 𝑒−𝛽Δ𝐸 , which could result in an effectively non-ergodic set of moves.

In Fig. 3, we show the results for the occurrence of the possible values of the plaquette
operator, compared with the analytical expected result, for 𝛽 = 10−7 and 0.5 (as the 𝛽 = 0.1 case

7
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is qualitatively equal to the former one). Also for the plaquette measurement we can see that at
lower 𝛽 the results are in agreement with theoretical expectation, while such accordance is spoiled
at higher 𝛽 values.

5. Conclusions

We used a quantum MCMC algorithm, named QMS, to study a simple Lattice Gauge Theory
based on the discrete non-Abelian group 𝐷4, living on a 2𝐷 and 2 sites lattice with PBC along both
directions. We found that in our implementation of the algorithm, measurements should respect
gauge invariance. This request should be obeyed also by the set C of moves, from which one
randomly draws the kick operator for the Monte Carlo step. Moreover, it can be demonstrated
that 2 non-commuting operators suitably chosen, are sufficient to generate a proper set C of kick
operators.

We simulated the QMS for different values of 𝛽, using different numbers of qubits in the
energy register 𝑛𝑒. The algorithm is found to work extremely well at lower values of 𝛽, where
the acceptance probability is higher, while the accuracy fades off at higher 𝛽, both for the energy
density distribution and the plaquette distribution. We refer the interested reader to Ref. [4], where
we discuss in more details all the technical issues. More details on the QMS can be also found in
Refs. [1, 2].
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