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We express the discrete 1+1-dimensional 𝑂 (3) non-linear sigma model (NL𝜎M) in a form well-
suited for the continuous variable approach to quantum computing. Within the Schwinger boson
formulation, we need two qumodes (quantum-mechanical oscillators) at each lattice site. We
envision that it might be possible to reach the scaling regime of this model and observe asymptotic
freedom on near-term photonic quantum devices in the coming decade.
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1. Introduction

It was already pertinent in the 1970s that for the computation of some of the physical problems
especially involving quantum systems, the classical computer would take an exponentially large
time to carry out a systematic computation. These problems were categorized within the NP
complexity class. In order to approach these problems, it seemed inevitable that a paradigm shift
was required. This led the community to think beyond computers that obeyed classical information
theory. Following earlier works by Manin, Bennett, Toffoli, and others, a major breakthrough
was provided by Feynman who remarked that quantum computers are the most natural way of
simulating any quantum system. Since nature is quantum-mechanical at its most fundamental level,
the computations should make use of this to carry out efficient calculations. This motivation has
led to more than four decades of efforts to build and effectively simulate physical systems using
computers based on the principles of quantum mechanics. Though, we are not close to the resources
required to study say real-time evolution of continuum field theories or to understand the behavior
of quantum systems even in lower dimensions yet, it is an active field of research. Irrespective of
the available hardware resources, it is useful to think about methods of how one can study such
systems if and when we have the required quantum hardware.

For lattice field theorists, gauge theories with interesting dynamics and properties are the
obvious playgrounds to test the ideas and formulate them in a way amenable to quantum hardware.
In the absence of a framework to directly deal with gauge theories in higher dimensions using
quantum hardware, much work to date has been restricted to 1+1 dimensions. Even in these simpler
cases, some useful models are available to test the ideas of dynamical mass gap, confinement,
and asymptotic freedom. One such model is the 𝑂 (3) NL𝜎M. In this work, we will start with
the well-known rotor formulation of this model and express it in terms of bosonic oscillators
which are the building blocks of continuous-variable (CV) quantum computing. The theory of
quantum information based on CVs which is encoded in harmonic oscillators, provides an alternative
approach for quantum computing [1, 2] alongside the qubit (or digital) approach. They have also
been shown to be useful toward the long-term goal of fault-tolerant quantum computing [3]. One
often refers to the idea of ‘qumodes’ as similar to ‘qubits’ and ‘qudits’. A qumode is a quantum-
mechanical harmonic oscillator with infinitely discrete quantum states. It is these quantum states
which we will use to encode our information, unlike the qubits where only |0⟩ and |1⟩ are used. In
this conference paper, we discuss how to express the 𝑂 (3) model in the oscillator basis using the
Schwinger boson approach and comment on the possibility of whether this is realistic to achieve
using current state-of-the-art methods in photonic quantum hardware1. The 𝑂 (3) model has been
the subject of many investigations recently for efficient time evolution using fuzzy qubitization
methods [5] and for preparation of ground states using cold atoms [6]. In addition, the Schwinger
boson approach has also been used in Ref. [7] to formulate quantum algorithms for 𝑆𝑈 (2) gauge
theory.

1An alternate method requiring three qumodes per site was also recently proposed by us in [4]

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
2
3
0

Quantum computations of the 𝑂 (3) model using qumodes Raghav G. Jha

2. Mapping the rotor model onto the oscillator basis

The 1+1-dimensional 𝑂 (3) model is described by the action:

𝑆 =
𝛽

2

∫
𝑑𝑥𝑑𝑡 𝜕`n · 𝜕`n, (1)

where n is a 3-vector and 𝛽 = 1/𝑔2. We use the standard terminology and refer to 𝛽 = 0 as
the strong-coupling limit and 𝛽 → ∞ as the weak-coupling limit. For studying this model using
quantum computation methods, one often uses the continuous-time limit of the model. This limit
was shown to be related to a rotor Hamiltonian [8] and is given by:

𝐻 =
1

2𝛽

𝑁∑︁
𝑗=1

L2
𝑗 − 𝛽

∑︁
⟨ 𝑗𝑘⟩

n 𝑗 · n𝑘 , (2)

where 𝑗 and 𝑘 are the nearest neighbor sites on a spatial lattice, n is a unit 3-vector at site 𝑗 and L is
the angular momentum. The fields take values on the manifold S2 following the geometric constraint
®𝑛.®𝑛 = 1. In order to reduce the infinite degrees of freedom of this �̂�, we must choose an angular
momentum cutoff, which we refer to as 𝑙max.. With this choice, we have

∑𝑙max.
𝑙=0 (2𝑙 + 1) = (𝑙max. + 1)2

and therefore �̂� is given by a Hermitian matrix of size (𝑙max. + 1)2𝑁 . If we fix the length of the
vector, it can be expressed in terms of angles as:

®𝑛 = (sin \ cos 𝜙, sin \ sin 𝜙, cos \). (3)

Note that this parametrization reduces the degrees of freedom from the outset because we restrict
the length fluctuations. Another way to approach the 𝑂 (3) model is to consider the 3-vector as a
collection of real scalar fields with a potential that imposes the constraint and where the fluctuations
are allowed but cost more (so they are not favored). Both these methods are equally promising
pathways to simulating the NL𝜎M, however, it is not obvious as to which approach would be more
optimal with respect to quantum resources. In order to set up the continuous variable approach
to the quantum computation of this model, we have to express the Hamiltonian (2) in terms of a
collection of oscillators. To do this, we note that the interaction term can be written as:

n 𝑗 · n𝑘 = sin(\ 𝑗) sin(\𝑘) cos(𝜙 𝑗 − 𝜙𝑘) + cos(\ 𝑗) cos(\𝑘)

= cos(\ 𝑗) cos(\𝑘) +
1
2

[
sin(\ 𝑗)𝑒𝑖𝜙 𝑗 sin(\𝑘)𝑒−𝑖𝜙𝑘 + H.c

]
. (4)

where H.c denotes hermitian conjugate. In order to rewrite the Hamiltonian in terms of oscillators,
we note that the trigonometric functions appearing in (4) can be connected to the |𝑙𝑚⟩ basis via
the standard definitions of the spherical harmonics 𝑌𝑙𝑚 and the |𝑙𝑚⟩ basis can be related to the
combined Fock states of two harmonic oscillators (𝑎 and 𝑏) given by |𝑛𝑎, 𝑛𝑏⟩ via the relation:

|𝑙, 𝑚⟩ = (𝑎†)𝑙+𝑚(𝑏†)𝑙−𝑚√︁
(𝑙 + 𝑚)!(𝑙 − 𝑚)!

|0, 0⟩. (5)

Here we have written two kinds of Bose operators 𝑎 and 𝑏 to invoke the relationship between the
two-dimensional harmonic oscillator and the angular momentum basis with [𝑎, 𝑏] = [𝑎†, 𝑏†] = 0
and [𝑎, 𝑎†] = [𝑏, 𝑏†] = 1. This representation is referred to as the Jordan map or Jordan-Schwinger
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representation. Note that we have suppressed the hats over 𝑎 and 𝑏 operators. The total number of
bosons is 𝑛 = 𝑛𝑎 + 𝑛𝑏. We can define the three operators, which generate the Lie algebra su(1, 1)
given by:

𝐾+ = 𝑎†𝑏†, 𝐾− = 𝑏𝑎, 𝐾3 =
1
2

(
𝑎†𝑎 + 𝑏†𝑏 + 1

)
. (6)

Using the relation between the trigonometric function to spherical harmonics:

cos(\)𝑌𝑙,𝑚(\, 𝜙) =

√︄
(𝑙 − 𝑚 + 1) (𝑙 + 𝑚 + 1)

(2𝑙 + 1) (2𝑙 + 3) 𝑌𝑙+1,𝑚(\, 𝜙) +

√︄
(𝑙 − 𝑚) (𝑙 + 𝑚)
(2𝑙 − 1) (2𝑙 + 1)𝑌𝑙−1,𝑚(\, 𝜙), (7)

and (5), we find that the cos(\ 𝑗) term in the 𝑂 (3) Hamiltonian is of the form:

cos(\ 𝑗) =
1√︁

(𝑛 𝑗 + 1) (𝑛 𝑗 − 1)
(𝑎†

𝑗
𝑏
†
𝑗
) + 1√︁

(𝑛 𝑗 + 1) (𝑛 𝑗 + 3)
(𝑏 𝑗𝑎 𝑗)

=
1√︁

(𝑛 𝑗 + 1) (𝑛 𝑗 − 1)
𝐾+ +

1√︁
(𝑛 𝑗 + 1) (𝑛 𝑗 + 3)

𝐾−, (8)

while the other terms are:

sin(\ 𝑗)𝑒𝑖𝜙 𝑗 =

[ 1√︁
(𝑛 𝑗 + 1) (𝑛 𝑗 + 3)

(𝑏 𝑗𝑏 𝑗) −
1√︁

(𝑛 𝑗 + 1) (𝑛 𝑗 − 1)
(𝑎†

𝑗
𝑎
†
𝑗
)
]
, (9)

and its hermitian conjugate. We have used the map between oscillator occupation number and
angular momentum basis: 𝑙 = (𝑛+ + 𝑛−)/2 and 𝑚 = (𝑛+ − 𝑛−)/2 such that 𝑛 = 2𝑙, 𝑙 + 𝑚 =

𝑛+, 𝑙 − 𝑚 = 𝑛−. We also note that if we define 𝐽+ = 𝑎†𝑏 which is one of the operators that form the
representation of su(2), then [𝐾+, 𝐽+] = −𝑎†𝑎† and [𝐾−, 𝐽+] = 𝑏𝑏 and (9) can be written in terms
of these operators. In order to obtain (8), we made use of (𝑏†)𝑙−𝑚 |0, 0⟩ =

√︁
(𝑙 − 𝑚)!|0, 𝑛−⟩ and

(𝑎†)𝑙+𝑚 |0, 0⟩ =
√︁
(𝑙 + 𝑚)!|𝑛+, 0⟩. The action of various operators is summarized below:

𝐾− |𝑙𝑚⟩ =
√︁
(𝑙 − 𝑚) (𝑙 + 𝑚) |𝑙 − 1, 𝑚⟩ (10)

𝐾+ |𝑙𝑚⟩ =
√︁
(𝑙 + 𝑚 + 1) (𝑙 − 𝑚 + 1) |𝑙 + 1, 𝑚⟩ (11)

𝐽+ |𝑙𝑚⟩ =
√︁
(𝑙 − 𝑚) (𝑙 + 𝑚 + 1) |𝑙, 𝑚 + 1⟩ . (12)

Using (10) and (12), we can compute the action of [𝐾−, 𝐽+] = 𝑏𝑏 on the eigenket as:

[𝐾−, 𝐽+] |𝑙𝑚⟩ = (𝐾−𝐽+ − 𝐽+𝐾−) |𝑙𝑚⟩

=

(
(𝑙 + 𝑚 + 1)

√︁
(𝑙 − 𝑚) (𝑙 − 𝑚 − 1) − (𝑙 + 𝑚)

√︁
(𝑙 − 𝑚) (𝑙 − 𝑚 − 1)

)
|𝑙 − 1, 𝑚 + 1⟩

(13)

=
√︁
(𝑙 − 𝑚) (𝑙 − 𝑚 − 1) |𝑙 − 1, 𝑚 + 1⟩ . (14)

We then find that the kinetic term is given by:

L 𝑗 · L 𝑗 =
𝑛 𝑗

2

(𝑛 𝑗
2

+ 1
)
, (15)

where 𝑛 𝑗 is the number operator at site 𝑗 . The maximum number of allowed bosons at each site for
a particular choice of truncation is given by 2𝑙max. and each finite-dimensional operator in (6) is of
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size (𝑙max. + 1)2 and the size of the Hamiltonian for 𝑁 sites is (𝑙max. + 1)2𝑁 similar to the size of the
rotor Hamiltonian in (2). Using (4), (8), (9), its hermitian conjugate and (15) in (2) we can write
the Hamiltonian entirely in terms of Bose operators.

The suitable choice of truncation required depends strongly on the coupling. For 𝛽 → 0, a
hard truncation to the smallest angular momentum states works well. However, as 𝛽 ∼ 𝑂 (1), one
needs to consider larger values of 𝑙max.. From the extensive study of this model using classical
methods, it is known that the scaling regime for the continuous-time model is around 𝛽 ∼ 1.2 if 𝑁 is
taken sufficiently large. We will show in the next section using exact diagonalization methods that
𝑙max. ∼ 4 appears to be sufficient for this model and this is corroborated by the state-of-the-art tensor
network results. This translates to 8 bosons at each site. The current photonic hardware methods
have been able to study about 15 photons i.e., |𝑛 ∼ 15⟩ [9, 10]. So, in principle, the truncation over
the states is already possible with current technology on a few sites. It remains to be seen whether
this can be achieved in practice.

3. Exact Diagonalization and beyond

For a small number of lattice sites and modest truncation, we can compute the energy gap and
ground state energy using the exact diagonalization (ED) method. The state-of-the-art classical
method is tensor networks and this model has been studied using matrix product states (MPS)
with and without the topological \-term [11, 12] We show the ED results in Fig. 1 and Fig. 2
respectively. This result has been accurately computed from tensor network computations (MPS)
with 𝑁 = 40 (see Fig. 1 of Ref. [11]). In order to realize this model on hardware in the coming
decades, it is crucial that we understand the scaling window and the effects of truncation. If we
had to strictly take the 𝛽 → ∞ limit for the continuum limit, then it would likely be hopeless 2

to realize this on photonic quantum hardware due to the large occupation number states involved.
However, earlier studies have concluded that 𝛽 ∼ 1.2 is sufficient to extract the interesting Physics.
In order to understand this, it is useful to consider the mass gap as a function of 𝛽. The result is
known from Ref. [11, 13] to be 𝑚 = 128𝜋𝛽 exp(−2𝜋𝛽) as 𝛽 ≫ 1. The large coefficient ensures
that the continuum limit can be reached for a modest value of 𝛽 because the theory remains in the
same phase beyond some 𝛽 ∼ O(1). We believe that this would result in the near-term realization
of asymptotic safety in the 𝑂 (3) model.

Once we have the Hamiltonian in terms of oscillators with some fixed truncation of the Fock
space, we can think about implementing the unitary operator exp(−𝑖𝐻𝑡). The Hamiltonian consists
of nearest-neighbor interactions, i.e. it is 4-local in qumodes and is sparse. For example, the rotor
Hamiltonian of the model is 7-sparse3 for 𝑁 = 2 and 𝑙max. = 2. It is known that Hamiltonian
simulation methods are efficient for 1-sparse matrices since the error grows at most like O(𝑑). So,
the first step is to write 𝐻 =

∑𝑑
𝑖=1 𝐻𝑑 as a sum of 1-sparse matrices and then express the time

evolution operators as linear combination of unitaries (LCU). An additional complication is the
fact that the Hamiltonian has coefficients depending on the inverse square roots of the occupation
number operator. These floating-point operations can be done using an adder, Newton’s method

2In the limit of large 𝛽, the RG flow to the UV fixed point might make some parameters irrelevant and there might be
simplification of the Hamiltonian. In such case, the implementation on cavity QED like hardware might be easier. We
leave this analysis for future work.

3A matrix is 𝑑-sparse if at most 𝑑 elements are non-zero in a given row or column
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Figure 1: The ground state energy density of the 𝑂 (3) model for 𝑁 = 2, 3 with different truncation. We see
that the ground state energy density decreases as we increase 𝑁 and it appears to converge beyond 𝑙max. = 3.

Figure 2: The gap computed using the ED method. The gap seems to decrease with including higher angular
momentum states for the couplings considered.

of finding square roots, and multiplier circuits by coupling the photonic hardware to qubits (hybrid
systems). It can also be implemented using an equivalent continuous variable (CV) gate set. We
leave the detailed implementation of the time evolution using the Schwinger boson formalism for
future work.

4. Conclusion

In this work, we considered the𝑂 (3) model, which has several features similar to QCD. Due to
its reduced dimensionality, it provides a suitable arena to test the applications of quantum hardware
in the coming decades. Though this model is not a gauge theory like the Schwinger model, it is
difficult to implement due to the larger continuous global symmetry group. Rather than studying

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
2
3
0

Quantum computations of the 𝑂 (3) model using qumodes Raghav G. Jha

the model using the qubit-based approach, we provided a construction that is well-suited for the
continuous-variable approach to quantum computation. This was achieved by expressing the 𝑂 (3)
model in terms of two oscillators (qumodes) at each site. Our construction does not assume any
truncation over angular momentum states at the start and, hence, it is more general than other
approaches. Though, we do have to impose a cut-off in the Fock basis for practical calculations.
The truncation effects become severe at weak couplings (𝛽 ≫ 1) closer to the continuum limit.
However, the established results from classical computations show that the onset of the scaling limit
is well captured with the truncation imposed at rather small values of 𝛽. This signifies that this
model can provide a realistic scenario for accessing physical lattice length scales using quantum
computing methods. The truncation also sets the maximum number of bosons (photons) at each
site (cavity) needed for the experimental realization. Based on our rough estimate, it appears that it
will be possible to study the model on a few sites using photonic hardware and a suitable gate set
in the coming decade. This would imply that we can potentially observe asymptotic freedom on
near-term quantum devices for the first time in this model.
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