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The digital quantum simulation of lattice gauge theories is expected to become a major application
of quantum computers. Measurement-based quantum computation is a widely studied competitor
of the standard circuit-based approach. We formulate a measurement-based scheme to perform
the quantum simulation of Abelian lattice gauge theories in general dimensions. The scheme uses
an entangled resource state that is tailored for the purpose of gauge theory simulation and reflects
the spacetime structure of the simulated theory. Sequential single-qubit measurements with the
bases adapted according to the former measurement outcomes induce a deterministic Hamiltonian
quantum simulation of the gauge theory on the boundary. We treat as our main example the Z2

lattice gauge theory in 2 + 1 dimensions, simulated on a 3-dimensional cluster state. Then we
generalize the simulation scheme to Wegner’s lattice models that involve higher-form Abelian
gauge fields. The resource state has a symmetry-protected topological order with respect to
generalized global symmetries that are related to the symmetries of the simulated gauge theories.
We also propose a method to simulate the imaginary-time evolution with two-qubit measurements
and post-selections.
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1. Introduction

Euclidean lattice gauge theories [1] have been simulated on classical computers with a great
success, even in the non-perturbative parameter regime that is difficult to study analytically. Still,
there are simulation targets, such as real-time evolution and finite density QCD, for which the path
integral formulation of lattice gauge theory suffers from the sign problem. This is a difficulty in
the evaluation of amplitudes due to the oscillatory contributions in the Monte-Carlo importance
sampling [2–5]. In the Hamiltonian formulation, which is by construction free of the sign problem,
the dimension of the Hilbert space grows exponentially with the size of the system. The quantum
computer is expected to help us alleviating this curse of dimensionality, enabling us to simulate
the quantum many-body dynamics in principle with resources linear in the system size [6, 7].
The quantum simulation of gauge theory is thus one of the primary targets for the application of
quantum computers/simulators, whose studies are fueled by the recent advances in NISQ quantum
technologies [8–14].

The goal of this contribution, based on [15], is to present a new quantum simulation scheme
for lattice gauge theories. Our scheme, which we call measurement-based quantum simulation
(MBQS), is motivated by the idea of measurement-based quantum computation (MBQC) [16–20].
In the MBQS of a gauge theory in 𝑑 spacetime dimensions, one prepares a resource state, which is
obtained by entangling qubits located on various cells on a 𝑑-dimensional lattice. We emphasize
that our scheme uses a resource state that is tailored for the purpose of gauge theory simulation, so
that the spatial structure of the resource state reflects the spacetime structure of the gauge theory.
The state of the gauge theory is in the Hilbert space of the qubits on the boundary. By measuring
qubits sequentially with the bases adapted according to the former measurement outcomes, one can
perform the quantum simulation of the gauge theory deterministically. The graphical representation
of the MBQS scheme is shown in Figure 1.

2. Lattice models and resource states

As a prototypical example, let us consider the gauge theory with gauge groupZ2 = {0, 1 mod 2}
on a two-dimensional square lattice. We use the cell complex notation, where Δ0 is the set of 0-cells
(vertices) 𝜎0 , Δ1 the set of 1-cells (edges) 𝜎1, and Δ2 the set of 2-cells (faces) 𝜎2, and so on.
For a 𝑘-chain 𝑐𝑘 , we write 𝑍 (𝑐𝑘) =

∏
𝜎𝑘 ∈Δ𝑘

𝑍
𝑎 (𝑐𝑘 ;𝜎𝑘 )
𝜎𝑘

, where 𝑎(𝑐𝑘 ;𝜎𝑘) are the coefficients in the
expansion. The Hamiltonian is given as

𝐻 = −
∑︁
𝜎1∈Δ1

𝑋 (𝜎1) − 𝜆
∑︁
𝜎2∈Δ2

𝑍 (𝜕𝜎2) , (1)

where 𝜆 is a coupling constant. The 1-chain 𝜕𝜎2 is the sum of the 1-cells 𝜎1 that are contained in
the boundary of 𝜎2. Physical states must satisfy the Gauss law constraint

𝑋 (𝜕∗𝜎0) = 1 (2)

in the absence of external charges, where 𝜕∗ is the boundary operator for the dual lattice and 𝜎0 is
identified with a face in the dual lattice. We wish to implement the Trotterized time evolution

𝑇 (𝑡) =
( ∏
𝜎1∈Δ1

𝑒𝑖𝑋 (𝜎1) 𝛿𝑡
∏
𝜎2∈Δ2

𝑒𝑖𝜆𝑍 (𝜕𝜎2) 𝛿𝑡
)𝑛

(3)
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post-measurement 
product state teleportation

|Ψ(t)⟩

|Ψ(0)⟩

gCS 
(SPT)

Figure 1: The schematic picture of MBQS. We begin by preparing a resource state with the initial wave
function on the boundary. By applying single-qubit measurements based on a measurement pattern, we
obtain |Ψ(𝑡)〉, the wave function after the evolution with the Hamiltonian of the gauge theory, at the boundary
of the reduced lattice.

with 𝑡 = 𝑛𝛿𝑡.
To realize 𝑇 (𝑡) by measurements, we introduce the following resource state tailored to simulate

the gauge theory. Let us consider a 3-dimensional cubic lattice. To differentiate 2- and 3-dimensional
lattices, we use the bold font to denote objects associated with the latter. We place qubits on 1-cells
𝜎𝜎𝜎1 ∈ ΔΔΔ1 and 2-cells 𝜎𝜎𝜎2 ∈ ΔΔΔ2. The resource state (generalized cluster state) is obtained by applying
controlled-Z gates to entangle the +1-eigenstates (|+〉) of the Pauli 𝑋 operator:

|gCS〉 = ©«
∏

𝜎𝜎𝜎1⊂𝜕𝜕𝜕𝜎𝜎𝜎2

𝐶𝑍𝜎𝜎𝜎1,𝜎𝜎𝜎2
ª®¬ |+〉⊗ΔΔΔ1∪ΔΔΔ2 . (4)

This state is stabilized by the stabilizers

𝐾 (𝜎𝜎𝜎𝑛) = 𝑋 (𝜎𝜎𝜎𝑛)𝑍 (𝜕𝜕𝜕𝜎𝜎𝜎𝑛) , (5)
𝐾 (𝜎𝜎𝜎𝑛−1) = 𝑋 (𝜎𝜎𝜎𝑛−1)𝑍 (𝜕𝜕𝜕∗𝜎𝜎𝜎𝑛−1) . (6)

We indicate the measurement pattern for the simulation in Figure 2 and in Table 1. The
measurement bases are defined as

M (𝐴) =
{
𝑒𝑖 𝜉𝑋 |𝑠〉

�� 𝑠 = 0, 1
}
. (7)

and

M (𝐵) =
{
𝑒𝑖 𝜉 𝑍 |𝑠〉

�� 𝑠 = 0, 1
}
, (8)

where |𝑠〉 is the eigenvector of the 𝑋 operator with the eigenvalue (−1)𝑠:

𝑋 |𝑠〉 = (−1)𝑠 |𝑠〉 . (9)
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basis M (𝐴) → M (𝑋 ) → M (𝐴) → M (𝐵)
layer 𝑝𝑡 𝑝𝑡 𝐼 𝐼

3d cell 𝜎2𝜎2𝜎2 𝜎1𝜎1𝜎1 𝜎1𝜎1𝜎1 𝜎2𝜎2𝜎2

2d cell 𝜎2 𝜎1 𝜎0 𝜎1

Table 1: Measurement pattern for the Z2 gauge theory in 2 + 1 dimensions. 𝑝𝑡 and 𝐼 denote a point and an
interval in the vertical (fictitious time) direction. The basis M (𝐴) in the third step induces an energy penalty
for the violation of the Gauss law constraint (gauge invariance).

ℳ(A) ℳ(X)(1) σ2 × {j} (2) σ1 × {j}

 or ℳ(A) ℳ(X)
(3) σ0 × [ j, j + 1] (3) σ1 × [ j, j + 1]

ℳ(B)

(4)

Figure 2: The protocol for the Z2 gauge theory in 2 + 1 dimensions. The black balls represent the qubits
living on 2-cells𝜎𝜎𝜎2 ∈ ΔΔΔ2 and the blue ones are those on 1-cells𝜎𝜎𝜎1 ∈ ΔΔΔ1. We use notations such that 𝜎2 ×{ 𝑗}
is a 2-cell in the 3-dimensional lattice at the vertical coordinate (which increases as as we go down vertially)
𝑥3 = 𝑗 . Similarly, [ 𝑗 , 𝑗 + 1] is an interval between 𝑥3 = 𝑗 and 𝑥3 = 𝑗 + 1, so that 𝜎0 × [ 𝑗 , 𝑗 + 1] is a 1-cell in
the 3-dimensional lattice.

The basis M (𝑋 ) = {|𝑠〉 | 𝑠 = 0, 1} is a specialization of M (𝐵) . In [15] we show that the time
evolution (3) is induced if the measurement angles 𝜉 are chosen adaptively based on the previous
outcomes. This is the main result of [15].

The simulation protocol and the measurement pattern can be generalized to models other than
the Z2 gauge theory in 2 + 1 dimensions. A nice class of models that admits generalization is
Wegner’s models 𝑀(𝑑,𝑛) [21] that involve higher-form Z2 gauge fields in 𝑑 spacetime dimensions.
Another generalization we have achieved is to replace the gauge group Z2 to Z𝑁 with 𝑁 > 2 or R.
Further, we have generalized the protocol (measurement pattern) to the Majorana chain [22] and
the imaginary-time evolution, and has established a correspondence between the statistical partition
function and the resource state (generalizing [23, 24]).

3. SPT order of the resource state

The presence of an SPT order has been suggested to be an important ingredient of resource
states for the ability to perform the (universal) MBQC [25–36]. In [15] we show that the resource

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
2
3
2

Measurement-based quantum simulation of Abelian lattice gauge theories Takuya Okuda

state (generalized cluster state) gCS(𝑑,𝑛) , constructed to simulate 𝑀(𝑑,𝑛) by measurements, has a
symmetry protected topological order protected by global (𝑑−𝑛)- and (𝑛−1)-form Z2 symmetries.
Whether the ability to simulate the relevant gauge theories is intrinsically related to the SPT order
is left as an open question.
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