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We present a study on the nonperturbative calculation of observables for inclusive semileptonic
decays of 𝐵 (𝑠) mesons using lattice QCD. We focus on the comparison of two different methods
to analyse the lattice data of Euclidean correlation functions, specifically Chebyshev and Backus-
Gilbert approaches. This type of computation may eventually provide new insight into the long-
standing tension between the inclusive and exclusive determinations of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix elements |𝑉𝑐𝑏 | and |𝑉𝑢𝑏 |. We report the results from a pilot lattice
computation for the decay 𝐵𝑠 → 𝑋𝑐 𝑙𝜈𝑙 , where the valence quark masses are approximately tuned
to their physical values using the relativistic-heavy quark action for the 𝑏 quark and the domain-
wall formalism for the other valence quarks. We address the computation of the total decay rate
as well as leptonic and hadronic moments, discussing similarities and differences between the two
analysis techniques.
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1. Introduction

Quark-flavour physics is an area of particular interest to search for deviation from the Standard
Model (SM), as weak processes characterised by flavour-changing currents may be sensitive to New
Physics: while new particles may be too heavy to be produced with energies achievable by current
experimental facilities, quantum effects could leave detectable traces in flavour-physics processes.
Therefore, any discrepancy between SM theoretical predictions and experimental measurements
could be an indicator of new effects.

One intriguing puzzle is the long-standing tension between the inclusive and exclusive determi-
nations of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements |𝑉𝑐𝑏 | and |𝑉𝑢𝑏 |. Semileptonic
decays of 𝐵mesons constitute the main channel for the extraction of these parameters, and therefore
represent crucial processes to address and investigate this tension.

First viable theoretical proposals for how to accomplish the computation of inclusive decay
observables on the lattice have appeared only recently [1–3]. We report on our pilot study on
the calculation of the decay rate of the inclusive semileptonic 𝐵𝑠 → 𝑋𝑐 𝑙𝜈𝑙 decay [4, 5], focusing
on similarities and differences of the analysis strategy based on the Chebyshev polynomial and
Backus-Gilbert reconstruction. We present further work on the generalisation of our setup to the
computation of moments of various kinematical quantities, in particular hadronic mass and lepton
energy moments.

2. Inclusive decay rate and kinematic moments

The starting point of the calculation is given by the differential decay rate

dΓ
d𝑞2d𝑞0d𝐸𝑙

=
𝐺2

𝐹
|𝑉𝑐𝑏 |2

8𝜋3 𝐿𝜇𝜈𝑊
𝜇𝜈 , (1)

where𝑊 𝜇𝜈 ≡ 𝑊 𝜇𝜈 (𝑝, 𝑞) is the hadronic tensor for the 𝐵𝑠 decay defined as

𝑊 𝜇𝜈 =
∑︁
𝑋𝑐

(2𝜋)3𝛿 (4) (𝑝 − 𝑞 − 𝑟) 1
2𝐸𝐵𝑠

( 𝒑) ⟨𝐵𝑠 ( 𝒑) | 𝐽𝜇†(0) |𝑋𝑐 (𝒓)⟩ ⟨𝑋𝑐 (𝒓) | 𝐽𝜈 (0) |𝐵𝑠 ( 𝒑)⟩ , (2)

which contains all the nonperturbative QCD effects, and 𝐿𝜇𝜈 is the leptonic tensor which contains
known kinematic terms associated with the lepton-neutrino pair.

The total decay rate is obtained integrating Eq. (1)

Γ =
𝐺2

𝐹
|𝑉𝑐𝑏 |2

24𝜋3

∫ 𝒒2
max

0
d𝒒2

√︃
𝒒2 �̄� (𝒒2) , (3)

where we changed the integration variables to the three-momentum 𝒒2 of the hadronic state 𝑋𝑐 and
its energy 𝜔, with

�̄� (𝒒2) ≡ 3√︁
𝒒2

∫ ∞

𝜔0

d𝜔
∫ 𝐸max

𝑙

𝐸min
𝑙

d𝐸𝑙𝐿𝜇𝜈𝑊
𝜇𝜈 =

∫ ∞

𝜔0

d𝜔𝐾𝜇𝜈𝑊
𝜇𝜈 , (4)

where 𝐾𝜇𝜈 = 𝐾𝜇𝜈 (𝒒2, 𝜔) is a kernel function that contains known kinematic factors obtained from
the leptonic tensor after the integration over the lepton energy 𝐸𝑙. While the energy phase space
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in 𝜔 is restricted in some finite interval 𝜔 ∈ [𝜔min, 𝜔max] for every 𝒒2, we are free to modify
the integration range to 𝜔0 ≤ 𝜔min, since the hadronic tensor has no support below the ground
state 𝜔min, and extend 𝜔max → ∞ including a Heaviside function into the kernel 𝐾𝜇𝜈 . These
modifications will be relevant later for the analysis strategy.

Moving to the moments of a given kinematic quantity 𝑝 at order 𝑛, these are defined as

⟨(𝑝)𝑛⟩ =
Γ𝑝𝑛

Γ
, Γ𝑝𝑛 ≡

∫
d𝒒2d𝜔d𝐸𝑙 (𝑝)𝑛

[
dΓ

d𝒒2 d𝜔 d𝐸𝑙

]
, (5)

which can be rewritten as

⟨(𝑝)𝑛⟩ =
∫

d𝒒2
√︁
𝒒2 �̄�

(𝑛)
𝑝 (𝒒2)∫

d𝒒2
√︁
𝒒2 �̄� (𝒒2)

, (6)

with

�̄�
(𝑛)
𝑝 (𝒒2) = 3√︁

𝒒2

∫ ∞

𝜔0

d𝜔
∫ 𝐸max

𝑙

𝐸min
𝑙

d𝐸𝑙 (𝑝)𝑛𝐿𝜇𝜈𝑊
𝜇𝜈 =

∫ ∞

𝜔0

d𝜔𝐾 (𝑛)
𝑝,𝜇𝜈𝑊

𝜇𝜈 , (7)

where 𝐾 (𝑛)
𝑝,𝜇𝜈 is the corresponding kernel function analogous to the one in Eq. (4). We consider

in particular the hadronic mass (𝐻) moments ⟨(𝑀2
𝑋
)𝑛⟩, with 𝑀2

𝑋
= (𝜔2 − 𝒒2), and the lepton

energy (𝐿) moments ⟨(𝐸𝑙)𝑛⟩. In order to discuss and illustrate our method, we will focus on the
computation of �̄� (𝒒2) and the analogous quantities for the 𝑛 = 1 moments �̄� (1)

𝐻
(𝒒2) and �̄� (1)

𝐿
(𝒒2),

which are the crucial ingredients to compute the final observables of interest.

3. Lattice approach

Inclusive decays can be studied on the lattice through the computation of four-point correlation
functions

𝐶𝑆𝐽𝐽𝑆
𝜇𝜈 (𝑡snk, 𝑡2, 𝑡1, 𝑡src) =

∑︁
𝒙snk

𝑒−𝑖𝒑snk · (𝒙snk−𝒙src )
〈
𝑇

{
O𝑆
𝐵𝑠

(𝑥snk) 𝐽†𝜇 (𝒒, 𝑡2) 𝐽𝜈 (𝒒, 𝑡1) O𝑆†
𝐵𝑠

(𝑥src)
}〉
,

(8)

where O𝐵𝑠
is an interpolating operator for the the 𝐵𝑠 meson, and 𝐽𝜈 is the �̄� → 𝑐 weak current

projected in momentum space. In particular, the hadronic tensor can be addressed through the ratio

𝐶𝜇𝜈 (𝒒, 𝑡) ≡
1

2𝑀𝐵𝑠

| ⟨0| O𝐿
𝐵𝑠

|𝐵𝑠⟩ |2
𝐶𝑆𝐽𝐽𝑆 (𝑡snk, 𝑡2, 𝑡1, 𝑡src)
𝐶𝑆𝐿 (𝑡snk, 𝑡2)𝐶𝐿𝑆 (𝑡1, 𝑡src)

, (9)

with 𝑡snk− 𝑡2 ≫ 1, 𝑡1− 𝑡src ≫ 1 and 𝑡 = 𝑡2− 𝑡1, and where𝐶𝑋𝑌 represent the two-point 𝐵𝑠 correlator,
with the superscripts indicating smearing (𝑆) or no smearing (𝐿). Indeed, the new correlator
𝐶𝜇𝜈 (𝒒, 𝑡) is related to the hadronic tensor as

𝐶𝜇𝜈 (𝒒, 𝑡) =
∫ ∞

𝜔0

d𝜔𝑊𝜇𝜈 (𝒒, 𝜔)𝑒−𝜔𝑡 , (10)
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which shows that𝑊𝜇𝜈 represents the spectral function for the correlator𝐶𝜇𝜈 in the Källén-Lehmann
representation, namely

𝑊𝜇𝜈 (𝒒, 𝜔) =
1

2𝑀𝐵𝑠

∑︁
𝑋𝑐

𝛿(𝜔 − 𝐸𝑋𝑐
) ⟨𝐵𝑠 | 𝐽†𝜇 (𝒒, 0) |𝑋𝑐⟩ ⟨𝑋𝑐 | 𝐽𝜈 (𝒒, 0) |𝐵𝑠⟩ (11)

in the rest frame of the 𝐵𝑠 meson.
The extraction of the hadronic tensor requires the computation of the inverse Laplace transform

and represents therefore an ill-posed inverse problem. However, for the calculation of the quantities
�̄� (𝒒2) for both decay rate and moments the extraction of the spectral function can be bypassed and
the observables can be evaluated directly. In particular, referring to Eqs. (4) and (7), �̄� (𝒒2) can be
obtained naively through a polynomial approximation in 𝑒−𝜔 (in lattice units) of the kernel function
up to a degree 𝑁 , i.e. 𝐾𝜇𝜈 =

∑𝑁
𝑗=0 𝑐𝜇𝜈, 𝑗𝑒

− 𝑗𝜔 such that

�̄�naive(𝒒2) =
𝑁∑︁
𝑗=0
𝑐𝜇𝜈, 𝑗

∫ ∞

𝜔0

d𝜔𝑊 𝜇𝜈𝑒− 𝑗𝜔 =

𝑁∑︁
𝑗=0
𝑐𝜇𝜈, 𝑗𝐶

𝜇𝜈 ( 𝑗) . (12)

Note that the approximation of the kernel is possible as long as the Heaviside function contained in
𝐾𝜇𝜈 is regularised with a continuous function such as a sigmoid 𝜃𝜎 (𝑥) = 1/(1+ 𝑒−𝑥/𝜎), where 𝜎 is
a parameter that controls the sharpness of the step and approaches the Heaviside for 𝜎 → 0. While
this observation plays an important role in the final calculation, we won’t discuss it further and refer
to other works for more details [5, 6]. We labelled the above calculation as “naive” because, while
theoretically well-defined, such a procedure would in practice lead to a build up of the statistical
noise originating from the correlator at different time slices, such that the final error on �̄�naive(𝒒2)
would be too large to make any significant phenomenological prediction. To proceed in the analysis
we then need to consider two steps:

1. find a suitable polynomial approximation strategy to approximate the kernels;

2. devise a “regularisation” to reduce the variance of the target observable.

The final result for the observable is then

�̄� (𝒒2) = �̄�naive(𝒒2) + 𝛿�̄� (𝒒2) , (13)

where 𝛿�̄� (𝒒2) is the regularisation term which acts as a noisy zero that does not change the final
result but takes care of reducing the variance.

4. Chebyshev and Backus-Gilbert reconstruction

For the analysis strategy we rely on polynomial approximations based on the Chebyshev
polynomial technique [7, 8] and the Backus-Gilbert method [9, 10]. We refer to the App. of [5] for
a deeper discussion of both approaches. Here we point out the main differences between the two
in terms of the polynomial approximation of the kernels (with no connection to the data) as well as
the variance reduction of the final �̄� (𝒒2) observables.
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Figure 1: Example of the polynomial approximation of one of the kernels for the decay rate at degree
𝑁 = 9 with Chebyshev and Backus-Gilbert method with two different starting point 𝜔0 for the polynomial
approximation.

Let us start from the polynomial approximation. We first highlight that, by visual inspection
of Fig. 1, the quality of the two polynomial approximation strategies is comparable. Furthermore,
the choice of the starting point of the approximation𝜔0 (cf. with the integral in (4)) has a significant
impact on the quality of the reconstruction, in particular for larger 𝒒2, where the phase space in 𝜔
is shrunk (right plot).

Concerning the variance reduction, the two methods act in a significantly different way. The
Chebyshev-polynomial technique relies on trading the original data with a refitted set that accounts
for rigorous mathematical bounds associated with the shifted Chebyshev polynomials 𝑇𝑗 (𝜔), 𝜔 ∈
[𝜔0,∞), for which |𝑇𝑗 (𝜔) | ≤ 1. Namely, the normalised correlator in Eq. (9) can be written as
linear combination of 𝑇𝑗 ,𝜇𝜈 ≡

(∫ ∞
𝜔0

d𝜔𝑊𝜇𝜈𝑇𝑗 (𝜔)𝑒−2𝑡0𝜔
)
/
(∫ ∞

𝜔0
d𝜔𝑊𝜇𝜈𝑇0(𝜔)𝑒−2𝑡0𝜔

)
, such that we

can obtain a new set of data for the normalised correlator �̄�𝜇𝜈 (𝒒, 𝑗) = 𝐶𝜇𝜈 (𝒒, 𝑗 + 2𝑡0)/𝐶𝜇𝜈 (𝒒, 2𝑡0)
requiring

�̄�fit
𝜇𝜈 (𝒒, 𝑘) =

𝑘∑︁
𝑗=0
�̃�
(𝑘 )
𝑗
𝑇𝑗 ,𝜇𝜈 , (14)

and imposing the bounds |𝑇𝑗 ,𝜇𝜈 | ≤ 1 in the fitting procedure, where �̃� (𝑘 )
𝑗

is a set of known
coefficients associated with the power representation of the polynomials. The shift 𝑡0 represents the
minimum distance between the two currents in Eq. (8) and has to be accounted for in 𝐾𝜇𝜈 . In this
way, the correction term reads

𝛿�̄� (𝒒2) = 𝐶𝜇𝜈 (𝒒, 2𝑡0)
𝑁∑︁
𝑗=0
𝑐𝜇𝜈, 𝑗 𝛿�̄�𝜇𝜈 (𝒒, 𝑗) , 𝛿�̄�𝜇𝜈 (𝒒, 𝑗) = �̄�fit

𝜇𝜈 (𝒒, 𝑗) − �̄�𝜇𝜈 (𝒒, 𝑗) (15)

and the variance is minimised acting of the correlator data.
On the other hand, the Backus-Gilbert method reduces the variance by modifying the coeffi-

cients of the polynomial approximation such that they account also for the reduction of the statistical
noise. This is achieved in practice by minimising the functional

𝐹 = 𝐴 + 𝜃2𝐵 , (16)
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where the functional 𝐴 addresses the pure polynomial approximation (systematic error) with a
chosen polynomial basis 𝑏 𝑗 (𝜔), 𝐵 addresses the variance of �̄� (𝒒2) (statistical error) and 𝜃2 is a
parameter chosen by hand that accounts for the interplay between the two types of error. The
“naive” result is then regularised through a correction to the coefficients as

𝛿�̄� (𝒒2) = 𝐶𝜇𝜈 (𝒒, 2𝑡0)
𝑁∑︁
𝑗=0
𝛿𝑐𝜇𝜈, 𝑗 �̄�𝜇𝜈 (𝒒, 𝑗) , 𝛿𝑐𝜇𝜈, 𝑗 = 𝛿𝑐𝜇𝜈, 𝑗

���
𝜃2≠0

− 𝛿𝑐𝜇𝜈, 𝑗
���
𝜃2=0

. (17)

5. Numerical setup

Our calculation is based on a 243×64 lattice with 2+1-flavour domain-wall fermion (DWF) [11,
12] gauge-field ensembles with the Iwasaki gauge action [13] from the RBC/UKQCD Collaboration
[14] at lattice spacing 𝑎−1 = 1.785(5) GeV (corresponding to 𝑎 ≃ 0.11 fm), pion mass 𝑀𝜋 ≃
340 MeV and close-to-physical strange-quark mass. The computations have been performed with
the Grid [15–17] and Hadrons [18] software packages.

We use the same simulation parameters RBC/UKQCD is using in the heavy-light meson
projects on exclusive semileptonic 𝐵 (𝑠) meson decays [19–22]. In particular, the valence-strange
quark is simulated using DWF, whereas the valence-charm quark is simulated by using the Möbius
DWF action [23, 24]. Their masses are tuned such that mesons containing bottom, charm and
strange valence quarks have masses close to the physical ones. The physical bottom quark cannot
currently be simulated with DWF and some EFT-based action is required: the 𝑏 quark has been
simulated at its physical mass using the Columbia formulation of the relativistic-heavy-quark (RHQ)
action [25, 26], which is based on the Fermilab heavy quark action [27].

For the computation we average over 120 statistically independent gauge configurations, and
on each configuration the measurements are performed on 8 different linearly spaced source-time
planes. We use Z2 wall sources [28–30] to improve the signal. We compute 8 different momenta
linearly spaced in 𝒒2 to cover the full kinematic range and another 2 momenta to increase the
resolution for small 𝒒2. These have been induced through partially twisted boundary conditions
[31, 32] for the charm quark with the same momentum in all three spatial directions.

6. Results

We now present some of the main findings of this study. For all the observables we report
results from the two reconstruction approaches at values𝜔0 = 0 and𝜔0 = 0.9𝜔min. For the Backus-
Gilbert method, we employ two different choices for the polynomial basis, namely exponentials
𝑏 𝑗 (𝜔) = 𝑒− 𝑗𝜔 or shifted Chebyshev polynomials 𝑏 𝑗 (𝜔) = 𝑇𝑗 (𝜔).

In Fig. 2 we show the results for the quantity �̄� (𝒒2) (left) together with the effect of the
variance reduction (right) outlined in Sec. 4. In particular, the latter shows that the reduction of the
statistical error is substantial and it therefore emphasises the importance of regularisation methods
for the final result. All the methods are in agreement, and the only deviation is associated with
the different values of 𝜔0 as 𝒒2 increases. This is understood in terms of the different quality of
the approximation as the phase space in 𝜔 shrinks, as illustrated in Fig. 1, and has to be taken into
account in the systematics.

6
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Figure 2: Left: estimate of �̄� (𝒒2) with the two different strategies for 10 different values of 𝒒2 with 𝑁 = 9
and 𝒒max = 5.83 GeV2. Right: effect of the variance reduction to �̄�naive (𝒒2) from the correction 𝛿�̄� (𝒒2) for
the case 𝜔0 = 0.9𝜔min. The y axis shows the standard deviation 𝜎�̄� for �̄�naive (𝒒2) (empty symbols) and
�̄� (𝒒2) = �̄�naive (𝒒2) + 𝛿�̄� (𝒒2) (filled symbols).
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Figure 3: Evaluation of the numerators �̄� (1)
𝐻

(𝒒2) (left) and �̄� (1)
𝐿

(𝒒2) (right) of the hadronic mass and lepton
differential moments at 𝑛 = 1, respectively.

In Fig. 3 we show some of the results for the moments. In particular, we focus on the numerators
�̄�

(𝑛)
𝐻

(𝒒2) and �̄� (𝑛)
𝐿

(𝒒2) that enter the definition of the hadronic mass and lepton moments at order
𝑛 = 1, as in the general expression Eq. (6). As for the decay rate, we see excellent agreement among
the different methods. Note that, compared to the decay rate, the errors are larger for �̄� (1)

𝐻
(𝒒2) and

smaller (or comparable) for �̄� (1)
𝐿

(𝒒2). This can be understood in terms of the differences of the
kernels: indeed, the hadronic mass moments introduce extra factors that depend on𝜔 in the kernels,
whereas the behaviour of the leptonic kernels is smooth. We therefore expect the polynomial
approximation to be more efficient in this second case.

7. Summary and outlook

We presented our results for a pilot study of 𝐵𝑠-meson inclusive semileptonic decays [5]
highlighting the general setup for the calculation. In particular, we provide an extended framework
that incorporates two different methods, one exploiting Chebyshev polynomials, and one exploiting
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the Backus-Gilbert approach. We showed that the two are compatible for both the computation
of the decay rate and the moments, and outlined how the two regularise the calculation of the
observables to reduce the statistical noise, either acting on the data (Chebyshev) or modifying the
coefficients of the polynomial approximation (Backus-Gilbert).

We also tested our setup to address some of the quantities related to hadronic mass and lepton
energy moments, similarly to what was done in [6]. A full treatment of (differential) moments on the
lattice will allow to compare with analytical OPE approaches and will provide a common ground
to cross-validate different approaches. Moreover, moments do not depend on the CKM-matrix
elements, and lattice calculations may allow to extract some of the parameters that appear in the
perturbative expansion.

Overall, our work provides a solid foundation for future studies of semileptonic inclusive
decays. However, several aspects require further investigations and will be the subject of future
studies, in particular systematic errors associated with the polynomial approximation [33], finite-
volume effects, discretisation errors, and the continuum limit.
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