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We present a lattice determination of the hadronic susceptibilities that, thanks to unitarity and
analyticity, constrain the form factors entering the semileptonic 𝑏 → 𝑐 transitions. We evaluate
the transverse and longitudinal susceptibilities of the vector and axial polarization functions
at zero momentum transfer from the moments of appropriate two-point correlation functions.
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1. Introduction

The hadronic form factors (FFs) entering the exclusive semileptonic 𝐵-meson decays 𝐵 →
𝐷 (∗)ℓ𝜈ℓ are crucial ingredients for the extraction of the CKM matrix element |𝑉𝑐𝑏 | from ex-
perimental data and for a pure theoretical prediction of the lepton flavor universality ratios
𝑅𝐷 (∗) = 𝐵𝑅(𝐵 → 𝐷 (∗)𝜏𝜈𝜏)/𝐵𝑅(𝐵 → 𝐷 (∗)𝑒(𝜇)𝜈𝑒 (𝜇) ).

The required hadronic FFs are non perturbative quantities that must be computed using lattice
QCD simulations. Presently, the 𝐵 → 𝐷 (∗)ℓ𝜈ℓ FFs have been determined on the lattice with a few-
percent accuracy for values of the 4-momentum transfer 𝑞2 close to 𝑞2 ∼ 𝑞2

𝑚𝑎𝑥 ≡ (𝑚𝐵 − 𝑚𝐷 (∗) )2,
whereas experimental measurements are more precise in the region 𝑞2 ∼ 0. In order to predict the
𝑞2-dependence of the FFs in the full semileptonic region, 0 ≲ 𝑞2 ≤ 𝑞2

𝑚𝑎𝑥 , truncated 𝑧-expansions
are often employed mixing also theoretical and experimental data. All that, however, can bias the
determinations of |𝑉𝑐𝑏 | and 𝑅𝐷 (∗) .

Recently, the dispersive matrix (DM) approach [1–4] has been proposed as a tool to predict
the full 𝑞2-dependence of the FFs in a model-independent way based only on lattice QCD results,
unitarity and analyticity. The starting point of the method is a dispersive bound that, for a generic
form factor 𝑓 , reads

𝜒(𝑞2) ≥ 1
𝜋

∫ ∞

𝑞2
𝑡ℎ𝑟

𝑑𝑡
𝑊 (𝑡) | 𝑓 (𝑡) |2
(𝑡 − 𝑞2)3 , (1)

where 𝑊 (𝑡) is a known phase space factor, 𝑞2
𝑡ℎ𝑟

the relevant annihilation threshold and 𝜒(𝑞2) is the
hadronic susceptibility. The latter are defined as moments of suitable two-point functions Π𝐽𝐽

𝜇𝜈 that
for a flavor-changing current 𝐽𝜇 = 𝑉𝜇, 𝐴𝜇 (𝑉𝜇 = 𝑐𝛾𝜇𝑏 and 𝐴𝜇 = 𝑐𝛾5𝛾𝜇𝑏) splits into a transverse
(𝑇) and longitudinal (𝐿) polarization functions:

Π𝐽𝐽
𝜇𝜈 (𝑞) ≡ 𝑖

∫
𝑑4𝑥𝑒𝑖𝑞 ·𝑥 ⟨0|𝑇{𝐽𝜇 (𝑥)𝐽†𝜈 (0)}|0⟩ = (𝑞𝜇𝑞𝜈 − 𝑔𝜇𝜈𝑞

2)Π𝐽𝐽
𝑇

(𝑞2) + 𝑞𝜇𝑞𝜈Π
𝐽𝐽
𝐿

(𝑞2) , (2)

𝜒𝐽
𝑇
(𝑞2) ≡ 1

2
𝜕2 [𝑞2Π𝐽𝐽

𝑇
(𝑞2)]

(𝜕𝑞2)2 , 𝜒𝐽
𝐿
(𝑞2) ≡

𝜕 [𝑞2Π𝐽𝐽
𝐿

(𝑞2)]
𝜕𝑞2 . (3)

Performing a Wick rotation from Minkowskian to Euclidean coordinates, one can express the
polarization functions in terms of the 2-point Euclidean correlation functions 𝐶 (𝜏) as [5]

𝑄2Π𝐽𝐽
𝑇 (𝑄2) = −

∫ +∞

−∞
𝑑𝜏𝑒−𝑖𝑄·𝜏𝐶𝐽𝑖 𝐽𝑖 (𝜏) , 𝑄2Π𝐽𝐽

𝐿 (𝑄2) = −
∫ +∞

−∞
𝑑𝜏𝑒−𝑖𝑄·𝜏𝐶𝐽0𝐽0 (𝜏) , (4)

where 𝑄2 = −𝑞2 and the Euclidean four-momentum 𝑄 is chosen in the temporal direction (𝑄, ®0).
The first nonperturbative determination of the hadronic susceptibilities for 𝑏 → 𝑐 transitions has
been carried out in Ref. [5] using 𝑁 𝑓 = 2 + 1 + 1 gauge configurations produced by the Extended
Twisted Mass Collaboration (ETMC). To improve that analysis, in our calculations we make use of
the latest 𝑁 𝑓 = 2 + 1 + 1 ETMC gauge configurations [6], which differ from those used in Ref. [5]
(i) for the use of Wilson-clover twisted-mass quarks, (ii) for considering four values of the lattice
spacing (𝑎 ≃ 0.057, 0.068, 0.080, 0.091) fm, and (iii) for having all dynamical quark masses at
their physical point on most ensembles.

As for the 2-point correlation functions, we use two regularizations of the twisted mass formu-
lation, namely with equal (𝑟, 𝑟) or opposite (𝑟, -𝑟) values of the Wilson parameter 𝑟 , which differ by
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O(𝑎2) effects. To reduce the discretization effects, we subtract the leading order (LO) cut-off effects
evaluated in the free theory. Finally in order to extrapolate to the physical 𝑏-quark we simulate a
series of 𝜆-spaced heavy quark masses 𝑚ℎ (𝑛) = 𝜆𝑛𝑚𝑐 with 𝑛 = 1 − 8 and 𝜆 ≈ 1.16, leading to
𝑚ℎ ≲ 3.5𝑚𝑐 ≈ 0.75𝑚𝑏. For each ensemble we analyze the first and second derivatives appearing
in Eq. (3) for the transverse and longitudinal polarization functions of both the vector and axial
currents. At zero momentum transfer one has [5]

𝑚2
ℎ
𝜒𝑉
𝑇
(𝑎2;𝑚ℎ, 𝑚𝑐) =

𝑚2
ℎ

12

∫ ∞
𝑎

𝑑𝜏 𝜏4𝐶𝑉𝑖𝑉𝑖 (𝜏) , 𝜒𝑉
𝐿
(𝑎2;𝑚ℎ, 𝑚𝑐) = (𝑚ℎ−𝑚𝑐 )2

12

∫ ∞
𝑎

𝑑𝜏 𝜏4𝐶𝑆𝑆 (𝜏) , (5)

𝑚2
ℎ
𝜒𝐴
𝑇
(𝑎2;𝑚ℎ, 𝑚𝑐) =

𝑚2
ℎ

12

∫ ∞
𝑎

𝑑𝜏 𝜏4𝐶𝐴𝑖𝐴𝑖 (𝜏) , 𝜒𝐴
𝐿
(𝑎2;𝑚ℎ, 𝑚𝑐) = (𝑚ℎ+𝑚𝑐 )2

12

∫ ∞
𝑎

𝑑𝜏 𝜏4𝐶𝑃𝑃 (𝜏) ,

where we have exploited the Ward Identities (WIs) to express the longitudinal susceptibilities as the
fourth moments of the scalar (𝑆) and pseudoscalar (𝑃) correlation functions. The (dimensionless)
susceptibilities in Eq. (5) has to be extrapolated to the continuum limit and to the physical 𝑏-quark
mass, as it will be described in the next sections.

2. Physical b-quark point

In order to extrapolate the susceptibilities to the physical 𝑏-quark point we make use of the
simulated mass of the 𝐵𝑐 meson, obtained from the pseudoscalar correlation function used to
determine 𝜒𝐴

𝐿
. We study also the 𝐵∗

𝑐 and 𝐵𝑠 meson masses as a consistency check. The ground-
state mass of 𝑃 and𝑉 mesons, 𝑀𝑃 (𝑉 ) , are extracted from a constant fit to the plateau of the effective
mass 𝑀eff

𝑃 (𝑉 ) at large time distances from the source.
We take the starting value 𝑚𝑐 obtained in Ref. [6] for the charm-quark mass. For this value

we obtain 𝑀𝑃 (𝑚𝑐, 𝑚𝑐) = 2981(18) MeV, 𝑀𝑉 (𝑚𝑐, 𝑚𝑐) = 3095(18) MeV and 𝑀𝑃 (𝑚𝑐, 𝑚𝑠) =

1964(12) MeV, which are compatible with the more precise experimental values [7] 𝑀
exp
𝜂𝑐 =

2983.9(4) MeV, 𝑀exp
𝐽/Ψ = 3096.900(6) MeV and 𝑀

exp
𝐷𝑠

= 1968.35(7) MeV, respectively.
We extrapolate the masses to the the continuum limit adopting a combined fit of the results

corresponding to the two regularizations (𝑟, 𝑟) and (𝑟, -𝑟), imposing the same continuum limit. We
study two linear combinations of the original data sets, namely the mean and the difference. We
observe that discretization effects on the average of the two regularizations nicely scale with 𝑎2.
Thus, the two regularizations are fitted using the following polynomial Ansatz

𝑀 (𝑟 ,±𝑟 ) (𝑎2;𝑚ℎ, 𝑚𝑐) = 𝑀 (𝑚ℎ, 𝑚𝑐)
(
1 + 𝐴

(𝑟 ,±𝑟 )
1 𝑎2 ± 𝐴2𝑎

4 ± 𝐴3𝑎
6
)
, (6)

that includes a total of 5 free parameters for each heavy-quark mass 𝑚ℎ: 𝑀 (𝑚ℎ, 𝑚𝑐), 𝐴(𝑟 ,𝑟 )
1 , 𝐴

(𝑟 ,-𝑟 )
1

and 𝐴2,3. The quality of the fits is shown in Fig. 1 (right panel), where we show also separately the
fits for the two regularizations in the case of the lightest and heaviest quark mass considered. To
extrapolate to the physical 𝑏-quark mass we exploit the fact that the mass of a heavy meson must equal
the pole mass of its heavy quark in the static limit, namely lim𝑚ℎ→∞ 𝑀𝑃 (𝑉 ) (𝑚ℎ, 𝑚𝑐 (𝑠) )/𝑚𝑝𝑜𝑙𝑒

ℎ
= 1.

For both P and V channels we employ a simple ansatz including 3 free parameters 𝐵1,2 and 𝐵𝑠
2:

𝑀 (𝑚ℎ, 𝑚𝑐)
𝑚

𝑝𝑜𝑙𝑒

ℎ

= 1 + 𝐵1
𝑚

𝑝𝑜𝑙𝑒
𝑐

𝑚
𝑝𝑜𝑙𝑒

ℎ

+
(
𝐵2 + 𝐵𝑠

2
𝛼𝑠 (𝑚𝑝𝑜𝑙𝑒

ℎ
)

𝜋

) (
𝑚

𝑝𝑜𝑙𝑒
𝑐

𝑚
𝑝𝑜𝑙𝑒

ℎ

)2

. (7)

3
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Figure 1: (Left panels) Continuum limit extrapolation of the meson mass 𝑀𝑃 (𝑚ℎ, 𝑚
phys
𝑐 ) for the lightest

and heaviest 𝑚ℎ (𝑛) considered. The blue and red points correspond to the (𝑟, 𝑟) and (𝑟, -𝑟) regularizations.
The colored bands represent the results of the fit (6). (Right panel) Meson masses versus the heavy-quark
mass ratio 𝑚𝑐/𝑚ℎ in the pole mass scheme. The colored bands represent the results obtained with the fitting
function of Eq.(7). The white dots are the fit values at the physical b-quark mass, indicated by vertical dotted
line.

The quality of the fit is shown in Fig. 1 (left panel) for the cases 𝑀 = 𝑀𝑃 (𝑉 ) (𝑚ℎ, 𝑚𝑐) and
𝑀𝑃 (𝑚ℎ, 𝑚𝑠). We tune the value of 𝜆 to reproduce the experimental 𝐵𝑐 meson mass, 𝑀

exp
𝐵𝑐

=

6274.47(33) MeV [7], with 𝑛 = 10 steps in 𝜆. In this way we obtain

𝜆 = 1.1652(10), 𝑚MS
𝑏 /𝑚MS

𝑐 ≡ 𝜆10 = 4.612(40). (8)

The result for the 𝑏/𝑐 quark mass ratio is compatible within one standard deviation with the result
of Ref. [8]. Moreover, we obtain the following predictions for others 𝑏-quark mesons: 𝑀𝐵𝑠

=

5364(48) MeV and 𝑀𝐵∗
𝑐
= 6327.3(47) GeV that nicely compare with 𝑀

exp
𝐵𝑠

= 5366.92(10) MeV
[7] and 𝑀𝐵∗

𝑐
= 6331(7) MeV from Ref. [9].

3. Susceptibilities on the lattice

3.1 Perturbative subtraction and continuum limit

Following the procedure of Refs. [1, 5] to improve the continuum limit, we subtract from the
non-perturbative simulated susceptibilities in Eq. (5) the difference between the susceptibilities in
the free theory (FT), computed at each simulated lattice spacing, and the continuum value from
perturbation theory (PT) at LO from Ref. [10], namely

𝜒𝑇,𝐿 (𝑎2;𝑚ℎ, 𝑚𝑐) → 𝜒𝑇,𝐿 (𝑎2;𝑚ℎ, 𝑚𝑐) −
(
𝜒FT
𝑇,𝐿 (𝑎2;𝑚ℎ, 𝑚𝑐) − 𝜒PT

𝑇,𝐿 (𝑚𝑐/𝑚ℎ)
)
, (9)

where to streamline the notation we omit the dependence on the particular current. By construction,
the bracket in Eq. 9 piece contains the discretization effects present in the free theory for our lattice

4
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setup. The procedure is beneficial in decreasing the discretization effects as shown in Fig. 2, where
the difference between the two regularisations (𝑟,±𝑟) is clearly reduced for each channel.

Figure 2: Heavy-quark mass dependence of the susceptibilities in different channels for a given ensemble.
The shaded and full markers correspond respectively to the susceptibilities before and after the perturbative
subtraction of the LO discretization effects for the (𝑟, 𝑟) (blue) and (𝑟, -𝑟) (red) regularizations.

Figure 3: Continuum limit extrapolations of the susceptibilities in the different channels for the lightest
𝑚ℎ (0) = 𝑚𝑐 and heaviest mass considered 𝑚ℎ (8) ≃ 3.5𝑚𝑐 (right panels). The blue (red) points correspond
to the (𝑟, 𝑟) and (𝑟, -𝑟) regularizations, while the violet points display their average and difference (bottom
panels). The darker colored bands represent the results obtained with the fitting function (10).

We perform the continuum extrapolation adopting an Ansatz analogous to Eq. (6), i.e.[
𝜒𝐽
𝑇 (𝐿)

] (𝑟 ,±𝑟 )
(𝑎2;𝑚ℎ, 𝑚𝑐) = 𝜒𝐽

𝑇 (𝐿) (𝑚ℎ, 𝑚𝑐)
(
1 + 𝐶

(𝑟 ,±𝑟 )
1 𝑎2 + 𝐶

(𝑟 ,±𝑟 )
2 𝑎4 ± 𝐶3𝑎

6
)
, (10)

which contains again a total of five free parameters for each heavy-quark mass 𝑚ℎ. The quality of
the fits is shown in Fig. 3 for the lightest and heaviest quark mass considered. We present the two
regularizations together with their average and difference Δ𝑟 . In most of the cases the mean displays
a simpler dependence in 𝑎2, while the main O(𝑎4) and O(𝑎6) effects are present in the difference.

3.2 Extrapolation at the b-quark point

The susceptibilities are extrapolated to the physical 𝑏-quark mass following two approaches:
(1𝑠𝑡 ) a direct fit of the susceptibilities and (2𝑛𝑑) the ETMC ratio method. The first approach relies

5
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on the fact that the Operator Product Expansion (OPE) analysis of these quantities (see Ref. [10])
predicts the LO non-perturbative corrections to be suppressed by 1/𝑚4

ℎ
and therefore absent in the

static limit. This allows to fit the four susceptibilities imposing the same static limit of the PT:

lim
𝑚ℎ→∞

𝑚2
ℎ 𝜒𝐽

𝑇 (𝑚ℎ, 𝑚𝑐) = 3/32𝜋2 + 0.0108309𝛼𝑠 + 0.0120914𝛼2
𝑠 + O(𝛼3

𝑠),

lim
𝑚ℎ→∞

𝜒𝐽
𝐿 (𝑚ℎ, 𝑚𝑐) = 1/8𝜋2 + 0.00951385𝛼𝑠 + 0.0079923𝛼2

𝑠 + O(𝛼3
𝑠), (11)

where the O(𝛼2
𝑠) coefficients are known from Ref. [11] in the MS-scheme at the scale 𝜇 = 𝑚ℎ. We

use the following fitting function that contains a total of 6 free parameters, 𝐷 (𝑠)
1,2,3, i.e.

𝜒𝐽
𝑇 (𝐿) (𝑚ℎ, 𝑚𝑐)
𝜒𝑃𝑇
𝑇 (𝐿) (0)

= 1 +
3∑︁

𝑘=1

[
𝐷𝑘 + 𝐷𝑠

𝑘

𝛼𝑠 (𝑚ℎ)
𝜋

] (
𝑚𝑐

𝑚ℎ

) 𝑘
. (12)

The quality of the fits is displayed in Fig. 4 together with the expressions from PT at NNLO [11].

Figure 4: The susceptibilities 𝑚2
ℎ
𝜒𝐽
𝑇

and 𝜒𝐽
𝐿

(left panel) and the ratios 𝑅𝐽
𝑇,𝐿

(right panels) at 𝑞2 = 0 in the
different channels versus the inverse heavy-quark mass ratio 𝑚𝑐/𝑚ℎ. The colored bands represent the results
obtained with the fitting function in Eq. (12). The white dots are the fit values at the physical 𝑏-quark point,
indicated by vertical dotted lines. The black lines are the PT expressions at NNLO taken from Ref. [11].

The second approach adopts the ETMC ratio method [12]. To this end we build ratios of
susceptibilities at subsequent heavy-quark masses

𝑅𝐽
𝑇 (𝑚ℎ (𝑛)) ≡

𝑚2
ℎ
(𝑛)

𝑚2
ℎ
(𝑛 − 1)

𝜒𝐽
𝑇
(𝑚ℎ (𝑛), 𝑚𝑐)

𝜒𝐽
𝑇
(𝑚ℎ (𝑛 − 1), 𝑚𝑐)

, 𝑅𝐽
𝐿 (𝑚ℎ (𝑛)) ≡

𝜒𝐽
𝐿
(𝑚ℎ (𝑛), 𝑚𝑐)

𝜒𝐽
𝐿
(𝑚ℎ (𝑛 − 1), 𝑚𝑐)

. (13)

In this way no assumption on the susceptibilities in the static limit is required, since lim𝑚ℎ→∞ 𝑅𝐽
𝑇 (𝐿) (𝑚ℎ) =

1. In this analysis we fit directly each ratio 𝑅𝐽
𝑇 (𝐿) using the fitting function similar to Eq. (12). The

susceptibilities at the physical 𝑏-quark point can be obtained from the chain of products

{𝑚2
ℎ𝜒

𝐽
𝑇 , 𝜒

𝐽
𝐿}(𝑚𝑏, 𝑚𝑐) = {𝑚2

ℎ𝜒
𝐽
𝑇 , 𝜒

𝐽
𝐿}(𝑚ℎ (𝑛trig − 1))

𝑛𝑏∏
𝑛=𝑛trig

𝑅𝐽
𝑇,𝐿 (𝑚ℎ (𝑛)) , (14)

6
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where 𝑛trig = 2 for 𝜒𝑉
𝐿

(since by charge conservation 𝜒𝑉
𝐿
(𝑚𝑐, 𝑚𝑐) = 0) and 𝑛trig = 1 for all the other

channels. We quote our preliminary results for the susceptibilities at 𝑄2 = 0:

1𝑠𝑡 analysis 2𝑛𝑑 analysis

𝜒𝑉
𝑇
(𝑚𝑏, 𝑚𝑐) = 5.6(6) × 10−4 GeV−2 𝜒𝑉

𝑇
(𝑚𝑏, 𝑚𝑐) = 5.8(8) × 10−4 GeV−2

𝜒𝑉
𝐿
(𝑚𝑏, 𝑚𝑐) = 6.0(1) × 10−3 𝜒𝑉

𝐿
(𝑚𝑏, 𝑚𝑐) = 6.0(2) × 10−3

𝜒𝐴
𝑇
(𝑚𝑏, 𝑚𝑐) = 3.3(2) × 10−4 GeV−2 𝜒𝐴

𝑇
(𝑚𝑏, 𝑚𝑐) = 3.3(3) × 10−4 GeV−2

𝜒𝐴
𝐿
(𝑚𝑏, 𝑚𝑐) = 2.32(3) × 10−2 𝜒𝐴

𝐿
(𝑚𝑏, 𝑚𝑐) = 2.30(4) × 10−2

The two analysis provide compatible results. Our present results suggest that non-perturbative
condensate terms in the relevant OPE are small.
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