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In this study we employ staggered fermions to calculate the two-pion taste singlet states at rest.
Leveraging the Clebsch-Gordan coefficients of the symmetry group associated with staggered
fermions, we effectively compute the cc contributions to the resting d-meson correlator. To discern
the distinct energy states involved, we adopt a generalized eigenvalue problem-solving approach.
This work will provide insight into the important role played by the two-pion contribution to the
anomalous magnetic moment of the muon.
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bution of two-pion states to the rho meson correlation function.
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1. Introduction

In the pursuit of understanding the anomalous magnetic moment of the muon and its intrigu-
ing deviations from the predictions of the Standard Model, advanced theoretical frameworks and
precise computational methods have become indispensable. Among these methodologies, lattice
Quantum Chromodynamics (QCD) stands as a powerful tool that enables the exploration of the
nonperturbative regime of QCD, particularly in understanding the hadronic contributions to 6 − 2
[1–3].

The persistent disparity between themeasured and predicted values of has instigatedmeticulous
investigations into the diverse contributions from the quantum vacuum. In this context, the two-pion
exchange process, encapsulating intricate hadronic dynamics, emerges as a critical component that
demands careful scrutiny. In general, pion exchange and interaction processes are an important part
of current research [4–8] as well as the hadronic light-by-light contributions to muon 6 − 2 [9, 10].

In this study we will investigate the mathematical structure of the two-pion coupling to the
vector current for staggered fermions in order to reconstruct the vector correlation function for
comparatively large time separations.

In the following section we will give a short review on the symmetry group of staggered
fermions and explain the mathematical formalism we used to construct the two-pion contributions
to the d correlation function. We explain our formulas and derivations and give the explicit values
of the coefficients in the appendix. In the third section a short overview of the simulation setup
and the implmentation of two-pion and vector meson correlators is given. Afterwards we show a
few preliminary simulation results on the reconstruction of the d-correlator. In the fifth section we
discuss our results and give an outlook to further investigations.

2. Constrcution of vector states from moving pseudo-scalar states

In this section, we aim to introduce the mathematical framework utilized for constructing cc
correlation functions whose quantum characteristics align with those of the d. To achieve this,
an exploration of the symmetries inherent in the free staggered action is necessary. This action,
denoted as (BC , is defined as follows:

(BC =
∑
G∈Λ

k̄G

(
<kG +

∑̀
[` (G)

kG+ ˆ̀ − kG− ˆ̀

2

)
with [` (G) = (−)

∑
a<` Ga . (1)

These symmetries consist of transformations involving shifts (` by one lattice spacing in direction
`, rotations '`a in the `a-plane by c

2 , spatial inversion �( , charge conjugation �0, and taste
transformations Ξ` =

(`

|(` | [11, 12].
The symmetry group G is integral to our analysis. To measure correlation functions effectively,

we focus our symmetry considerations on a fixed time slice. Consequently, we exclude the generators
(4 and '84. However, Ξ4 remains a component of the reduced symmetry groupH . The irreducible
representations (irreps) ofH correspond to states possessing distinct quantum characteristics such
as momentum, spin, parity, charge conjugation quantum number, and taste.

To examine the resting taste-singlet d-meson, we require the vector-representation of the three-
dimensionalWürfel group,3 [13, 14], comprising rotations and spatial inversion (excluding charge

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
2
5
1

The mixing of two-pion and vector-meson states using staggered fermions Fabian J. Frech

‖ ®?‖2 = 0 ‖ ®?‖2 = 1 ‖ ®?‖2 = 2 ‖ ®?‖2 = 3 ‖ ®?‖2 = 4
‖ ®b‖2 = 0 0 1 1 1 1
‖ ®b‖2 = 1 0 2 3 2 2
‖ ®b‖2 = 2 0 2 3 2 2
‖ ®b‖2 = 3 0 1 1 1 1

Table 1: Multiplicities of the vector irreps in the respective cc-states. The numbers are independent of b4.

conjugation since we aim for a cc correlator with negative charge conjugation). The representation
of a single pion with momentum ®? and taste b` is expressed as:

� ( ®(, ', �( ,Ξ`) | ®?, b`〉c = 4
8 (−) �(' ®? · ®( (−)�( (−)' ®b ·®Ξ+b4Ξ4 |' ®?, ' ®b, b4〉c , (2)

Meanwhile, a two-pion correlation function is derived from the direct product of two single-pion
correlators. Notably, this representation is reducible into subspaces determined by rotational orbits
of taste and momentum [15]. Completely reducible representations can be expressed as a direct sum
over irreducible representations. Leveraging this, we precisely extract those two-pion correlators
featuring the d-corrlator as one of their constituents:

| ®?1, b1
`〉c ⊗ | ®?

2, b2
`〉c =

©«
0d ( ®?1, b 1

` , ®?2, b 2
`)⊕

8=1
| ®?1, b1

`, ®?2, b2
`〉d

ª®¬ ⊕ ... (3)

The coefficients 0d, represented by positive integers, are computable using the characters of the
respective representations:

0d ( ®?1, b1
`, ®?2, b2

`) =
1
|H |

∑
ℎ∈H

j∗d (ℎ)jcc ( ®?1, b1
`, ®?2, b2

`; ℎ) (4)

Through algebraic computations, one can determine that these coefficients are solely non-zero if
®?1 = − ®?2 ≠ ®0 and ®b1 = ®b2. The specific values are provided in Table 1. The overlap between
different correlation functions can be expressed using the Clebsch-Gordon coefficients [4]:

|{ ®?}, {b`}〉dU =
∑
®?∈{ ®?}

∑
®b ∈{ ®b }

�U ( ®?, ®b) | ®?, ®b, b4〉c ⊗ |− ®?, ®b, b4〉c + ..., (5)

Here, {®G} denotes the orbit of ®G under lattice rotations and reflections. Utilizing mathematical
techniques applicable to finite groups [16, 17], we can compute the Clebsch-Gordon coefficients
for this context. The specific values for these coefficients are detailed in appendix A.

3. Implementation of the cc-states

We utilized 48 Symanzik improved gauge configurations employing 2 + 1 + 1 4stout one-link
fermions for our tests [18]. The simulations were conducted on 322 × 64 lattices, utilizing a gauge
coupling parameter of V = 3.7000. This particular parameter corresponds to a lattice spacing of
0.1315 fm. Our chosen quark masses are positioned around the physical point (<; = 0.00205,
<B = 0.05729, and <2 = 0.67890) [1].
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We focused onmeasuring the propagator of the two-pion correlator, projected to negative charge
conjugacy, specifically c+ (G) c− (H)−c− (G) c+ (H)

2 . This c+c− combination results in three distinct
diagrams for the two-pion correlation function: the connected, the free, and the disconnected
(see figure 1). Fortunately, due to the anti-symmetrization, the disconnected diagram vanishes
identically. The correlation functions are measured by applying the inverse Dirac operator and taste

D D

3̄

3̄

c†(®G, 0)

c(®H, 0)

c(®I, C)

c†( ®F, C)
0)

D

3̄

D

3̄

c†(®G, 0)

c(®H, 0)

c(®I, C)

c†( ®F, C)
1)

D 3̄ D 3̄

c†(®G, 0)

c(®H, 0)

c(®I, C)

c†( ®F, C)
2)

3̄

D

D

d†(®G, 0)

c(®I, C)

c†( ®F, C)
3)

D

3̄

d†(®G, 0) d(®I, 0)

4)

Figure 1: The diagrams corresponding to cc/d propagators. The first one (conn., 0)) includes interchange
of quarks in the two pions, the second one (free, 1)) describes two pions moving separately and the third one
(disc., 2)) vanishes identically due to anti-symmetry in the pions. The triangle (3)) describes the decay of
the vector mesons into two pions and the last diagram (4)) is the vector meson correlation functions.

(spin/momentum) operator on random Wall-sources. To incorporate momenta, complex phases
are multiplied at each lattice point, followed by anti-symmetrization in the ingoing and outgoing
momenta after measurement. The spin and taste structures adhere to the methodology outlined in
[19].

The free diagram is given by the direct product of two single-pion correlators. It’s crucial to
note that while the ingoing momentum or taste may differ from the outgoing ones within individual
states, the total momentum and taste must be conserved overall.

The connected part is relatively more resource-intensive as it necessitates an inversion on every
time-slice.

4. Measurements and the GEVP

In our investigation, we consider not only the vector meson but also all two-pion states possess-
ing lower energy. These states correspond to orbits characterized by | ®? | = 1 and b4 = 1, alongside
either | ®b | = 3 or | ®b | = 2. These specific correlators are depicted in the first line of Table 2. Hereafter,
we refer to them as the pseudo-scalar and the parallel or perpendicular pseudo-vector, depending
on the relative alignment of taste and momentum. By utilizing the diagrams illustrated in Figure 1,

4



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
2
5
1

The mixing of two-pion and vector-meson states using staggered fermions Fabian J. Frech

0 10 20 30 40 50 60
t/a

10−3

10−1

101

103

C
(t

)

ρ

ππ(t) (PS)

ππ(t) (PV, para)

ππ(t) (PV, perp)

0 10 20 30 40 50 60
t/a

10−4

10−2

100

102

104

C
(t

)

i = 0

i = 1

i = 2

i = 3

i = 4

Figure 2: Left hand side: The diagonal elements of the correlationmatrix in Equation 6. The pion correlators
are normalized by a factor of 0.01 at the sink and the source for a better visibility in the plot and a smaller
condition number of the correlation matrix. This normalization will not affect the results. Right hand side:
The eigenmodes of the correlation matrix.

we proceed to construct the correlation matrix

� (C) =
©«
d(C)d†(0) d(C + 1)d†(0) cc(C)d†(0) ...

d(C)d†(−1) d(C + 1)d†(−1) cc(C)d†(−1) ...

d(C)cc†(0) d(C + 1)cc†(0) cc(C)cc†(0) ...

... ... ... ...

ª®®®®¬
(6)

The time-shifted vector meson correlators have been incorporated to extract the oscillating parity
partner using the pencil of functions method [20]. The diagonal elements of the correlation matrix
are illustrated in Figure 2. To determine the eigenmodes of the system, we express it in terms of a
Generalized Eigenvalue Problem (GEVP) [21, 22]

� (C0 + 3C) · E8 = _8 (C0, 3C)� (C0) · E8 (7)

For this study, we set C0 = 2 and 3C = 1, computing a set of five eigenvectors E8 . The eigenmodes
of the correlation matrix are subsequently computed using:

�8 (C) = E)8 · � (C) · E8 (8)

The five distinct eigenmodes are depicted on the right-hand side of Figure 2. The increase in the
number of eigenmodes is due to the inclusion of an additional parity partner oscillation through the
pencil of functions method [20].

Eigenmode 4 represents the parity partner oscillation of the vector meson state. In Figure 3’s
right-hand side, it is demonstrated that this mode does not form a definitive mass plateau. Moreover,
as shown in Figure 4, both the shifted and unshifted vector mesons contribute with differing signs
to this state.

State 3 represents the pure vector meson state. While contributions from the shifted and
unshifted vector meson correlators exist, there are additional minor contributions from the various
two-pion correlators. The right-hand side of Figure 3 illustrates that the effective mass of this state
forms a plateau near the physical mass of the vector meson.
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Figure 3: Left hand side: The two-point effective mass of diagonal elements of the correlation matrix in
Equation 6. Right hand side: The two-point effective mass of the eigenmodes of the correlation matrix.
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Figure 4: Left-hand side: The eigenvectors of the GEVP. One can see the contribution of the input states to
the eigenmodes. Right-hand side: The squared eigenvectors as a stacked bar plot.

The pseudo-scalar state (0) remains relatively unaffected by the GEVP and exhibits a clear

plateau in the effective mass close to its physical mass, determined by 2
√
<2
c +

(
2c
!

)2
. In contrast,

for the pseudo-vector states, their mass is determined by 2
√
<2
c + Δ) ( +

(
2c
!

)2
, where Δ) ( =

40678MeV2 signifies the taste splitting observed in this ensemble. The two pseudo-vector states
(1 and 2) exhibit a degree of mixing, evident from Figure 4. However, as observed from Figure 3,
both states showcase their mass plateau close to this physical estimator.
Our aim also involves reconstructing the vector meson correlator to analyze its long-range behavior,
achieved by forming a linear combination of exponentially decaying functions:

dA42. (C) =
4∑
8=0

'8 exp (−<8C) (9)

The coefficients '8 are determined by plateaus fitted to:

'eff,8 =

(
E8 · �d (C)

)2

E)
8
· � · E8 exp (−<8C)

(10)
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Figure 5: Left-hand side: The effective coefficients of the reconstruction, the 4Cℎ will not be used in the
reconstruction. Right-hand side: The reconstructed (rec.) and the simulated (sim.) vector correlators and
the integrand of their first moment, which is the interesting observable for the computation of 6 − 2.

Here,�d represents the d-column of the correlation matrix. These coefficients are visualized on the
left-hand side of Figure 5. Notably, the parity partner state changes sign across different time-slices
and is omitted from the final result, hence '4 = 0. Additionally, one of the states of the axial
pseudo-vectors aligns with zero. For state 3, plateaus are fitted within the range C/0 ∈ [7, 12], while
for the remaining states 0 − 2, the fitting range is C/0 ∈ [16, 20].

The right-hand side of Figure 5 illustrates the total reconstruction and the first moment of the
vector meson correlator.

5. Conclusion and outlook

This paper presents a derivedmathematical framework for constructing cc correlation functions
that exhibit the quantum characteristics of a resting taste-singlet vector meson. The method was
successfully tested using 48 gauge configurations within a ∼ 4 fm box, featuring a lattice spacing of
0.1315 fm near the physical point. We managed to extract various contributing energy states below
the vector meson mass and effectively reproduced the vector meson correlator for larger times.

Our next steps involve the reduction of simulation costs, particularly for the connected part, and
subsequently enhancing statistics to attain more precise results. This improvement aims to refine
the long-time contribution to g-2.

Acknowledgements: The computations were performed on HAWK at the High Performance
Computing Center in Stuttgart and IRENE at Commissariat à l’Energie Atomique et aux énergies
alternatives (CEA), France. We thank the Gauss Centre for Supercomputing, PRACE and GENCI
(grant 52275) for awarding us computer time on these machines.

A. Clebsch-Gordan coefficients

In this section, we will present the Clebsch-Gordan coefficients for all taste orbits and momen-
tum orbits up to ®?2 = 4. It’s worth noting that there is no distinction between ®?2 = 1 and ®?2 = 4.
Here, 48 represents unit vectors in momentum space, while 58 represents unit vectors in taste space,
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®b2 = 0(3) ®b2 = 1(2)
®?2 = 1(4) �U (_ ®48 , ®0) = _ 1√

2
XU8 �U (_ ®48 , ®5 9) = _ 1√

2
X8 9XU8

�U (_ ®48 , ®5 9) = _
2 (1 − X8 9)X

U8

®?2 = 2 �U (_ ®48 + `4 9 , ®0) = _

2
√

2
XU8 �U (_ ®48 + ` ®4 9 , ®5:) = _

2
√

2
|n 8 9: |XU8

�U (_ ®48 + ` ®4 9 , ®5:) = _

2
√

2
X:8XU8

�U (_ ®48 + ` ®4 9 , ®5:) = _

2
√

2
X: 9XU8

®?2 = 3 �U (_ ®48 + ` ®4 9 + a ®4: , ®0) = _

2
√

2
XU8 �U (_ ®48 + ` ®4 9 + a ®4: , ®5;) = _

2
√

2
X8;XU8

�U (_ ®48 + ` ®4 9 + a ®4: , ®5;) = _
4 |n

9:; |XU8

Table 2: The Clebsch-Gordan coefficients needed for construcing the vector meson out of two-pion states.

specifically when | ®? | = 1 or | ®b | = 1. For orbits with | ®b | = 2, 58 denotes a vector with a zero in the
8th component and a one in the remaining components. ®0 signifies the zero vector when | ®b | = 0 and
a vector consisting only of ones when | ®b | = 3. Moreover, _, `, and a can take the values +1 or −1.
The Clebsch-Gordan coefficients are displayed in Table 2.
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