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We compute the vector, scalar, and tensor form factors for the 𝐵 → 𝜋, 𝐵 → 𝐾 , and 𝐵𝑠 → 𝐾

amplitudes, which are needed to describe semileptonic 𝐵-meson decay rates for both the charged
and neutral current cases. We use the highly improved staggered quark (HISQ) action for the
sea and light valence quarks. The bottom quark is described by the clover action in the Fermilab
interpretation. Simulations are carried out on 𝑁 𝑓 = 2+1+1 MILC HISQ ensembles at approximate
lattice spacings from 0.15 fm down to 0.057 fm. We present blinded preliminary results for the
form factors.
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1. Introduction

This work is an update on ongoing lattice QCD calculation of form factors for the 𝐵 → 𝜋,
𝐵 → 𝐾 , and 𝐵𝑠 → 𝐾 amplitudes [1, 2]. We use the highly improved staggered quark (HISQ)
action [3] for the sea and light valence quarks. The bottom quark is described by the clover action
in the Fermilab interpretation [4]. Simulations are carried out on (2+1+1)-flavor MILC HISQ
ensembles [5]. Continuing from Refs. [1, 2], we have changed some of our data analysis strategies
and redid the analysis. We present some preliminary results for the lattice form factors.

In Sec. 2, we briefly describe the form factors of interest. In Sec. 3, the simulation details and
our data analysis strategy are described. In Sec. 4, we analyze our two-point correlation function
data and extract mesons’ ground and a few excited eigenstate information. In Sec. 5, we calculate
the lattice form factors from the two- and three-point correlation function data and present some
preliminary results. Summary and future plans are discussed in Sec. 6.

2. Form factors

Transitions between pseudoscalar mesons are described by the matrix elements of a vector
current V𝜇 = 𝑞𝛾𝜇𝑏, a tensor current T 𝜇𝜈 = 𝑖 𝑞𝜎𝜇𝜈𝑏, and a scalar current 𝑆 = 𝑞𝑏, that can be
expressed in terms of the form factors 𝑓+, 𝑓0, and 𝑓𝑇 . The details are described in Ref. [1]. For
convenience, we consider the following form factors

𝑓 ‖ (𝐸𝐿) =
〈𝐿 |V0 |𝐵〉
√

2𝑀𝐵

, (1)

𝑓⊥(𝐸𝐿) =
〈𝐿 |V𝑖 |𝐵〉
√

2𝑀𝐵

1
𝑘 𝑖
, (2)

𝑓𝑇 (𝐸𝐿) =
𝑀𝐵 + 𝑀𝐿√

2𝑀𝐵

〈𝐿 |T 0𝑖 |𝐵〉
√

2𝑀𝐵

1
𝑘 𝑖
, (3)

where 𝐵 = 𝐵, 𝐵𝑠 represents the 𝐵 (𝑠) mesons in the initial state, 𝐿 = 𝜋, 𝐾 represents the light
pseudoscalar mesons in the final state, 𝑀𝐵 (𝐿) is the 𝐵(𝐿) meson mass, 𝐸𝐿 is the 𝐿 meson recoil
energy in the 𝐵 meson rest frame, and 𝑘 is the 𝐿 meson four-momentum. We obtain 𝑓 ‖ , 𝑓⊥, and 𝑓𝑇

by analyzing two- and three-point correlation functions. 𝑓+ and 𝑓0 can be constructed from linear
combinations of form factors 𝑓 ‖ and 𝑓⊥.

3. Lattice calculation

Our lattice calculations are carried out on the (2+1+1)-flavor gauge configurations generated by
the MILC Collaboration [5]. The sea and light valence quarks are simulated with the HISQ action.
For the bottom quarks, we use the Sheikholeslami-Wohlert (SW) clover action in the Fermilab
interpretation. We employ seven gauge ensembles at approximate lattice spacings 𝑎 from 0.15 fm
down to 0.057 fm. Details about these ensembles and our simulation setup are explained in Ref. [2].

We measure two- and three-point correlation functions 𝐶𝐵 (𝐿)2 and 𝐶𝐵→𝐿
3 for 𝐵 = 𝐵 (𝑠) and

𝐿 = 𝜋, 𝐾 as described in Ref. [1]. The interpolating operators for the 𝐿 meson two-point correlation
functions and the three-point correlation functions are not smeared. Meanwhile, the interpolating
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operators for the 𝐵 meson two-point correlation functions are smeared by the Richardson 1S
wave function at both the sources and the sinks [6]. The 𝐿 meson momenta are generated up to
k ≡ nk × 2𝜋/(𝑎𝑁𝑠) = (4, 0, 0) × 2𝜋/(𝑎𝑁𝑠). Using the spectral decomposition, we can write them
as

𝐶𝐵2 (𝑡; 0) =
2𝑁−1∑︁
𝑛=0

(−1)𝑛(𝑡+1)

���𝑍 (𝑛)
𝐵

���2
2𝑀 (𝑛)

𝐵

[
𝑒−𝑀

(𝑛)
𝐵
𝑡 + 𝑒−𝑀

(𝑛)
𝐵

(𝑁𝑡−𝑡)
]
, (4)

𝐶𝐿2 (𝑡; k) =
2𝑁−1∑︁
𝑛=0

(−1)𝑛(𝑡+1)

���𝑍 (𝑛)
𝐿

���2
2𝐸 (𝑛)

𝐿

[
𝑒−𝐸

(𝑛)
𝐿
𝑡 + 𝑒−𝐸

(𝑛)
𝐿

(𝑁𝑡−𝑡)
]
, (5)

[𝐶𝐵→𝐿
3 ]𝜇 (𝜈) (𝑡, 𝑇 ; k) =

2𝑁−1∑︁
𝑚,𝑛=0

(−1)𝑚(𝑡+1) (−1)𝑛(𝑇 −𝑡−1) 𝑍
(𝑚)
𝐿

2𝐸 (𝑚)
𝐿

𝐴
𝜇 (𝜈)
𝑚𝑛

𝑍
†(𝑛)
𝐵

2𝑀 (𝑛)
𝐵

𝑒−𝐸
(𝑚)
𝐿

𝑡𝑒−𝑀
(𝑛)
𝐵

(𝑇 −𝑡) , (6)

where 𝑍 (𝑛)
𝐵

=
〈
0
��𝑂𝐵��𝐵 (𝑛) 〉, 𝑍 (𝑛)

𝐿
=

〈
0
��𝑂𝐿 ��𝐿 (𝑛) 〉, and 𝐴𝜇 (𝜈)𝑚𝑛 =

〈
𝐿 (𝑚) ��𝐽𝜇 (𝜈) ��𝐵 (𝑛) 〉 for the lattice

currents 𝐽𝜇 (𝜈) = 𝑉 𝜇, 𝑇 𝜇𝜈 . We also consider a ratio of correlation functions [7]

𝑅(𝑡, 𝑇) =
𝐶𝐵→𝐿

3 (𝑡, 𝑇)√︃
𝐶𝐿2 (𝑡)𝐶𝐵2 (𝑇 − 𝑡)

√√
2𝐸 (0)

𝐿

𝑒−𝐸
(0)
𝐿
𝑡𝑒−𝑀

(0)
𝐵

(𝑇 −𝑡)
. (7)

Inserting Eqs. (4) and (5) into Eq. (7), 𝑅 can be expressed as

𝑅(𝑡, 𝑇) ' 𝐴00√︃
2𝑀 (0)

𝐵

[
1 +

∑︁
𝑚=1

(−1)𝑚(𝑡+1) ©« 𝐴𝑚0

𝐴00
− 1

2

(
𝑍
(𝑚)
𝐿

𝑍
(0)
𝐿

)2ª®¬ 𝑒−𝛿𝐸
(𝑚)
𝐿

𝑡

+
∑︁
𝑛=1

(−1)𝑛(𝑇 −𝑡−1) ©« 𝐴0𝑛

𝐴00
− 1

2

(
𝑍
(𝑛)
𝐵

𝑍
(0)
𝐵

)2ª®¬ 𝑒−𝛿𝑀
(𝑛)
𝐵

(𝑇 −𝑡)

+
∑︁
𝑚,𝑛=1

(−1)𝑚(𝑡+1) (−1)𝑛(𝑇 −𝑡−1) ©« 𝐴𝑚𝑛𝐴00
+ 1

4

(
𝑍
(𝑚)
𝐿

𝑍
(𝑛)
𝐵

𝑍
(0)
𝐿
𝑍
(0)
𝐵

)2ª®¬ 𝑒−𝛿𝐸
(𝑚)
𝐿

𝑡𝑒−𝛿𝑀
(𝑛)
𝐵

(𝑇 −𝑡) + (· · · )
]
,

(8)

where 𝑍 (𝑛)
𝐵

≡

���𝑍 (𝑛)
𝐵

���√︃
2𝑀 (𝑛)

𝐵

, 𝑍 (𝑛)
𝐿

≡

���𝑍 (𝑛)
𝐿

���√︃
2𝐸 (𝑛)

𝐿

, 𝐴𝑚𝑛 =
𝑍
(𝑚)
𝐿

2𝐸 (𝑚)
𝐿

𝐴𝑚𝑛
𝑍
†(𝑛)
𝐵

2𝑀 (𝑛)
𝐵

, 𝛿𝐸 (𝑚)
𝐿

= 𝐸
(𝑚)
𝐿

− 𝐸 (0)
𝐿

, and

𝛿𝑀
(𝑛)
𝐵

= 𝑀
(𝑛)
𝐵

− 𝑀 (0)
𝐵

. The omitted terms are composed of three or four exponential factors.
We obtain 𝑀 (𝑛)

𝐵
, 𝐸 (𝑛)

𝐿
, and 𝑍 (𝑛)

𝐵 (𝐿) by fitting the two-point correlation functions to Eqs. (4) and
(5). The fitted ground state energy (or mass) is used in computing the ratio 𝑅 as in Eq. (7). The
excited state energies are used as priors for fitting the ratio. We extract the ground state matrix
elements 𝐴𝜇 (𝜈)00 and the corresponding form factors from the leading constant term of 𝑅.

4. Data analysis: two-point correlation function

We apply binning on our data to mitigate the autocorrelation between successive configurations.
The bin sizes are chosen by monitoring the variance of the two-point correlation function over

3
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Figure 1: Variance of the binned kaon two-point correlation function 𝐶𝐾2 (𝑡 = 𝑡min) with increasing bin size
𝑏. Here, 𝑎 ' 0.088 fm, 𝑚𝑙/𝑚𝑠 = physical, and nk = (1, 1, 0). The purple line represents the value at the
chosen bin size 𝑏 = 16.

various bin sizes. In Fig. 1, we show the variance of kaon two-point correlation function 𝐶𝐾2 (𝑡) at
a time slice 𝑡 = 𝑡min as the bin size 𝑏 increases. When multiplied by 𝑏, the saturation of increase
implies that the remaining autocorrelation is negligible. In the example in the figure, we choose a
bin size of 16. We also measure the autocorrelation function with the chosen bin size and check
whether it is statistically negligible. In this way, we choose a reasonable minimum bin size for the
two-point function data for each meson (𝐵, 𝐵𝑠, 𝜋, and 𝐾) for each momentum k. We then use the
largest bin size among this set for all data in a given ensemble.

For a two-point correlation function 𝐶2(𝑡), we define the effective mass and the effective
amplitude as

𝑎𝑀eff(𝑡) = cosh−1
(
𝐶2(𝑡 + 1) + 𝐶2(𝑡 − 1)

2𝐶2(𝑡)

)
, (9)

𝐴eff(𝑡) =
𝐶2(𝑡)

𝑒−𝑀eff 𝑡 + 𝑒−𝑀eff (𝑁𝑡−𝑡)
. (10)

However, correlation functions for staggered fermions have both positive and negative parity con-
tributions, where the former oscillates in Euclidean time. This oscillating contribution is significant
for heavy mesons, i.e., 𝐵 (𝑠) mesons. To suppress the oscillating contribution and obtain a better
estimate of the effective mass and amplitude, we consider an averaged (or smeared) two-point
correlation function 𝐶2 defined as [7]

𝐶2(𝑡) ≡
𝑒−𝐸

(0) 𝑡

4

[
𝐶2(𝑡)
𝑒−𝐸 (0) 𝑡

+ 2𝐶2(𝑡 + 1)
𝑒−𝐸 (0) (𝑡+1)

+ 𝐶2(𝑡 + 2)
𝑒−𝐸 (0) (𝑡+2)

]
, (11)

where 𝐸 (𝑛) represents 𝐸 (𝑛)
𝐿

or 𝑀 (𝑛)
𝐵

. It suppresses the oscillating contribution by a factor of
(𝐸 (1) − 𝐸 (0) )/4 [7]. However, since the ground state energy 𝐸 (0) has not been obtained at this
point, we compute 𝑀eff using Eq. (9) and substitute it for 𝐸 (0) . Then the effective mass and
amplitude are computed again using Eq. (9) and (10) with 𝐶2 replaced by 𝐶2. We find that the
averaging method gives a more precise estimate for the fitted ground state mass. We compute the

4
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Figure 2: Stability test of the ground state energy of the pion with nk = (1, 0, 0) over various 𝑡min’s and 𝑁’s.
Here, 𝑎 ' 0.12 fm and 𝑚𝑙/𝑚𝑠 = physical. P-values are computed from 𝜒2 with the augmented terms (due
to the Bayesian priors) removed.

effective mass and amplitude with the averaging method and use them as priors for the ground state
mass and amplitude with some relaxed prior widths when we fit the two-point correlation function
data.

We fit two-point correlation function data to the functional forms Eqs. (4) and (5) with given
𝑁 ≡ (𝑁no, 𝑁o) for the number of oscillating (non-oscillating) states 𝑁o(no). Fit ranges [𝑡min, 𝑡max]
are chosen for 𝑁 = (1, 1), (2, 1), and (3, 1) so that their fit posteriors (primarily the ground state
energy) are consistent as well as stable under slight variations of 𝑡min and 𝑡max. 𝑡max is also set so
that the errors of the included 𝐶2(𝑡) data are less than 5%. Figure 2 shows an example of how we
determine reasonable 𝑡min’s. We perform the two-point function fitting for each 𝑁 while varying
𝑡min. Examining the distribution of the fitted ground state energies, we may choose 𝑡min/𝑎 = 11 for
𝑁 = (1, 1), 𝑡min/𝑎 = 5 for 𝑁 = (2, 1), and 𝑡min/𝑎 = 2 for 𝑁 = (3, 1). The energies are consistent for
a few larger 𝑡min/𝑎’s and also are consistent across 𝑁’s. We take the fit posteriors for 𝑁 = (2, 1) in
our analysis.

In Fig. 3, we test the dispersion relation 𝐸2 = 𝑀2+k2 for the fitted ground state energies 𝐸 (0)
𝐿

(k)
and the consistency of the corresponding amplitudes 𝑍𝐿 (k) compared with their zero momentum
values 𝐸 (0)

𝐿
(0) = 𝑀 (0)

𝐿
and 𝑍𝐿 (0), respectively. The dashed lines indicate the discretization errors

O(𝛼𝑠𝑎2k2) from a power counting estimate. The results show that the ratios lie within the dashed
cones, within the statistical uncertainty. However, since the signal-to-noise ratio for the correlation
function decreases as the momentum increases, the fit posteriors tend to have bigger uncertainties
for larger momenta. Hence, 𝐸 (0)

𝐿
(k) computed from the dispersion relation with the ground state

mass 𝑀 (0)
𝐿

at k = 0 has a smaller error than those directly measured. We take the values obtained
from the dispersion relation in our analysis.

5
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Figure 3: Comparison of the ground state energy (bottom) and amplitude (top) by direct measure and those
by dispersion relation. Here, 𝑎 ' 0.12 fm, and 𝑚𝑙/𝑚𝑠 = physical.

5. Data analysis: form factor

We define an averaged (or smeared) three-point correlation function 𝐶3 [7]:

𝐶
𝐵→𝐿

3 (𝑡, 𝑇) ≡ 𝑒−𝐸
(0)
𝐿
𝑡𝑒−𝑀

(0)
𝐵

(𝑇 −𝑡)

8

[
𝐶𝐵→𝐿

3 (𝑡, 𝑇)

𝑒−𝐸
(0)
𝐿
𝑡𝑒−𝑀

(0)
𝐵

(𝑇 −𝑡)
+

𝐶𝐵→𝐿
3 (𝑡, 𝑇 + 1)

𝑒−𝐸
(0)
𝐿
𝑡𝑒−𝑀

(0)
𝐵

(𝑇 +1−𝑡)
+

2𝐶𝐵→𝐿
3 (𝑡 + 1, 𝑇)

𝑒−𝐸
(0)
𝐿

(𝑡+1)𝑒−𝑀
(0)
𝐵

(𝑇 −𝑡−1)

+
2𝐶𝐵→𝐿

3 (𝑡 + 1, 𝑇 + 1)

𝑒−𝐸
(0)
𝐿

(𝑡+1)𝑒−𝑀
(0)
𝐵

(𝑇 −𝑡)
+

𝐶𝐵→𝐿
3 (𝑡 + 2, 𝑇)

𝑒−𝐸
(0)
𝐿

(𝑡+2)𝑒−𝑀
(0)
𝐵

(𝑇 −𝑡−2)
+

𝐶𝐵→𝐿
3 (𝑡 + 2, 𝑇 + 1)

𝑒−𝐸
(0)
𝐿

(𝑡+2)𝑒−𝑀
(0)
𝐵

(𝑇 −𝑡−1)

]
, (12)

which suppresses the oscillating states’ contribution in a manner similar to 𝐶2 defined in Eq. (11)
[7]. We compute the averaged ratio 𝑅(𝑡, 𝑇) as defined in Eq. (7) but with the averaged correlation
functions 𝐶2 and 𝐶3 in place of 𝐶2 and 𝐶3, respectively. Referring to Eq. (8), we have tried various
fit models for 𝑅(𝑡, 𝑇) and found that the following fit model describes our data well:

𝑅(𝑡, 𝑇) ∼ 𝐹 (0)
[
1 + (−1)𝑡+1𝐹

(1)
𝐿
𝑒−𝛿𝐸

(2)
𝐿
𝑡 + 𝐹 (2)

𝐿
𝑒−𝛿𝐸

(2)
𝐿
𝑡

+ (−1)𝑇 −𝑡−1𝐹
(1)
𝐵
𝑒−𝛿𝑀

(2)
𝐵

(𝑇 −𝑡) + 𝐹 (2)
𝐵
𝑒−𝛿𝑀

(2)
𝐵

(𝑇 −𝑡)
]
, (13)

which is composed of the first excited oscillating and non-oscillating states’ contributions from both
mesons. Here, 𝐹 (𝑛)

(𝐿,𝐵) , 𝛿𝐸
(𝑛)
𝐿

, and 𝛿𝑀 (𝑛)
𝐵

are fit parameters. For the latter two, we use the two-point
function analysis results as priors with some relaxed uncertainties. We perform the fitting of our
averaged ratio data with this fit model. Exceptions are that for 𝐵 → 𝜋 and 𝐵 → 𝐾 decays, the
oscillating contribution from the 𝐿 meson is excluded for better goodness-of-fit.

In Fig. 4, we present some examples of averaged ratios (divided by momentum 𝑘 𝑖) and their
preliminary fit results. In Fig. 4a and 4b, we show the ratios for the tensor current 𝑇4𝑖 of the 𝐵 → 𝜋

and 𝐵 → 𝐾 decays. In Fig. 4c and 4d, we show the ratios for the vector currents 𝑉4 and 𝑉 𝑖 of
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Figure 4: Averaged ratios 𝑅 and their fit results (band). Here, 𝑎 ' 0.057 fm, and 𝑚𝑙/𝑚𝑠 = physical. The
dark band region indicates the fit range. The leftmost colored box represents the fit result of the leading
constant 𝐹 (0) with the height as the uncertainty.

the 𝐵𝑠 → 𝐾 decay. The leftmost colored boxes in the plots represent the fit results of the leading
constant 𝐹 (0) , which corresponds to the form factors with normalization. For a given decay, fit
ranges are chosen to be similar in physical units across ensembles.

In Fig. 5, we present some preliminary results for the lattice form factors 𝑓 ‖ , 𝑓⊥, and 𝑓𝑇 as a
function of the recoil energy 𝜔0𝐸𝐿 for 𝐿 = 𝜋, 𝐾 . We use a mostly nonperturbative matching

𝑍𝐽 = 𝜌𝐽

√︃
𝑍𝑉 4

𝑏𝑏
𝑍𝑉 4

𝑞𝑞
, (14)

where 𝑞 = 𝑙 (𝑠) for 𝐿 = 𝜋 (𝐾) [8, 9]. However, in this work, only the flavor-conserving renormal-
ization factors

√︃
𝑍𝑉 4

𝑏𝑏
𝑍𝑉 4

𝑞𝑞
are applied, while the matching factor 𝜌𝐽 is not yet applied, so that we

introduce an effective blinding of around 5% into the analysis procedure, as in Refs. [10, 11].
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(c) 𝐵𝑠 → 𝐾

Figure 5: Form factors 𝑓 ‖ , 𝑓⊥, and 𝑓𝑇 as a function of the recoil energy 𝜔0𝐸𝐿 .

6. Summary and outlook

We have calculated the complete set of lattice form factors 𝑓 ‖ , 𝑓⊥, and 𝑓𝑇 for the 𝐵 → 𝜋,
𝐵 → 𝐾 , and 𝐵𝑠 → 𝐾 decays on the (2+1+1)-flavor MILC HISQ gauge ensembles and presented
some preliminary results. The HISQ action is used for the sea and light valence quarks, while the
clover action in the Fermilab interpretation is used for the b quark.

The lattice form factors will be extrapolated to the continuum by means of heavy-meson rooted-
staggered chiral perturbation theory (HMrS𝜒PT), as in Ref. [12]. We will then extrapolate them to
the full kinematic range accessible in the experiments by the model-independent 𝑧 expansion [13]
using the BCL parametrization [14]. Finally, the form factors will be unblinded and used to compute
the relevant decay rates or |𝑉𝑢𝑏 |. We also plan to combine our result with the collaboration’s result
for 𝐵 → 𝐷 (∗) form factors on the same ensembles to obtain the ratio |𝑉𝑢𝑏 |/|𝑉𝑐𝑏 |.
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