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In this report we present the status of the Mainz group’s lattice QCD calculation of the pion
transition form factor, which describes the interaction of an on-shell pion with two off-shell
photons. This form factor is the main ingredient in the calculation of the pion-pole contribution
to hadronic light-by-light scattering in the muon 𝑔 − 2.
We use the 𝑁 𝑓 = 2 + 1 CLS gauge ensembles, and we update our previous work by including a
physical pion mass ensemble (E250). We compute the transition form factor in a moving frame
as well as in the pion rest frame in order to have access to a wider range of photon virtualities.
In addition to the quark-line connected correlator we also compute the quark-line disconnected
diagrams that contribute to the form factor.
At the final stage of the analysis, the result on E250 will be combined with the previous work
published in 2019 to extrapolate the form factor to the continuum and to physical quark masses.
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1. Introduction and motivation

The transition form factor (TFF) F𝜋0𝛾∗𝛾∗ describes the interaction of an on-shell pion with two
off-shell photons. It is the main ingredient in the calculation of the pion-pole contribution to hadronic
light-by-light scattering in the muon 𝑔−2. There is also a direct relation between F𝜋0𝛾∗𝛾∗ (0, 0) (the
transition form factor with two real photons) and the partial decay width Γ(𝜋0 → 𝛾𝛾) (see Eq. (13)
in Section 3). In the leading order of chiral perturbation theory (𝜒PT),

Γ(𝜋0 → 𝛾𝛾) =
𝑚3

𝜋0𝛼
2
𝑒𝑁

2
𝑐

576𝜋3𝐹2
𝜋0

, (1)

where 𝛼𝑒 is the fine structure constant, 𝑁𝑐 is the number of colors and 𝐹𝜋0 is pion decay constant in
the chiral limit. There is a tension between the measured value and the theoretical predictions when
NLO corrections are added, which is illustrated very clearly for example in Fig. 72 in [1]. Lattice
calculations could shed light to this issue, if 2% precision can be achieved on the normalization of
the TFF.

2. Extraction of the TFF

The calculation follows very closely the Mainz group’s publication [2] (see also [3]). The
transition form factor is extracted from matrix elements

𝑀𝜇𝜈 (𝑝, 𝑞1) = i
∫

d4𝑥ei𝑞1 ·𝑥 ⟨0|𝑇{𝐽𝜇 (𝑥)𝐽𝜈 (0)}|𝜋0(𝑝)⟩ = 𝜖𝜇𝜈𝛼𝛽𝑞
𝛼
1 𝑞

𝛽

2 F𝜋0𝛾∗𝛾∗ (𝑞2
1, 𝑞

2
2), (2)

where 𝐽𝜇 is the electromagnetic (EM) current. Here 𝑞1 = (𝜔1, ®𝑞1) and 𝑞2 = (𝐸𝜋 − 𝜔1, ®𝑝 − ®𝑞1) are
the four-momenta associated with the two currents, and 𝑝 is the four-momentum of the pion, such
that 𝑝 = 𝑞1 + 𝑞2.

To cover a wide range of photon virtualities, we use both the rest frame of the pion, ®𝑝 = (0, 0, 0),
and a moving frame ®𝑝 = (0, 0, 1) (in units of 2𝜋/𝐿). The increase in the range of accessible
virtualities is best illustrated in the (𝑞2

1, 𝑞
2
2)-plane — see Fig. 1. Each curve in the plot represents a

fixed value of ®𝑞1 and ®𝑝, and 𝜔1 is a free parameter (this tracks the curve from one end to another).
The Euclidean matrix elements read

𝑀𝜇𝜈 = (i𝑛0)𝑀𝐸
𝜇𝜈 , 𝑀𝐸

𝜇𝜈 = −
∫ ∞

−∞
d𝜏e𝜔1𝜏

∫
d3𝑧e−i ®𝑞1 · ®𝑥 ⟨0|𝑇{𝐽𝜇 (®𝑥, 𝜏)𝐽𝜈 (®0, 0)}|𝜋0(𝑝)⟩, (3)

where 𝑛0 denotes the number of temporal indices. The matrix elements can be obtained by
integration over an Euclidean time dependent amplitude,

𝑀𝐸
𝜇𝜈 (𝑝, 𝑞1) =

2𝐸𝜋

𝑍𝜋

∫ ∞

−∞
d𝜏e𝜔1𝜏𝐴𝜇𝜈 (𝜏), (4)

where 𝜏 = 𝑡𝑖 − 𝑡 𝑓 is the time separation between the two EM currents. The amplitude 𝐴𝜇𝜈 (𝜏) is
connected to a 3-point correlator calculated on the lattice by

𝐶
(3)
𝜇𝜈 (𝜏, 𝑡𝜋) ≡ 𝑎6

∑︁
®𝑥,®𝑧

⟨𝐽𝜇 (®𝑥, 𝑡𝑖)𝐽𝜈 (®0, 𝑡 𝑓 )𝑃†(®𝑧, 𝑡0)⟩ei ®𝑝 · ®𝑧e−i ®𝑞1 · ®𝑥 (5)

𝐴𝜇𝜈 (𝜏) ≡ lim
𝑡𝜋→+∞

e𝐸𝜋 (𝑡 𝑓 −𝑡0 )𝐶 (3)
𝜇𝜈 (𝜏, 𝑡𝜋), (𝑡0 < 𝑡 𝑓 ), (6)
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Figure 1: Photon virtualities at the physical pion mass with 𝐿 ≈ 6 fm.

where 𝑡𝜋 is the time separation between the pion and the closest EM current. In addition to the
quark-line connected diagram, there are contributions from two quark-line disconnected diagrams
that have to be calculated. Both the connected and disconnected diagrams are depicted in Fig. 2.

2.1 Lattice ensembles

We use the CLS 𝑁 𝑓 = 2+1 ensembles with non-perturbativelyO(𝑎)-improved Wilson fermions
and tree-level improved Lüscher-Weisz gauge action. We have four lattice spacings and use multiple
pion masses to control the chiral extrapolation. All ensembles have fairly large volumes (𝑀𝜋𝐿 ≥ 4).
More details about the ensembles can be found in [2] and references therein. Compared to the
publication [2] we now add one ensemble (E250) at the physical pion mass with a lattice spacing
of 𝑎 ≈ 0.064 fm, size 963 × 192 and 𝐿 ≈ 6 fm.

2.2 Correlators

Recall that 𝐴𝜇𝜈 (𝜏) is directly related to the 3-point correlators𝐶 (3)
𝜇𝜈 . For convenience we define

two scalar funtions 𝐴(1) (𝜏) and 𝐴(2) (𝜏):

𝐴0𝑘 (𝜏) =( ®𝑞1 × ®𝑝)𝑘𝐴(1) (𝜏),

𝜖 ′𝑘𝐴𝑘𝑙 (𝜏)𝜖 𝑙 = − i( ®𝜖 ′ × ®𝜖) ·
(
®𝑞1𝐸𝜋𝐴

(1) (𝜏) + ®𝑝d𝐴(1) (𝜏)
d𝜏

)
. (7)

In the moving frame we define for simplicity 𝐴12(𝜏) ≡ −i𝐸𝜋 𝑝𝑧𝐴
(2) (𝜏). The two scalar functions

have very distinct features as can be seen in Fig. 3: 𝐴(1) peaks at 𝜏 = 0, whereas 𝐴(2) changes

P (~p, t0)

Jµ(~q1, ti)

Jν(~q2, tf )

Jµ(~q1, ti)

P (~p, t0) Jν(~q2, tf )P (~p, t0)

Jµ(~q1, ti)

Jν(~q2, tf )

Figure 2: Connected and disconnected diagrams.
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sign. See section 2.4 for more details of the two fits, VMD and LMD, that are used to model the
tail contribution.

2.3 Disconnected contribution

In addition to the quark-line connected piece, we need two quark-line disconnected diagrams.
The quark loops are computed using stochastic all-to-all methods [4–6], while the two-point func-
tions are computed using point sources. We find the disconnected contribution

Δ𝐹 (−𝑄2
1,−𝑄

2
2) =

F disc
𝜋0𝛾∗𝛾∗ (−𝑄2

1,−𝑄
2
2)

F conn
𝜋0𝛾∗𝛾∗ (−𝑄2

1,−𝑄
2
2)

(8)

is at the few-percent level. This is illustrated in Fig. 4, where the plot on the left shows the connected
piece and the disconnected piece (multiplied by ten) for the scalar function 𝐴(1) , whereas the plot
on the right shows the ratio given in Eq. (8).

2.4 Modeling the tail

Recall that we extract the TFF by evaluating the integral
∫ ∞
−∞d𝜏e𝜔1𝜏𝐴𝜇𝜈 (𝜏). We need to model

𝐴𝜇𝜈 (𝜏) at large |𝜏 | to get the tail contribution. We use two models:

• Lowest Meson Dominance (LMD)

𝐴LMD
𝜇𝜈 (𝜏) = 𝑍𝜋

4𝜋𝐸𝜋

∫ ∞

−∞
d𝜔

(
𝑃𝐸
𝜇𝜈𝜔 +𝑄𝐸

𝜇𝜈

) (
𝛼𝑀4

𝑉
+ 𝛽(𝑞2

1 + 𝑞2
2)

)(
𝜔 − 𝜔

(+)
1

) (
𝜔 − 𝜔

(−)
1

) (
𝜔 − 𝜔

(+)
2

) (
𝜔 − 𝜔

(−)
2

) e−i𝜔𝜏 (9)

with

𝑃𝐸
𝜇𝜈 =i𝜖𝜇𝜈0𝑖𝑝

𝑖 , 𝜔
(±)
1 = ±i

√︃
𝑀2

𝑉
+ | ®𝑞1 |2,

𝑄𝐸
𝜇𝜈 =𝜖𝜇𝜈𝑖0𝐸𝜋𝑞

𝑖
1 − i𝜖𝜇𝜈𝑖 𝑗𝑞𝑖1𝑝

𝑗 , 𝜔
(±)
2 = −i

(
𝐸𝜋 ∓

√︃
𝑀2

𝑉
+ | ®𝑞2 |2

)
,
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Figure 3: Examples of the connected contribution to the scalar functions 𝐴(1) (𝜏) and 𝐴(2) (𝜏). The momenta
are given in units of 2𝜋/𝐿.
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Figure 4: Disconnected contribution.

and 𝑍𝜋 the overlap factor from the pion 2-point function. This gives an explicit expression
for 𝐴LMD

𝜇𝜈 , which we use to fit our data using 𝛼, 𝛽 and 𝑀𝑉 as fit parameters.

• Vector Meson Dominance (VMD): Set 𝛽 = 0 in the LMD model

These models are used at |𝜏 |/𝑎 > 20 (|𝜏 | > 1.3 fm), to make sure the contribution from the
tail is small compared to the contribution we extract directly from our lattice data. Both VMD and
LMD model fits to the data are shown in Fig. 3. Especially the latter model describes the data well
even fairly close to 𝜏 = 0, and we include data |𝜏 |/𝑎 ≥ 8 (|𝜏 | ≥ 0.5 fm) in these fits.

2.5 Parameterizing the form factor: 𝑧-expansion

After obtaining the transition form factor at several virtualities (𝑞2
1, 𝑞

2
2) ≡ (−𝑄2

1,−𝑄
2
2), we

parameterize it using a conformal mapping

𝑧𝑘 =

√︃
𝑡cut +𝑄2

𝑘
−

√︃
𝑡cut − 𝑡0√︃

𝑡cut +𝑄2
𝑘
+

√︃
𝑡cut − 𝑡0

, with 𝑡cut = 4(𝑚phys
𝜋 )2, and 𝑡0 = 𝑡cut

©«1 −

√︄
1 + 𝑄2

max
𝑡cut

ª®¬ . (10)

The form factor is then written as an expansion in 𝑧1 and 𝑧2:

𝑃(𝑄2
1, 𝑄

2
2)F𝜋0𝛾∗𝛾∗ (−𝑄2

1,−𝑄
2
2) =

𝑁∑︁
𝑛,𝑚=0

𝑐𝑛𝑚

(
𝑧𝑛1 + (−1)𝑁+𝑛 𝑛

𝑁 + 1
𝑧𝑁+1

1

) (
𝑧𝑚2 + (−1)𝑁+𝑚 𝑚

𝑁 + 1
𝑧𝑁+1

2

)
, (11)

where the coefficients 𝑐𝑛𝑚 = 𝑐𝑚𝑛, the fit parameters, are symmetric. The polynomial

𝑃(𝑄2
1, 𝑄

2
2) = 1 +

𝑄2
1 +𝑄2

2

𝑀2
𝑉

(12)

implements the vector meson pole with 𝑀𝑉 = 775 MeV and ensures the correct asymptotic
behaviour at large virtualities.
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Figure 5: Transition form factor 𝑄2F𝜋0𝛾∗𝛾∗ . On the left: double virtual 𝑄2F𝜋0𝛾∗𝛾∗ (−𝑄2,−𝑄2); on the right:
single virtual 𝑄2F𝜋0𝛾∗𝛾∗ (−𝑄2, 0).

3. Results

Preliminary results for the transition form factor on the physical pion mass ensemble are plotted
in Fig. 5 along with the 𝑁 = 2 𝑧-expansion. We plot our fit for two specific choices of 𝜔1, that
correspond to the double virtual 𝑄2

1 = 𝑄2
2 = 𝑄2 and single virtual 𝑄2

1 = 𝑄2, 𝑄2
2 = 0, cases. The

𝑧-expansion with 𝑁 = 2 clearly describes the data well.
Let us then recall the relation between the partial decay width Γ(𝜋0 → 𝛾𝛾) and the transition

form factor:

Γ(𝜋0 → 𝛾𝛾) = 𝜋𝛼2
𝑒 (𝑚𝜋0)3

4
F 2
𝜋0𝛾∗𝛾∗ (0, 0). (13)

This can be used to convert the normalization of the pion transition form factor into an estimate
of the decay width Γ(𝜋0 → 𝛾𝛾), and the results are depicted in Fig. 6. The fit curves and data
points plotted here are the same as in Fig. 5 (but without the factor of 𝑄2), and we simply zoom in
on the small-𝑄2 region. Comparison to the experimental result by PrimEx and comparison with
other lattice QCD results by BMW [7] and ETMC [8] shows we agree very well. Unfortunately, the
lattice QCD results do not match the precision of the experimental result yet.

4. Summary and outlook

In this report, we have given a status update of the Mainz group’s calculation of the pion
transition form factor. The main development is the inclusion of a physical pion mass ensemble
E250 with large volume. We compute the disconnected diagrams needed in addition to the quark-
line connected piece to construct the full form factor. The new results presented here are still
preliminary, and we plan to increase statistics. At the final stage of the analysis, the result on E250
will be combined with the previous work published in 2019 [2] to extrapolate the form factor to the
continuum and to physical quark masses.

The transition form factor F𝜋0𝛾∗𝛾∗ is the main ingredient in the estimation of the pion-pole
contribution to hadronic light-by-light scattering in the muon 𝑔 − 2. The goal of this work is to
improve this estimate by including E250 in the analysis. However, if lattice QCD calculations want

6
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Figure 6: Connecting the behaviour of the TFF at 𝑄2 = 0 with the partial decay width Γ(𝜋0 → 𝛾𝛾). The
experimental result by PrimEx was published in [9]. We also compare to other lattice QCD results from the
BMW collaboration [7] and from the ETM collaboration [8].

to address the tension between the partial decay width Γ(𝜋0 → 𝛾𝛾) from the PrimEx-II experiment
and NLO theory predictions, there is still a long way to go.
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