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The evolution of ISOC++ standards increasingly serves the needs of scientific computing, offering
potential benefits for developing portable applications. The recent revisions of C++ programming
language, for instance, introduces a suite of algorithms capable of being executed on accelerators.
Although this approach may not yield best performance, it can present a viable balance between
code productivity and computational efficiency. In this report, we discuss the implementation of
the HISQ operator utilizing a range of features from the C++17/20/23 standards and include an
assessment of their performance.
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1. Introduction

One of the primary goals for exascale data-parallel programming interfaces is achieving perfor-
mance portability, aiming to balance top-level performance at scale with efficient code development.
While many HEP software libraries offer vendor-specific optimizations (see ,e.g., [1] and reference
therein), the ideal scenario would be to establish a consistent, universal solution for this purpose.
Additionally, some existing latticeQFT software, developed long ago, contain computational kernels
that were written using outdated programming approaches and consequently need to be revisited.

The latest revisions in the C++ programming language had opened new opportunities for
portable code development, particularly in scientific applications. Thus, with the introduction of the
C++17 standard, the StandardTemplateLibrary (STL) underwent a substantial overhaul of its suite of
algorithms, now updatedwith execution policies [2] to adapt across various computing architectures,
including multi-core x86 systems and GPUs. Moreover, the polymorphic memory resource (PMR)
feature introduced in C++17 [3] marked significant progress in memory management, offering
developers enhanced flexibility and control. Subsequent iterations of the ISO C++ standard have
further introduced a hierarchy of views, thereby improving data access and manipulation. In
particular, C++20 introduced std::span [4], and C++23 added std::mdspan [5], facilitating
convenient access to custom data objects. The C++20 standard also signified a milestone with
concepts [6], a feature that bolstered the language’s support for generic programming. Concepts
provide a more expressive and precise way to define and use templates, making them particularly
convenient for working with custom types and template specializations. They also play a key role in
the C++ Ranges library, which represents a significant evolution in howC++ handles algorithms and
iterates over sequences. The C++23 cartesian product view (std::views::cartesian_product)
[7] enhances this further1.

In summary, these developments showcase C++’s progress into a more modern, user-friendly
language, while maintaining its core performance and flexibility. This report highlights these
features through the practical implementation of the HISQ fermion operator, analysing their appli-
cability and effectiveness.

2. Understanding the Code Design

The test code structure consists of three main components in the design of the primary (im-
proved) staggered fermion operator application [9]. These components are: the setup of parameters
through control structures, the compute kernel(s), and the kernel launchers. It is important to note
the absence of a tuning infrastructure, as its implementation is not feasible within the standard C++
framework. In this section, we will present a concise overview of the key C++ features employed
in the implementation of the fermion operator.

2.1 Generic programming with C++ concepts

C++20 concepts serve as a tool to specify semantic constraints on template arguments, which
leads to clearer and more understandable code. They allow developers to define requirements
that a template argument must meet, improving the diagnostics of template errors and making

1In our implementation, we relied on an adapted version of the custom implementation [8].
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them more user-friendly. This results in more readable and maintainable code, as the intentions
behind template parameters become more explicit and less prone to misinterpretation or misuse.
For instance, a developer can define a concept to
specify that a template function should only ac-
cept types that support certain operations. When
a type that does not meet these requirements is
used, the compiler can provide a clear and spe-
cific error message, rather than a generic template
error. Listing 1 demonstrates a simplified exam-
ple of the C++ concept of parity staggered fermion
field objects. This concept is further utilized in

template <typename T>
concept ParitySpinor = requires{
// ...

requires (T::Nspin() == 1);

requires (T::Ncolor() == 3);

requires (T::Nparity() == 1);
};

void D(ParitySpinor auto &y, const ParitySpinor auto &x)
{ /*apply dslash operator etc.*/ }

Listing 1: Concept of parity staggered spinors.

defining the D method, which is specifically designed for parity staggered spinors: the type of its
arguments must satisfy the constraints defined in the ParitySpinor concept.

2.2 Data managment

Further, ISO C++20 introduced an enhanced approach to handling views of data, among which
std::span is a notable addition. It represents a view of a contiguous sequence of objects, akin to
a non-owning reference. The concept of views in
C++20, including creating subviews (subspan), is
a step towards safer and more efficient handling of
sequences of data. Listing 2 illustrates the flexi-
bility of std::span in referencing both complete
objects, as seenwith the View()method, and spe-
cific segments like parity components. This fea-
ture is highly beneficial in GPU offloading tasks,
where managing lightweight objects efficiently is
crucial. While std::span in C++20 provided a
view into a single-dimensional array,

template <ContainerTp container_tp, typename Arg>
class Field{
private:
const Arg arg;//copy of the field object arguments
container_tp v;//std::vector, std::span (or subspan)

public:
decltype(auto) View() {
return Field(std::span{v}, arg);

}

decltype(auto) ParityView(const FieldParity parity )
{

// define parity args etc...

return Field(std::span{v}.subspan(parity_offset,
parity_length), parity_arg);

}

};

Listing 2: generic field object with views.
std::mdspan, introduced in C++23, extends this concept to multidimensional arrays, which is
particularly useful in handling of matrices, tensors, and other complex data layouts.
Like std::span, it is designed to be a
lightweight, flexible, and safer alternative to raw
pointers. Specifically, std::mdspan is a tem-
plate that takes several parameters, including the
element type, an extents type that describes the
shape of the multidimensional array, as well as
(optionally) a layout policy, which describes how
multidimensional indices map to linear memory
(such as row-major or column-major), and an ac-
cessor policy, which controls how elements are
accessed, potentially allowing for more complex

template<bool is_constant, size_t... dofs>
inline decltype(auto) mdaccessor(const std::array<size_t,

(Ndim + sizeof...(dofs))> &strides) const {
using dext = stdex::dynamic_extent;
using Map = stdex::layout_stride::mapping<

stdex::extents<size_t, dext, dext, dext, dext, dofs...>>;
using Extents= stdex::extents<size_t,

dext, dext, dext, dext, dofs...>;

if constexpr (is_constant){
return stdex::mdspan<const data_tp, Extents,
stdex::layout_stride>{v.data(),

Map{Extents{X[0], X[1], X[2], X[3]}, strides}} ;

}

}

Listing 3: field accessor via std::mdspan.
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operations like bounds checking or proxy references. Listing 3 gives an example of a generic field
accessor, where dof stands for (packed) internal degrees of freedom.

2.3 Kernel execution

ISO C++17 standard brought in advanced features for parallelism, enabling the parallel ex-
ecution of Standard Library algorithms. This is achieved by specifying an execution policy as
the initial parameter in algorithms that are compatible with these policies. In the current frame-
work, kernel execution is managed using the std::for_each algorithm only, and the compute
kernels themselves are passed for the execution via lambda expressions. Within the adopted design,
the implementation of compute kernels is quite generic; that is, with minor modifications ,they
could also be launched using vendor-specific execution mechanisms, for example, via the CUDA
triple-chevron syntax with specified execution parameters2.
Listing 4 demonstrates how the execu-
tion domain parameter is naturally defined
using Cartesian coordinates through the
std::views::cartesian_product construct.
In this case, this construct provides a view that
represents the Cartesian product of four ranges.
In general, std::views::cartesian_product
enables iteration over the Cartesian product of
multiple ranges without the need to materialize
the product, thus offering a memory-efficient
approach to handling such combinations. For
instance, this makes it straightforward to iterate
over a range of timeslices or a single timeslice.
Note also, that the launch method takes views
of objects rather than the objects themselves, a
critical aspect for GPU-offloading tasks (although
irrelevant for the fully mameory-coherent systems
like NVIDIA Grace-Hopper architecture).

void launch(ParitySpinorView auto &out,
const ParitySpinorView auto &in,
auto &&transformer,
const FieldParity p, const auto &idx) {

// define DslashKernel lambda here ...

std::for_each(std::execution::par_unseq,

ids.begin(), ids.end(), DslashKernel);

}

void operator()(ParitySpinor auto &out,
const ParitySpinor auto &in,
auto &&transformer,

const FieldParity p) {
using spinor_tp =

typename std::remove_cvref_t<decltype(in)>;
using container_tp = spinor_tp::container_tp;
//Setup exe domain

const auto [Nx, Ny, Nz, Nt] = out.GetCBDims();
auto X = std::views::iota(0, Nx);
//...

auto T = std::views::iota(0, Nt);
auto idx = std::views::cartesian_product(T, Z, Y, X);
if constexpr (is_allocator_aware_type<container_tp>) {
auto&& out_view = out.View();

const auto&& in_view = in.View();
launch(out_view, in_view, p, idx);

}

}

Listing 4: kernel execution.

Observe also transformer agrument in the launch method that we will explain in the next
subsection.

2.4 Dslash-transform kernel design
Let’s now examine the implementation strategies for DslashKernel, as highlighted in Listing

4, where it is used as the final argument in the std::for_each construct. The actual definition of
this argument is as follows:

auto DslashKernel = [=, &dslash_tranform_kernel = *dslash_transform_kernel_ptr] (const auto &cartesian_prod_view) {
dslash_transform_kernel.template apply<dagger>(out, in, in, transformer, cartesian_prod_view, parity);

};

2One would need the nvc++ compiler with the -cuda option which supports recent versions of C++.
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Here the apply method is represented in the following code snippet:

void apply(ParitySpinorView auto &out, const ParitySpinorView auto &in, const ParitySpinorView auto &in,
auto &&transformer, const auto cartesian_prod_view, const FieldParity parity) {

using S = typename std::remove_cvref_t<decltype(out)>;
// convert cartesian view into std::array X

auto X = convert_coords<nDim>(cartesian_prod_view);

// create alias view of X:

auto X_view = X | std::views::all;
// call (local) accessors:

auto out = FieldAccessor<S>{out};
const auto in = FieldAccessor<S, is_constant>{in};
const auto aux= FieldAccessor<S, is_constant>{in};
// apply site stencil:

auto res = compute_parity_site_stencil<dagger>(in, parity, X_view);
// apply post transformer (e.g., axpy operation)

transformer(out, aux, res);

}

Note that in defining the applymethod, we utilized the ParitySpinorView concept to ensure that
its argument matches the parity spinor view type. This consideration is also important because we
used capture by value in the lambda expression (and that is why launchmethod also requires view
types). The transformer can be any local linear operation over the spinor fields, such as an AXPY-
type operation. One can define other forms to create a fused dslash plus transform operator, akin
to C++’s ‘std::transform_reduce‘. This approach can be useful, for instance, in Krylov solver
implementations, where fusing matrix-vector operations with linear algebra operations can enhance
the overall performance of the algorithm. Generalizing this to multi-source dslash-transform
operator is also straightforward.

2.5 Memory management with STL Polymorphic Memory Resource
In the final subsection, we’ll discuss C++17’s Polymorphic Memory Resource (PMR), a

feature in the <memory_resource> header aimed at improving memory management, particularly
in scenarios requiring custom allocation strategies.

namespace impl {
namespace pmr {
template <typename T>
class vector {
public:
using allocator_type = std::pmr::polymorphic_allocator<T>;

using value_type = typename std::allocator_traits<allocator_type>::value_type;
using size_type = typename std::allocator_traits<allocator_type>::size_type;
//...

explicit vector(size_type n, std::pmr::memory_resource* res) : data_(nullptr), size_(n), alloc_(res) {
data_ = alloc_.allocate(n);//allocate memory for n elemnts of type T

if (init_pmr_space != TargetMemorySpace::None ) {
auto zero_ = zero<T>();
if (init_pmr_space == TargetMemorySpace::Device) {
std::fill(std::execution::par_unseq, this->begin(), this->end(), zero_);

} else if (init_pmr_space == TargetMemorySpace::Host) {
std::fill(this->begin(), this->end(), zero_);

}

}

};

}//end pmr namespace

}//end impl namespace

Listing 5: custom pmr vector container.
Initially, our implementation of the field class utilized STL containers, suitable for systems with
Unified Virtual Memory support. However, the C++ standard mandates initializing allocator-
aware containers, leading to host initialization for every object, even in scenarios where such kind
of initialization is suboptimal, e.g., as with temporary objects in Krylov solvers. This limitation

5
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prompts the need for custom, type-compatible vector containers. PMR addresses this by introducing
std::pmr::polymorphic_allocator, a flexible, type-erased allocator compatible with both
standard and custom containers and allowing these containers to use different memory allocation
strategies without changing their type. An example of a custom PMR container is demonstrated
in Listing 5. At the core of PMR is the std::pmr::memory_resource abstract class, which is
evident as the second argument in the constructor of the vector class. The class provides a uniform
interface for memory allocation, allowing objects that use polymorphic allocators to remain agnostic
of the underlying memory allocation mechanism. Note that the constructor provides the option for
either non-initialization or initialization on the target device using the std::fill algorithm. In
our typical scenario, we create a custom common memory pool using PMR’s memory resource
functionality, and then utilize this pool for creating instances of the field class. This approach is
especially convenient for objects like block spinors, as it eliminates the need for manual adjustments
of memory parameters, such as offsets and the like.

3. Performance summary

We conducted test runs on the FNAL LQ cluster compute node using the NVIDIA nvc++ com-
piler version 23.07. Each compute node is equipped with NVIDIA A100 accelerators. The
compiler options employed were ’-stdpar=gpu -gpu=cc80 -gpu=managed -gpu=fma -gpu=fastmath
-gpu=autocollapse -gpu=loadcache:L1 -gpu=unroll’. The source code for these tests is available
in our GitHub repository [9]. It should be noted that the code adheres to the QUDA layout [10],
with the lattice index as the fastest and color as the slowest, and used an even-odd decomposition.
Additionally, we did not analyze multi-process implementation since the current C++17 standard
does not allow for asynchronous execution. This capability is expected to be included in future
revisions of the ISO C++ standard. The results for various lattice sizes are presented in Figure 1.
As a reference implemntation we used HISQ dslash from the QUDA library [11]. In the chart, the
blue bar represents the performance of the QUDA reference dslash, the light green bar indicates
the performance of the single-source dslash, and the dark green bar shows the performance for the
single component of the multi-source Dslash, with number of sources # = 8. Note a significant
drop in performance for the C++ single-source version for the smallest lattice size, which warrants
further investigation to determine the underlying cause.

4. Conclusion and outlook

In this report, we have explored the application of various new C++ features to standard LQCD
compute kernels. Although our primary focus was on utilizing C++17 parallel algorithms, it’s
noteworthy that many of these features are versatile and could be beneficially integrated into existing
LQCD libraries. When discussing std::execution::par algorithms, it’s important to highlight
two significant limitations: the lack of execution parameters and the absence of asynchronous
versions. The former drawback limits the ability to fine-tune and control parallel executionworkflow,
which can be crucial for optimizing performance in certainHPC applications, while the latter implies
that these algorithms cannot be easily integrated into non-blocking, concurrent workflows, and thus
impacting performance on large scale. The second issue, however, is expected to be addressed in
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Figure 1: Performance summary on A100 GPU, single precision HISQ dslash.

future revisions of the ISO C++ standard. In particular, this will be through the introduction of
sendermodel of asynchronous programming [12] (see also [13]), a feature that NVIDIA has already
implemented experimentally.
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