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1. Introduction

The Karsten-Wilczek (KW) action [1, 2] is the simplest implementation of so-called minimally
doubled fermions in lattice field theory. The action eliminates most of the spurious fermionic
degrees of freedom known as “doublers.” It reduces the number of doublers from fifteen to
one, leaving two mass-degenerate quark species, while explicitly preserving an ultra-local chiral
symmetry. In the case of degenerate up and down quarks this action allows the study of the chiral
transition without a rooting, which one is forced to employ with staggered quarks.

However, minimally doubled fermions come at a price. The action breaks the hypercubic sym-
metry of the lattice and introduces three counterterms to the naïve theory [3]. While the KW action
is highly appealing for the aforementioned features, renormalization constitutes a multidimensional
tuning problem for the selection of appropriate values for the bare parameters.

We present a mixed action study of a method of tuning these bare parameters nonperturbatively,
exploring the hierarchy of the tuning parameters and how accurately one needs to tune. We take
measurements with the KW action on stored gauge configurations computed with the 4-stout
staggered fermion action at the physical point. We conclude with an exploration of the scaling
behavior of the mass-splitting of the ground states of two mesonic channels with tuned parameters.

2. The Karsten-Wilczek action

The Karsten-Wilczek action [1, 2]

𝑆𝐾𝑊𝐹 = 𝑆𝑁𝐹 +
∑︁
𝑥

3∑︁
𝑗=1

𝜓̄(𝑥) 𝑖𝜁
2
𝛾𝛼

(
2𝜓(𝑥) −𝑈 𝑗 (𝑥)𝜓(𝑥 + 𝑗) −𝑈

†
𝑗
(𝑥)𝜓(𝑥 − 𝑗)

)
, (1)

where 𝜁 is the Wilczek parameter, 𝑈𝜇 (𝑥) is the link variable at site 𝑥 in the 𝜇 direction, and 𝛼 is an
arbitrary spacetime direction, adds to the naïve lattice fermion action

𝑆𝑁𝐹 =
∑︁
𝑥

3∑︁
𝜇=0

𝜓̄(𝑥)𝛾𝜇
1
2
[
𝑈𝜇 (𝑥)𝜓(𝑥 + 𝜇̂) −𝑈+

𝜇 (𝑥 − 𝜇̂)𝜓(𝑥 − 𝜇̂)
]
+ 𝑚0

∑︁
𝑥

𝜓̄(𝑥)𝜓(𝑥) (2)

additional terms which break hypercubic symmetry. These terms are only added along the spacetime
directions where 𝜇 ≠ 𝛼, making 𝛼 a special axis and explicitly breaking the hypercubic symmetry
of 𝑆𝑁

𝐹
. In this work, we take 𝛼 = 0, the time direction. The action requires the following three

counterterms, for which one-loop perturbative results exist [4]

𝑆3 𝑓 = 𝑐
∑︁
𝑥

𝜓̄(𝑥)𝑖𝛾𝛼𝜓(𝑥), (3)

𝑆4 𝑓 = 𝑑
∑︁
𝑥

𝜓̄(𝑥) 1
2
𝛾𝛼

(
𝑈𝛼 (𝑥)𝜓(𝑥 + 𝛼̂) −𝑈†

𝛼 (𝑥)𝜓(𝑥 − 𝛼̂)
)
, (4)

𝑆4𝑔 = 𝑑𝐺

∑︁
𝑥

∑︁
𝜇≠𝛼

Re Tr(1 − P𝜇𝛼 (𝑥)) . (5)

Here P𝜇𝜈 (𝑥) is the plaquette at 𝑥 along the 𝜇 and 𝜈 directions. 𝑆3 𝑓 and 𝑆4 𝑓 are fermionic
counterterms of dimension 3 and 4 respectively. The gluonic counterterm 𝑆4𝑔 plays no role in our
mixed action study. It will be relevant for dynamical KW simulations.

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
2
8
3

Renormalization of Karsten-Wilczek Quarks on a Staggered Background Daniel A. Godzieba

These terms are manifestations of the anisotropy of the lattice breaking hypercubic symmetry
[3]. The counterterms 𝑆4 𝑓 and 𝑆4𝑔 act as anisotropy parameters of the fermion and gauge terms,
respectively. To emphasize the role of 𝑆4 𝑓 , we express its bare parameter 𝑑 in terms of the anisotropy
𝜉0 = 1 + 𝑑 in our numerical work. Following the preferred axis 𝛼 = 0, we target a renormalization
anisotropy 𝜉 𝑓 = 1 and find the bare anisotropy 𝜉0 that restores isotropy.

The multidimensional nonpertrubative tuning of (𝑐, 𝜉0) can be made tractable with certain con-
siderations. Boosted perturbation theory estimates of the nonperturbative parameters and quenched
simulations using the KW action indicate that the anisotropy parameter has mild effects compared
to those of 𝑐 and that 𝑐 can be considered almost independent of 𝜉0 [3]. We quantify this statement
and explore a method for tuning the relevant parameter 𝑐 and the bare anisotropy 𝜉0. Having an
efficient method will be critical eventually when tuning dynamical KW simulations [5].

We use the KW action with 𝛼 = 0, 𝜁 = +1. We use the 𝑤0 scale setting to convert from lattice
units into physical units [6]. The 4-stout action’s parameters were introduced in Ref. [7].

3. Nonperturbative tuning of bare parameters

A suitable method for tuning the bare parameters of the KW action nonperturbatively uses the
existence of oscillating contributions to the correlation functions

𝐶𝜇 (𝑥, 𝑦) ∼
〈
𝜓̄(𝑥)𝛾𝜇𝜓(𝑥)𝜓̄(𝑦)𝛾𝜇𝜓(𝑦)

〉
(6)

of some KW fermions. These oscillations are related to fermion doubling [3]. Importantly, their
frequency is sensitive to the 𝑐 parameter. Fermion partners can be identified by the spin-taste
structure of the KW action [8]. A relevant fermion pair is the 𝛾0 and 𝛾5 channels. The correlators
for 𝛾0 and 𝛾5 are taken parallel to the preferred axis of the KW action, 𝛼 = 0 in this case.
The correlator of 𝛾5 perpendicular to 𝛼 = 0 in a spatial direction is needed for tuning 𝜉0. The
renormalized fermionic anisotropy is defined as the ratio of the perpendicular (spatial) mass of 𝛾5

to the parallel (temporal) mass: 𝜉 𝑓 = 𝑚⊥/𝑚 ∥ .
The parallel correlator for 𝛾0 exhibits oscillations while that of 𝛾5 does not. The tuning criterion

for the 𝑐 parameter is where the frequency spectrum of the oscillations of the 𝛾0 channel recovers
its tree-level form [3]. At the tuned 𝑐, the oscillation of the 𝛾0 correlator is described by (−1)𝑛,
where 𝑛 is the position along the temporal extent of the lattice. The frequency of the oscillation at a
given 𝑐 value can be described by 𝜔 = 𝜔𝑐 + 𝜋, where 𝜋 is the frequency of the rapid oscillations at
tuned 𝑐 and 𝜔𝑐 is a beat frequency that appears in the rapid oscillations when 𝑐 is detuned. Thus,
the tuning criterion is equivalently stated as where 𝜔𝑐 = 0 and the beat vanishes. Fig. 1 shows an
example of correlators in the 𝛾0 and 𝛾5 channels at detuned 𝑐 where both the rapid oscillation and
the beat oscillation can be observed for 𝛾0. When we average over the symmetric halves of the 𝛾0

correlator 𝐶0(𝑥, 𝑦) and eliminate the rapid oscillation with a factor of (−1)𝑛,

𝐶 (𝑛) = (−1)𝑛 1
2
(𝐶0(0, 𝑛) + 𝐶0(0, 𝑁𝑡 − 𝑛)) for 0 ≤ 𝑛 ≤ 𝑁𝑡/2, (7)

where 𝑁𝑡 is the temporal extent of the lattice, the correlator is well described by the model

𝐶 (𝑛) ≈ 𝐴 cosh(𝑚(𝑛 − 𝑁𝑡/2)) cos(𝜔𝑐𝑛 − 𝜙) (8)
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Figure 1: Correlators for the 𝛾0 (left) and 𝛾5 (right) fermion channels for the Karsten-Wilczek action. The
frequency of the oscillating 𝛾0 correlator depends on the 𝑐 parameter of the action. A beat oscillation on top
of the (−1)𝑛 oscillation (visible in the left plot) occurs when the 𝑐 parameter is detuned.

where 𝑚 is the mass of 𝛾0 in lattice units and 𝜙 is a phase factor. The beat frequency and the mass
decouple in this way. We use various fitting methods for extracting 𝑚 and 𝜔𝑐 because of the exotic
shape of the correlator. We tune 𝑐 for a given 𝜉0 by scanning through 𝑐 and extrapolating with a
linear fit to where 𝜔𝑐 = 0.

An immediate difficulty that arises in tuning 𝑐 is the finite length of the lattice, which makes
fitting the frequency unreliable when the wavelength of the beat is greater than 𝑁𝑡 in the relative
vicinity of tuned 𝑐. This can be ameliorated through the use of tiling gauge configurations. Tiling
means the gauge configurations are doubled (or quadrupled) to form a 𝑁3

𝑥 × (2𝑁𝑡 ) or 𝑁3
𝑥 × (4𝑁𝑡 )

lattice on which the propagator is studied. This allows to study the propagator in a longer range than
that of the dynamical simulation. Tiling extends the idea of a mixed action study where the quarks
live on an extended lattice without maintaining the long wave-length gauge fluctuations, which
would anyway be irrelevant for the divergent parts of the diagrams. Thus, when used properly,
tiling the stored gauge configurations increases the precision with which 𝜔𝑐 is measured. Fig. 2
shows an example of 𝐶 (𝑛) at detuned 𝑐 for three different amounts of tiling in the left plot, as well
as 𝜔𝑐 (𝑐) around tuned 𝑐 for each level of tiling for comparison in the right plot. We use 4× and
occasionally 1× tiling throughout this study.

An example of finding the tuned 𝑐 value is shown in the left plot of Fig. 3, where the
result is combined from linear fits on either side of the tuned 𝑐. An additional parameter for our
measurements is the number of stout smearing steps we apply. For any value of 𝜉0, the effect of
applying more smearing steps is a power law decrease in the magnitude of the tuned 𝑐 value. An
example of this is shown in the right plot of Fig. 3. We consistently use four steps of stout smearing
throughout this study, the same smearing level that was used in the staggered simulation to create
the ensembles.

In this way, we tune 𝑐 for any value of 𝜉0. 𝜉0 can then be tuned according to the desired
renormalized anisotropy 𝜉 𝑓 . Since we perform measurements on isotropic staggered configurations,
we tune by interpolating 𝜉 𝑓 (𝜉0) at tuned 𝑐 to 𝜉 𝑓 (𝜉0) = 1. An example of this is shown in the left

4
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Figure 2: (Left) The symmetrized 𝛾0 correlator measured with different amounts of tiling with stored gauge
configurations. The proper use of tiling permits longer correlation lengths to be measured and increases the
precision of the measurement of the beat frequency 𝜔𝑐. (Right) Measurements of 𝜔𝑐 as a function of the 𝑐

parameter at the same three tilings.
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Figure 3: (Left) 𝜔𝑐 as a function of the 𝑐 parameter. The 𝑐 parameter is tuned at the value where the beat
frequency vanishes. (Right) The variation of the tuned value of 𝑐 with the number of stout smearing steps
applied. We used 4 stout smearing steps throughout the rest of the analysis.

plot of Fig. 4. One could proceed to find tuned 𝑐 at tuned 𝜉0 using either a final scan in 𝑐 at tuned
𝜉0, or an interpolation of 𝑐(𝜉0) to the tuned 𝜉0. We use the latter, keeping in mind the computational
efficiency of the method. The right plot in Fig. 4 shows an example of this interpolation. The
question naturally arises as to how accurately one needs to tune 𝑐 and 𝜉0, or how stable the result
is to slight mistunings. Thankfully, the results are quite stable, as the 𝜉 𝑓 (𝑐) function has vanishing
derivative (a maximum) near the tuned value.

Until this point, we have not mentioned the bare mass parameter of the KW action 𝑚0, which
determines the ground state masses of the pseudoscalar 𝛾0 and 𝛾5 channels at tuned 𝑐 and 𝜉0. The
left plot of Fig. 5 shows the physical 𝛾0 and 𝛾5 masses, 𝑀0 and 𝑀5 respectively, as functions of the
𝑐 parameter for fixed 𝜉0 and 𝑚0. We may also speak of the stability of the tuning in regard to 𝑀0 and

5
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Figure 4: (Left) The renormalized anisotropy 𝜉 𝑓 of the mass of the pseudoscalar 𝛾5 channel as a function the
bare anisotropy 𝜉0. The 𝑐 parameter is individually tuned at each 𝜉0 value. 𝜉 𝑓 = 1 was the tuning criterion
for 𝜉0. (Right) Interpolating to the tuned value of the 𝑐 parameter at the tuned value of 𝜉0.
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Figure 5: (Left) Physical masses of the 𝛾0 and 𝛾5 channels as functions of the 𝑐 parameter at fixed 𝜉0 and
bare mass 𝑚0. 𝑀0 (𝑐) and 𝑀5 (𝑐) are concave up, with minima near the tuned value of 𝑐. (Right) Zoom in
near tuned 𝑐. While 𝑀5 is very stable around tuned 𝑐, 𝑀0 exhibits a sudden dip in the immediate vicinity of
tuned 𝑐, which can be observed across multiple fitting methods (explained in the text).

𝑀5. Both masses are concave up functions of 𝑐 with minima near the tuned value of 𝑐, indicating
the stability of both quantities to small mistunings of 𝑐. An interesting effect is observed, however,
in the behavior of 𝑀0(𝑐) very close to the tuned 𝑐. While 𝑀5(𝑐) is practically flat in the immediate
vicinity of the tuned 𝑐, 𝑀0(𝑐) experiences a sudden dip over a small interval around tuned 𝑐. This
region of the plot is enlarged in the right plot of Fig. 5. We observe this effect at all 𝛽 values at
which we take measurements. Very close to the tuned 𝑐, the determination of 𝜔𝑐 is very difficult
because of the finite size of the lattice.

This dip around tuned 𝑐 in the regime where 𝜔𝑐 can no longer be reliably determined would
seem to pose a great challenge to tuning c, since a small mistuning appears to cause a significant
difference in 𝑀0. However, the accuracy and the precision of the method of tuning with 𝜔𝑐 is such

6
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Figure 6: Stability of the tuned 𝑐 value at fixed 𝜉0 (left) and the renormalized anisotropy 𝜉 𝑓 at fixed 𝜉0 and
𝑐 (right) with respect to the pseudoscalar mass 𝑀5.

that we are able to reliably penetrate this difficult region. The right plot of Fig. 5 shows the value of
𝑀0, extracted using two different methods: one method utilizing a cosine fit to the beat frequency
component of the correlator, the other being a direct cosh fit to the correlator. The latter method
is only viable when the wavelength of the beat is large compared to the lattice, hence no beat is
apparently visible. The values of 𝑀0 extracted from both methods are in agreement at the tuned
value of 𝑐 determined from where 𝜔𝑐 = 0. We can then conclude that the correct determination
of the value of 𝑀0 is robust, in that the same value is obtained with different fit methods, but is
subordinate to a precise tuning of 𝑐 as shown in Fig. 3.

Thus, the 𝑐 parameter determined from the condition of vanishing beat frequency in the 𝛾0

propagator is very close to the extrema of various renormalized quantities (e.g. 𝜉 𝑓 , meson mass).
The derivative of 𝐶-even quantities with respect to 𝑐 are odd, and should vanish with a restored
symmetry. However, the use of e.g 𝑑𝑀5/𝑑𝑐 = 0 for tuning of 𝑐 is hindered by noise (see Fig. 5).

We find that the tuned value of 𝑐 for a given 𝜉0 is very stable with respect to changes in
the physical mass of the 𝛾5 channel 𝑀5. Further, for fixed 𝑐 and 𝜉0, the renormalized fermionic
anisotropy 𝜉 𝑓 is very stable with respect to changes in 𝑀5 as well. These results are shown in Fig.
6. In Fig. 7, we show the results of tuning 𝑐 and 𝜉0 at several lattice spacings with the 𝛾5 mass held
constant at 𝑀5 = 578.4 MeV.

A hierarchy of the bare parameters is thus established. Most critical in the tuning procedure is
the 𝑐 parameter, as the physical masses of oscillating fermion channels are highly dependent on it.
The bare anisotropy 𝜉0 follows in importance. Finally, the bare mass 𝑚0 (alternatively the physical
mass 𝑀5) is last, as it has the mildest effect.

4. Taste-splitting of 𝛾0 and 𝛾5 channels

Finally, we present an investigation of the mass-splitting of the ground states of the 𝛾0 an 𝛾5

channels, which are parity partners in the spin-taste structure of the KW action [8]. The quadratic
mass difference Δ𝑀2 = 𝑀2

0 − 𝑀2
5 is a quantity which is stable against changes in physical mass

𝑀5 for fixed 𝑐 and 𝜉0, as shown in the left plot of Fig. 8. In the right plot of the same figure,

7
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Figure 7: Tuned values of the 𝑐 parameter (left) and 𝜉0 (right) at various lattice spacings for constant
pseudoscalar mass 𝑀5.
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0 − 𝑀2

5 of the 𝛾0 and 𝛾5 channels with respect to
the pseudoscalar mass 𝑀5. (Right) Taste-splitting vs. lattice spacing squared.

we show Δ𝑀2 at tuned 𝑐 and 𝜉0 with fixed 𝑀5 = 578.4 MeV, as a function of the lattice spacing
squared. A naïve linear extrapolation to the continuum limit excluding the coarsest lattice would
yield Δ𝑀2 < 0. However, these lattice spacings may fall outside the linear scaling regime.

5. Conclusion

We presented a mixed action study of tuning the bare parameters of the Karsten-Wilczek action
using gauge configurations generated with the staggered 4-stout fermion action. We observed the
dominance of the dimension-3 KW 𝑐 parameter, which can be tuned precisely using the frequencies
of oscillating fermionic correlation functions of the KW action. The bare anisotropy 𝜉0 follows
in importance, and must be tuned – like with other anisotropic discretizations – even if the target
anisotropy is 1. The physical mass of the ground state of the 𝛾5 channel, dependent on the bare
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mass 𝑚0, does not significantly effect the tuned values of 𝑐 and 𝜉0, hence tuning can be performed
at a fixed pseudoscalar mass. Lastly, we showed the mass-splitting of the parity partners 𝛾0 and 𝛾5

at constant physical mass with tuned parameters as a function of the lattice spacing squared.
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