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The application of normalizing flows for sampling in lattice field theory has garnered considerable
attention in recent years. Despite the growing community at the intersection of machine learning
(ML) and lattice field theory, there is currently a lack of a software package that facilitates efficient
software development for new ideas in this field. In these proceedings, we present NeuLat, a
fully customizable software package that unifies recent advances in the fast-growing field of deep
generative models for lattice field theory in a single software library. NeuLat is designed to be
modular, supports a variety of lattice field theories as well as normalizing flow architectures,
and is easily extensible. We believe that NeuLat has the potential to considerably simplify the
application and benchmarking of ML methods for lattice quantum field theories and beyond.
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1. Introduction

In recent years, there has been increasing interest in utilizing normalizing flows for sampling
in lattice field theory (see e.g. Refs. [1–26] and Ref. [27] for a review). Despite the rapid progress,
there is currently no software package that streamlines efficient software development for novel
concepts in this domain.

In these proceedings, we introduce NeuLat, a fully adaptable software package consolidating
recent advances in deep generative models for lattice field theory into a unified software library.
The paper is structured as follows: first, we review the required theoretical background in Sec. 2 and
summarize the advantages of using generative models, in particular normalizing flows, for sampling
lattice field configurations. Second, in Sec. 3, we explain the idea behind NeuLat and comment
on related work, the software structure, and the key features of the package. Lastly, in Sec. 4, we
conclude the paper highlighting the aim of NeuLat to become a community-wide effort.

2. Theoretical Background

Normalizing flows are a widely used type of generative models, which were first introduced
at the beginning of the last decade [28, 29] and started to gain in popularity few years later [30,
31]. Towards the end of the last decade, Ref. [32] introduced normalizing flows for sampling
in quantum chemistry and called them Boltzmann generators for their capability of sampling
from unnormalized Boltzmann densities. Concurrently, related works using autoregressive neural
networks for sampling statistical mechanical systems also appeared [33, 34]. A few months later,
Ref. [1] used normalizing flows to sample configurations of scalar field theories and thereby paved
the way for the development of Boltzmann generators in lattice field theory. In the following
years, numerous follow-up studies have been conducted with applications in scalar [1–16], pure
gauge [17–22] and fermionic [23, 24] field theories and beyond [25]. Notably, the number of works
in the field started to substantially increase upon the release of a jupyter notebook [26], where the
code from three important papers [1, 17, 35] was partly released. This release had a great impact on
research and education, as many researchers have benefited from reusing part of the code to develop
and boost novel research ideas. This phenomenon represents the main motivation for NeuLat, the
first Python library which implements flow-based samplers for different types of lattice quantum
field theories.

2.1 Sampling Lattice Configurations Using Generative Models

In lattice field theory, one aims to estimate physical observables, e.g., the spectrum, the
topological susceptibility, the free energy, the magnetization, and so forth. This is achieved using
the path integral formalism, where the expectation value of an observable is computed with respect
to a distribution of the Gibbs-type, 𝑝(𝜙) = 𝑒−𝑆 (𝜙)/𝑍 . Here, 𝜙 denotes the lattice fields, such as
gluon, quark, or scalar fields, 𝑆 represents the action of the system, and 𝑍 is the normalization
constant, i.e., the partition function. The expectation value for a generic observable O reads

⟨O⟩ = 1
𝑍

∫
D[𝜙]O(𝜙)𝑒−𝑆 (𝜙) , (1)
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where D[𝜙] =
∏ |Λ |

𝑖=0 d𝜙𝑖 is the measure of the high-dimensional path integral and |Λ| denotes
the number of lattice points of the lattice Λ. Exactly solving the path integral (1) is generi-
cally intractable; thus, one has to resort to numerical methods such as Hamiltonian Monte Carlo
(HMC) [36]. Despite being a powerful method, HMC faces many drawbacks, such as critical
slowing down and sequential sampling. Moreover, estimating thermodynamic observables, such as
the free energy, is challenging with HMC, because it involves the generation of Markov chains for
each point along a (disrectized) trajectory through parameter space [2].

In light of this, sampling via deep generative models, such as normalizing flows, holds the
promise to provide a new alternative route for addressing these challenges in lattice field theory. The
advantages of flow-based sampling over standard HMC sampling can be summarized as follows:

• Non-correlated sampling: Samples can be drawn independently and identically distributed
(i.i.d.) from the trained generative density, without the need of running sequential algorithms
which suffer from strongly correlated samples.

• Embarrassingly parallelizable: Once a flow model is trained, its neural network parameters
\ can be loaded onto different devices, and the sampling can be embarrassingly parallelized.
This is crucial as it allows to drastically increase the numbers of samples which can be drawn
simultaneously. The training can also be efficiently parallelized over multiple GPUs.

• Partition function estimation: Generative models such as normalizing flows, see e.g.,
the reviews [37, 38], or autoregressive neural networks [39] give access to the normalized
sampling density 𝑞\ (𝜙) of the flow model. In Refs. [2, 34], the authors have shown that this
can be used to directly estimate thermodynamic observables, such as the entropy and the free
energy, which cannot be directly computed with standard HMC approaches.

• Inductive biases: Prior knowledge of some properties of the physical system, such as its
symmetries, can be encoded into the generative model in order to eliminate unnecessary
degrees of freedom for efficient training and sampling.

Despite their promise, we note that flow models currently struggle to scale to larger volumes,
such as those pertinent to high-precision Lattice QCD calculations. So far, successful simulations
have been limited to toy problems in limited volumes. Consequently, the research field is actively
evolving, and the development of a robust software package is crucial for advancing further.

2.2 Normalizing Flows for Lattice Field Theory

When using normalizing flows [40] for estimating lattice field theory observables, one first has
to train a flow and then use it to obtain a Monte Carlo estimate of Eq. (1). In the following, we
briefly summarize the mathematical concepts behind this flow method. For the sake of brevity, we
omit a detailed discussion of normalizing flows and refer the reader to the review papers [37, 38].

The core part of a normalizing flow is a parametric bĳective map between a base space Z and
a target space Φ. Formally, one can define

𝑓\ : Z → Φ, (2)
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where Z and Φ are equipped with probability densities 𝑞𝑍 and 𝑞\ , respectively, with 𝑞𝑍 being the
base density, which is often a Gaussian or uniform. Leveraging the properties of normalizing flows,
one can obtain the likelihood of the transformed base density as

𝑞\ (𝜙) = 𝑞𝑧 ( 𝑓 −1
\ (𝜙))

�����d 𝑓 −1
\

(𝜙)
d𝜙

����� = 𝑞𝑧 (z)
����d 𝑓\dz

����−1
. (3)

For the rest of the paper, we assume that 𝑞\ represents our variational density, which is trained to
match the target density 𝑝(𝜙) = exp{−𝑆[𝜙]}/𝑍 of our lattice field theory.

For training a normalizing flow, one often minimizes the Kullback-Leibler (KL) divergence [41],
which is a type of similarity measure between two densities. In our case, these are the target density
𝑝(𝜙) and the variational density 𝑞\ (𝜙). The KL divergence reads

KL(𝑞\ | |𝑝) =
∫

D[𝜙] 𝑞\ (𝜙) ln
𝑞\ (𝜙)
𝑝(𝜙) . (4)

This expression is known as the reverse-KL and can be understood as the expectation value with
respect to the variational density 𝑞\ of the log-ratio of the two densities. From its definition (4),
it follows that KL ≥ 0, and the equality holds if and only if 𝑞\ = 𝑝. As shown in several works
(e.g., Refs. [1, 2, 32]), this objective is particularly suited for learning a target density of Boltzmann
type which is known in closed-form, up to the normalization constant 𝑍 . Specifically, training can
be performed by self-training, as samples are drawn from the model 𝑞\ that is being optimized
during training. While being very effective, the reverse-KL is not the ideal objective when the
target density is multimodal [3, 15], because of its mode-seeking property. A valid alternative1 is
the forward-KL

KL(𝑝 | |𝑞\ ) =
∫

D[𝜙] 𝑝(𝜙) ln
𝑝(𝜙)
𝑞\ (𝜙)

. (5)

In this case, the similarity measure between the two densities can be expressed as the expectation
value of the inverse log-ratio with samples drawn from the target density 𝑝. In other words, the
forward-KL requires samples from the target (Boltzmann) density 𝜙 ∼ 𝑝 for training. The forward-
KL is often used for training normalizing flows in other ML applications where training samples,
e.g., images, audio, or text, are available in large amounts. However, for our application in lattice
field theory, one would need to collect such training samples by using, e.g., HMC [15].

Once the model is trained and the flow 𝑞\ becomes a good approximation of the target density
𝑝, one can use samples drawn from the flow for computing observables via Eq. (1). However,
additional care is required. Indeed, 𝑞\ = 𝑝 never holds in practice, and one needs to take this into
account when sampling. To this end, two approaches can be taken:

• Neural Monte Carlo Markov Chain (NMCMC) (or Metropolization) uses the flow 𝑞\ as
the proposal density 𝑞\ (𝜙|𝜙′) = 𝑞\ (𝜙) for a Markov Chain. The samples are then accepted
or rejected with the Metropolis-Hastings accept-reject probability [1, 34].

• Neural Importance Sampling (NIS) provides a Monte Carlo estimator for a given observable
by sampling from 𝑞\ and using a reweighting technique. The importance weights 𝑤(𝜙) =

1We note that the forward- and reverse-KL divergences are not symmetric, hence KL(𝑝 | |𝑞) ≠ KL(𝑞 | |𝑝).
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𝑝(𝜙)/𝑞\ (𝜙) are used to reweight the Monte Carlo samples, thus making the estimator
asymptotically unbiased [2, 34, 42] under certain conditions [15].

Using Neural MCMC or NIS allows to correct for an imperfect approximation of the target 𝑝

with 𝑞\ or, more precisely, to obtain statistically consistent estimates of expectation values. When
the variational density closely approximates the target, those approaches allow to avoid important
drawbacks of HMC, such as critical slowing down.

3. NeuLat: Neural Samplers for Lattice Field Theories

In the previous section, we provided our view on normalizing flows as a promising new
approach for sampling lattice field configurations and for ultimately estimating physical observables.
However, it is nontrivial to implement and train such models. Most of the material discussed in
Sec. 2 relied on the implementation of architectures which were inherited from prior works within
the same groups. Moreover, even if the implementation of such architectures is feasible, it can
still take weeks or months to fine-tune the hyperparameters to reproduce results of previously
published papers, which substantially slows down the research progress. As a consequence, it is
often challenging for early practitioners with little background in software development for machine
learning to enter this interdisciplinary field when lacking fundamental reference code. Indeed, the
number of publications within this domain started to increase dramatically since the partial code
release [26] from the seminal papers [1, 17]. Because of this, we decided to develop NeuLat, a
software package for neural samplers in lattice field theory. We foresee this software framework to
serve as reference code for everyone interested in the development of flow-based models for custom
physical systems, or for researchers interested in taking their first steps with ML for lattice field
theory, building on various techniques described in many recent works.

3.1 Related Work

A few first attempts have been made to develop software packages for the flow-based simulation
of lattice field theories. The closest attempt in a similar direction of NeuLat is a package called
GomalizingFlow.jl [43]. Written in Julia with GPU acceleration support, this software package
mainly focuses on scalar field theories. In contrast, NeuLat is implemented in Python. While Julia
is recently enjoying an up-rise in popularity in the field of ML, it does not feature the vast amount
of ML frameworks implemented in Python. On the other hand, the Jupyter Notebook released
with Ref. [26] is implemented in Python and provides examples for training flow-based models for
both scalar and gauge field theories. While it represents a great source of inspiration for NeuLat,
it is not structured as a software framework, and can thus not easily be built upon or extended.
Another library combining flow-based sampling and HMC has been developed in Ref. [44]. While
this implementation provides a well-designed and extendable software framework, it is optimized
for a different physical problem: using normalizing flows within the HMC Leapfrog integration.
Lastly, another software package written in JAX is called FlowMC [45]. This framework mainly
implements the techniques proposed in Refs. [46, 47] and is not specifically tailored to sampling
in lattice field theory, as opposed to NeuLat. Therefore, to the best of our knowledge, while many
standalone repositories and few partially related software packages exist, NeuLat is the first attempt

5



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
2
8
6

NeuLat: a toolbox for neural samplers in lattice field theories Kim A. Nicoli

ACTION

SAMPLER

ESTIMATOR

NORMALIZING
FLOW

OBSERVABLE

MARKOV CHAIN
MONTE CARLO

Figure 1: High-level structure of NeuLat. The orange blocks represent the core of the workflow: the
action, the sampler, and the estimator. The action, defined by the user, is fed into a sampler, which can be a
normalizing flow (green) or a Markov Chain Monte Carlo (blue) sampler. The estimator uses the sampler to
draw configurations for estimating expectation values of physical observables (red).

to combine five years of research results in the field of flow-based sampling for lattice field theories
into one single software package that is flexible, easy to extend, and intuitively customizable.

3.2 The Software in a Nutshell

The main structure of NeuLat is sketched in Fig. 1, and a code example is provided in Fig. 2.
Within its basic workflow, NeuLat expects two main inputs from the user: the physical theory to
sample from and the type of normalizing flow. The former is specified by the action2 and some
associated parameters, e.g., the hopping parameter ^ and the bare coupling _ as shown in line 2 of
Fig. 2. The normalizing flow is specified using the class Flow and requires a set of hyper-parameters,
such as the base density and the type of coupling layers. For the implementation of the normalizing
flows, NeuLat inherits its structure from the nflows package [48]. In this way, many types of
normalizing flows are readily available, and one can naturally extend them by implementing new
architectures following the same structure. Once the action has been instantiated, NeuLat offers
two possibilities: performing standard HMC sampling (see the blue box on the left-hand-side of
Fig. 1 corresponding to line 4 in Fig. 2) or training a normalizing flow (see the green box in Fig. 1
and line 5 to 17 in Fig. 2). The former allows the user to obtain an HMC baseline to compare

2We note that the example code uses the same parametrization for the action of the 𝜙4 theory as in Ref. [2].
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1 n_samples, train_steps, batch = 1000, 1000, 500

2 action = Phi4Action(kappa=0.3, lamb=0.022)

3
4 hmc_chain = HMCMarkovChain(action, lat_shape=[16, 16], burn_in=100)

5 model = Flow(

6 lat_shape=[16, 16],

7 base_dist=NormalDistribution(),

8 coupling=NiceCoupling(),

9 n_couplings=6

10 )

11
12 optim = torch.optim.Adam(model.parameters(), lr=learning_rate)

13 loss_fn = ReverseKLLoss()

14 for _ in range(train_steps):

15 configs, log_probs = model.sample_and_log_prob(batch)

16 loss = loss_fn(action(configs), log_probs)

17 optim.zero_grad(); loss.backward(); optim.step()

18
19 obs = (Magnetization(), AbsMagnetization(), action)

20
21 flow_obs = IidEst(obs).evaluate(model.sample(n_samples))

22 hmc_obs = CorrelatedEst(obs).evaluate(hmc_chain.sample(n_samples))

Figure 2: Code example showing how NeuLat works in practice. Once the action object is instantiated, this
code can be used for a) sampling using HMC (line 4) or b) training a normalizing flow (lines 5-17). Samples
can be drawn from the respective models for an estimation of observables of interest (lines 19-22). Note that
this structure may be subject to change.

against the flow results. Once a flow is trained, one can draw samples and estimate observables
using Neural MCMC or NIS. Both approaches are provided in NeuLat within the Sampler class.
For estimating physical observables, NeuLat implements different estimators, e.g., IidEst() and
CorrelatedEst() . Any observables can be instantiated (see line 19) and passed individually or as
a collection of multiple observables (here tuple) into an appropriate estimator. Corresponding values
of the observables are computed by calling the evaluate method of the respective estimator on a
collection of samples, either drawn from the normalizing flow or via standard HMC sampling. One
crucial aspect of Monte Carlo simulations is the accurate assessment of statistical and systematic
errors. Specifically, the CorrelatedEst estimator accounts for correlated samples (see line 22).
This estimator is internally implemented using the unew [49] library, a Python package which
implements the Γ-method [50].

NeuLat is currently under active development and a first release will soon be available under
https://github.com/neulat/neulat. We remark that a preliminary version of NeuLat was used to
produce the results published in previous works [2, 4, 14, 15, 51].
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3.3 Key Features

In the following, we would like to summarize the key features of NeuLat and point out
several benefits of using this software framework instead of individual re-implementations. The
indisputable advantage of well-designed software frameworks is their considerable simplification of
implementations that require a common basis. Their common goal is to provide an intuitive solution
to swiftly implement existing methods, and easily extend and customize. For NeuLat specifically,
this means that a user can effortlessly integrate a new custom coupling layer or an entirely new type
of normalizing flow, as well as a custom action, without re-implementing already well-established
ground work. For instance, sampling from new theories which are not part of NeuLat only requires
the implementation of a custom action, which in extreme cases might be possible in only three
lines of code. Moreover, to boost the whole field of research on specific new theories or types
of normalizing flows, the custom implementations may be shared with the community through a
simple pull request3, initiating the permanent incorporation in NeuLat. In this way, the project
aims to become a central implementation hub of common actions and flows in the field, serving as
a starting point for future implementations and benchmarking.

To summarize its capabilities, NeuLat can be utilized to accomplish various tasks, including
but not limited to:

• Density estimation, e.g., learning target densities as discussed in Sec. 2.2.

• Sampling using HMC [52], Neural MCMC [1, 53] and NIS [1, 2].

• Asymptotically unbiased estimation of general physical observables [34] and estimation of
partition functions and thermodynamic observables [4].

• Assessing the severity of mode collapse [15], with which the bias can be bounded.

We note that only some of these features will be part of the first software release, and many additional
features will be added in future releases, or by the community with the help of pull requests.

Furthermore, NeuLat is planned to contain many additional recent ML tools proposed in
several different works, thus combining and simplifying access to software which is currently
split into many independent code bases. At the current state, these works include: stochastic
normalizing flows [6], conditional normalizing flows [5, 8], path gradients [14, 51], mode-dropping
estimators [15], and many more in the future. We believe that the presence of a unified framework
would be an extremely beneficial contribution to the community. Similar efforts within the context
of ML for quantum chemistry, including Refs. [54, 55], proved to be highly valuable resources for the
research community, used by many different groups. Furthermore, employing a common software
framework shared across multiple research groups can significantly streamline reproducibility for
new studies, thus simplifying the comparison of newly developed methods with baselines, thus
further accelerating the research field.

3Following the provided guidelines will ensure smooth integration of new contributions.
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4. Conclusion

These proceedings introduced NeuLat, a Python-based software package for flow-based sam-
pling of lattice field theories. The software will be designed to be accessible, modular, and easy to
extend and maintain. In this way, NeuLat aims to eliminate the overhead of re-implementing existing
code between different formats and languages. Most of the relevant tools for flow-based simulations
in lattice field theories, will be or can be implemented within this software package. The first release
of the software will soon be available at the GitHub page https://github.com/neulat/neulat.

NeuLat is aimed to be a community-wide effort. Therefore, we strongly encourage researchers
to contribute to its growth by integrating their own ideas and architectures, reporting potential bugs,
and making suggestions for improvements. We also encourage readers to reach out to us if they are
interested in contributing to the development of NeuLat. We foresee NeuLat as a highly valuable
contribution to the research field and to anyone wishing to learn about ML-enhanced sampling
techniques. We believe that a modular and resilient software package will significantly help in
successfully addressing and eventually overcoming the many challenges this field has to face.
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