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We compute the static force on the lattice in the quenched case directly through generalized Wilson
loops. We modify the Wilson loop by inserting an 𝐸-field component on one of the temporal
Wilson lines. However, chromo-field components prevent us from performing the continuum limit
properly, hence, we use gradient flow to renormalize the field insertion. As a result, we obtain
continuum results and compare them to perturbative expression to extract Λ0, and we predict the
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1. Introduction

Precise theoretical knowledge about Standard model parameters is necessary to test the Standard
model, and to determine the running of the strong coupling 𝛼𝑆 . One of the parameters is the
QCD scale ΛQCD which determines the 𝛼𝑆-running. To extract ΛQCD, we compare perturbative
results with non-perturbative results from the lattice, in a regime where both approaches have the
same validity. Calculating the force between a static quark-antiquark is one possibility, which is
traditionally carried out by computing the static force on the lattice from a numerical derivative of
the static energy. In this work, we measure the static force directly through a generalized Wilson
loop with a chromoelectric field 𝐸 insertion, avoiding the step of performing a numerical derivative,
where additional systematic uncertainties arise. Similar objects with field insertions are required
for correlators needed in nonrelativistic effective field theory calculations. However, the discretized
lattice 𝐸-field insertion includes a non-trivial lattice spacing behavior from gluonic self-interactions,
slowing the convergence to the continuum limit. This can be solved by a renormalization of the
𝐸-field insertion. We use gradient flow for both, to renormalize and to improve the signal-to-noise
ratio of our observables, and thereafter, to perform the continuum limit. In the continuum limit,
we use different methods to extract the zero flow time limit. This work was recently published in a
preprint paper [1] and we summarize some key findings in this proceeding.

2. Theoretical Background

The static force is obtained through the static energy 𝑉 (𝑟) in Euclidean QCD, which is related
to a Wilson loop 𝑊𝑟×𝑇 with spatial extent 𝑟 and temporal extent 𝑇 as

𝑉 (𝑟) = − lim
𝑇→∞

ln⟨Tr(𝑊𝑟×𝑇 )⟩
𝑇

= −1
𝑎

lim
𝑇→∞

⟨Tr(𝑊𝑟×(𝑇+𝑎) )⟩
⟨Tr(𝑊𝑟×𝑇 )⟩

, (1)

𝑊𝑟×𝑇 = 𝑃

{
exp

(
𝑖

∮
𝑟×𝑇

𝑑𝑧𝜇𝑔𝐴𝜇

)}
=

∏
(𝑖,𝜇) ∈C

𝑈𝜇 (𝑛𝑖), (2)

where 𝑎 is the lattice spacing, 𝑔 the strong coupling constant, 𝐴𝜇 the gluon fields, and 𝑃 the path
ordering operator. The product over (𝑖, 𝜇) ∈ C produces the path ordered product of link variables
𝑈𝜇 (𝑛𝑖) along the closed loop C representing the Wilson loop on the lattice. The trace operation
Tr(...) is the normalized color trace. A derivative of the static energy defines the static force:

𝐹𝜕𝑉 (𝑟) =
𝜕𝑉

𝜕𝑟
= lim

𝑎→0

𝑉 (𝑟 + 𝑎) −𝑉 (𝑟 − 𝑎)
2𝑎

, (3)

where the term in the lim-part on the right-hand side corresponds to the symmetric numerical
derivative performed on the lattice. Other methods, including derivatives of interpolating functions,
are possible, but infer additional systematic uncertainties driven by the interpolation method.

The static force in perturbation theory is known up to next-to-next-to-next-to leading logarith-
mic order (N3LL) [2–6]. With renormalized coupling in MS scheme, the QCD scale and the strong
coupling 𝛼𝑆 are defined in MS. Hence, in the quenched case, the 𝛼𝑆-running is parametrized by
Λ0 ≡ Λ

𝑛 𝑓 =0
MS

. Since 𝑟 is the only scale within a static quark-antiquark pair, it is a natural choice to
set the scale as 𝜇 = 1/𝑟 .

2



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
2
9
3

Quenched Static force from generalized Wilson loops with gradient flow Julian Mayer-Steudte

Instead of performing the numerical derivative of the static energy, we measure the force
directly [7–9]:

𝐹𝐸 (𝑟) = − lim
𝑇→∞

𝑖

⟨Tr(𝑊𝑟×𝑇⟩

〈
Tr

(
𝑃

{
exp

(
𝑖

∮
𝑟×𝑇

𝑑𝑧𝜇𝑔𝐴𝜇

)
r̂ · 𝑔E(r, 𝑡∗)

})〉
(4)

= − lim
𝑇→∞

𝑖
⟨Tr{𝑃𝑊𝑟×𝑇𝑔𝐸 𝑗 (r, 𝑡∗}⟩

⟨Tr(𝑊𝑟×𝑇⟩
. (5)

The new object is the chromoelectric field component E, inserted in one of the temporal Wilson
lines of the Wilson loop at temporal slice 𝑡∗. The force does not depend on the insertion location
𝑡∗, however, to reduce the interaction of the insertion with the spatial Wilson lines in our lattice
correlator, we choose 𝑡∗ to be the middle of the temporal Wilson line. Finally, we take only that
component from E which is the same as for the separation axis of the quark-antiquark pair by
multiplying it with the normalized direction vector r̂.

We discretize the chromo field components on the lattice with a clover discretization as

𝑎2𝐹𝜇𝜈 =
−𝑖
8
(𝑄𝜇𝜈 −𝑄𝜈𝜇) (6)

𝑄𝜇𝜈 = 𝑈𝜇,𝜈 +𝑈𝜈,−𝜇 +𝑈−𝜇,−𝜈 +𝑈−𝜈,𝜇 = 𝑄†
𝜈𝜇 (7)

where 𝑈𝜇𝜈 is a plaquette in the 𝜇-𝜈-plane. In addition, we manually make the field components
traceless, corresponding to an 𝑎2-improvement [10]. The electric field components are given
through 𝑎2𝐸𝑖 = −𝑎2𝐹𝑖,4. At tree level, this discretization corresponds to the symmetric finite
difference derivative defined above.

However, the 𝐸-field discretization induces a non-trivial and slow convergence to the continuum
limit, seen in a lattice perturbation calculation [11]. This issue is absent in the force obtained through
the derivative of the static energy. In this way, we can set a renormalization condition

𝑍𝐸𝐹𝐸 (𝑟) = 𝐹𝜕𝑉 (𝑟). (8)

where the non-trivial behavior is absorbed into 𝑍𝐸 . If 𝑍𝐸 = 1, we may assume that 𝐹𝐸 behaves
trivially in the continuum limit. 𝑍𝐸 was non-perturbatively studied in [12], and it was found that it
has only a low 𝑟-dependence.

We use gradient flow [13–15], which introduces an additional scale, the flow radius
√

8𝜏𝐹 , and
also an additional reference scale, 𝑡0, to renormalize the 𝐸-field insertion, to perform the continuum
limit, and to compare to perturbative results for extracting 𝛼𝑆 . The force in continuum perturbation
theory at finite flow time is known up to 1-loop order [16]. The full expression can be expanded up
to leading order in 𝜏𝐹/𝑟2:

𝑟2𝐹 (𝑟, 𝜏𝐹) ≈ 𝑟2𝐹 (𝑟, 𝜏𝐹 = 0) +
𝛼2
𝑠𝐶𝐹

4𝜋
[−12𝛽0 − 6𝐶𝐴𝑐𝐿]

𝜏𝐹

𝑟2 (9)

with 𝑐𝐿 = −22/3,𝐶𝐹 = (𝑁2
𝐶
−1)/(2𝑁𝐶),𝐶𝐴 = 𝑁𝐶 , 𝑁𝐶 = 3 the number of colors, 𝛽0 = 11

3 𝐶𝐴− 2
3𝑛 𝑓 ,

and 𝑛 𝑓 the number of flavors. We remark here that [−12𝛽0 − 6𝐶𝐴𝑐𝐿] = 8𝑛 𝑓 , which is 0 in this
study (𝑛 𝑓 = 0); hence, the static force is constant at small flow time. 𝑟2𝐹 (𝑟, 𝜏𝐹 = 0) is the full
1-loop expression of the force at zero flow time times 𝑟2.

3
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𝑁𝑆 𝑁𝑇 𝛽 𝑎 [fm] 𝑡0/𝑎2 𝑁conf Label
203 40 6.284 0.060 7.868(8) 6000 L20
263 56 6.481 0.046 13.62(3) 6000 L26
303 60 6.594 0.040 18.10(5) 6000 L30
403 80 6.816 0.030 32.45(7) 3300 L40

Table 1: The parameters for the lattice ensembles. The 𝑡0 scale was extracted with a smaller subset of the
lattice configurations. The lattice spacing in physical units is determined by the scale setting from [17] with
𝑟0 = 0.5 fm.

With the gradient flow scale, we have the choice between both scales, 𝑟 and
√

8𝜏𝐹 . From
a perturbative argument, it is suggested to take an average of both scales as 𝜇 = 1/

√︁
𝑟2 + 8𝜏𝐹 .

However, in this study, we define a parametrized mixture of both scales as

𝜇 =
1√︁

𝑟2 + 8𝑏𝜏𝐹
(10)

where the parameter 𝑏 fixes the weight of the gradient flow scale included in 𝜇. In the zero flow
time limit 𝜏𝐹 → 0, the scale approaches 𝜇 → 1/𝑟 for any 𝑏, which is the natural choice at zero flow
time.

In this proceeding, we parametrize the perturbative expression of the force with Λ0 in two
cases, for 1-loop at finite and zero flow time, and for 3-loop with leading ultrasoft resummation.
We label the former case as F1l, and the latter one as F3lLus. The higher order perturbation regime
is crucial for a reliable Λ0-extraction. To benefit from the high-order knowledge of the force even at
finite flow time, we model the force at zero flow time with F3lLus, and the finite flow time effects
with the finite flow time expression of F1l, demanding that for 𝜏𝐹 → 0 that it converges to F3lLus.
For a comparison among different orders, see the full study [1].

3. Results

The lattice computations were carried out in pure gauge with overrelaxation and heatbath
algorithm to generate the ensembles, and a fixed step size [15], or an adaptive step size algorithm
[18, 19] to solve the gradient flow equations numerically. The reference scale 𝑡0 is obtained in
lattice units from the action density with clover discretization Eq. (6). We use this reference
scale to perform the continuum limit as 𝑎2/𝑡0 → 0. The full lattice simulation parameters and the
determined reference scales are shown in Table 1.

The 𝑇 → ∞ limit is performed as plateau fit with an Akaike information criterion based
procedure [20], the full procedure is explained in detail in the main publication [1].

To show the renormalizing property of the gradient flow, we determine 𝑍𝐸 non-perturbatively
by solving Eq. (8) for 𝑍𝐸 and represent it as a function of flow time. The left side of Fig. 1 shows
𝑍𝐸 (𝜏𝐹) for the different lattice sizes. We identify 𝑍𝐸 = 1, which is required to perform a reliable
continuum limit, within a 1 % range for flow radii larger than one lattice spacing, i.e.

√
8𝜏𝐹 > 𝑎,

which defines a minimum amount of required flow time. The discrepancy for 𝑍𝐸 from 1 originates
in the systematic uncertainty of the numerical derivative of the static energy, which can be seen

4
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Figure 1: Left: The non-perturbative determination of 𝑍𝐸 for all lattice sizes as a flow-time-dependent
function. Right: An example of the weighted continuum limit at two different flow times at fixed 𝑟.
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Figure 2: Left: An example of the constant zero flow time limit of the force at smallest possible 𝑟 .
Right: The static force at larger 𝑟 with Cornell fits.

by comparing it to other derivative methods. The right side of Fig. 1 shows an example of the
continuum limit in the valid regime where 𝑍𝐸 ≈ 1 and 𝜒2/𝑑𝑜 𝑓 gives a trustable result. We use
Akaike weighted averages [20] of continuum limits in a linear and quadratic in 𝑎2/𝑡0 fit, and we
restrict to continuum results with at least either the linear or quadratic fit satisfy 𝜒2/𝑑𝑜 𝑓 < 3. Since
the minimal amount of required flow time is finite, we still need to extract the zero flow time physics
from the finite flow time continuum results.

We can choose the order by taking the 𝜏𝐹 → 0 extrapolation of the force first or taking directly
the Λ0-fit to the force at finite flow time. The first approach, we present here, takes advantage of
the fact that Eq. (9) has a constant behavior of the force at small flow times. We identify flow
time ranges where 𝐹 (𝜏𝐹) stays constant within errors, and perform constant zero flow time limits.
The left side of Fig. 2 shows an example of a constant zero flow time limit at the smallest possible
𝑟 . This method also works for larger 𝑟, and we can perform a Cornell fit to the extrapolated data,
shown on the right side of Fig. 2. If we restrict the Cornell fit to 𝑟/√𝑡0 > 2.3, we obtain

𝑟2𝐹Cornell(𝑟) = 𝐴 + 𝜎𝑟2 (11)
𝐴 = 0.268(33) (12)

𝜎𝑡0 = 0.154(6) (13)

where 𝐴 is a dimensionless parameter, and 𝜎 the string tension. At smallest 𝑟, we fit the perturbative

5
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Figure 3: Left: Fit of the 1-loop perturbative expression to the lattice data. We present a scaling behavior
with 𝑏 = 0 from Eq. (10), and a fit where 𝑏 is treated as an additional fit parameter. The vertical lines with
bands correspond to the average fit range bounds. Right: The extracted Λ0 at different flow times for different
𝑏 with a constant zero flow time limit. The result of the previous approach is included as well.

expression of the force to the extrapolated lattice data. For F1l, we obtain
√

8𝑡0ΛF1l
0 = 0.821(5),

and for F3lLus
√

8𝑡0ΛF3lLus
0 = 0.635(4).

For the second way to extract Λ0 we fit the perturbative expressions at finite flow time. The
perturbative expressions at finite flow time are parametrized by Λ0, hence, fitting Λ0 at finite 𝜏𝐹

already includes the zero flow time limit. We keep the flow time fixed and perform a fit along the
𝑟-axis. The left side of Fig. 3 shows an example for F1l, where we chose the scale according to
Eq. (10) for different values of 𝑏. We perform the fit within different 𝑟-ranges and use the weighted
average with an Akaike information criterion [20] for the fit result. The vertical lines with the
bands represent the weighted average fit ranges and their deviations, respectively. The right side
of Fig. 3 shows the fit results for Λ0 at different flow times. As expected, the 𝜏𝐹-dependence of Λ
is negligible within the errors, since every Λ0 represents an independent zero flow time limit, and
we perform a constant fit over all Λ0, which is represented by the horizontal lines and bands. In
addition, the plot includes the result of the previous approach, where we perform a constant zero
flow time limit of the force first. We remark that the previous approach agrees with this one within
the errors. To estimate the systematic uncertainties originated in perturbation theory, we vary the
scale at zero flow time with a factor 𝑠 as 𝜇 = 1/

√
𝑠𝑟2 with center value 𝑠 = 1 and a variation from

𝑠 = 1/2 to 𝑠 = 2. The s-scale error covers the resulting variation of Λ0. The scaling behavior at
finite flow time, parametrized by 𝑏, introduces another perturbative uncertainty. We choose 𝑏 = 0
as the mean value to match the previous studies at zero flow time and vary 𝑏 from 𝑏 = −1/2 to
𝑏 = 1. Finally, we obtain for F1l and F3l√︁

8𝑡0ΛF1l
0 = 0.814(6)lattice(+120

−71 )s−scale(+20
−16)

b−scale = 0.814+122
−73 (14)√︁

8𝑡0ΛF3lLus
0 = 0.629(4)lattice(+18

−25)
s−scale(+13

−7 )b−scale = 0.629+22
−26 (15)

where ()lattice contains the error from the lattice, consisting of the statistical error and the error from
the Akaike fit window procedure. We obtain that the perturbative error decreases with increasing
perturbative order. Since the Λ0-extraction is more reliable at higher perturbative order, we report
our F3lLus result as our final result.

In recent studies where Λ0 was carried out with the gradient flow method [21, 22], the Λ0

6
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parameter was found to
√

8𝑡0Λ = 0.622(10) and
√

8𝑡0Λ = 0.6227(98), respectively, where only in
the latter study a direct determination in the gradient flow scale

√
8𝑡0 was conducted, while for the

first one a final conversion from 𝑟0 to
√

8𝑡0 was performed. Our results are in agreement with the
previous literature results within the errors.

4. Conclusion

We conclude that gradient flow renormalizes operators with field insertions and improves
the signal-to-noise ratio. This allows us to perform reliable continuum limits at finite flow time.
Furthermore, in this way, the continuum limit of the direct force measurement on the lattice can be
carried out and used to extract Λ0. This can be organized by either performing the constant zero
flow time limit of the force first, followed by the fit of the perturbative expression to the 𝜏𝐹 = 0
results; this 𝜏𝐹 → 0-limit also works in the non-perturbative large 𝑟 regime. Alternatively, we can
fit the perturbative expressions to the data at finite flow time, where we model the flow time behavior
with an arbitrary order at zero flow time and the finite flow time effects with the 1-loop expression.
As the final result, we report

√
8𝑡0Λ0 = 0.629+23

−34 where the final error includes the statistical and
the perturbative uncertainties.
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