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1. Introduction

Lattice simulations allow for first principles computations of Standard Model parameters such
as quark masses in the nonperturbative regime of QCD. However, the bare quantities calculated
on the lattice need to be renormalised using some intermediate renormalisation scheme for them
to have a well-defined continuum limit. There are many such schemes for the nonperturbative
renormalisation (NPR) of bare lattice quantities, such as RI/MOM [1], RI/SMOM [2] and the
Schrödinger functional method [3, 4]. However, these schemes are implemented in the chiral limit
of QCD, and therefore introduce 𝑎𝑚-sized lattice artefacts when used for renormalising heavy-
quark observables. A massive momentum-subtraction scheme, called RI/mSMOM, prescribing
NPR away from the chiral limit, has been introduced in [5] to possibly ameliorate these cutoff
effects. Designed to have similar properties to the RI/SMOM scheme (which is already 𝑂 (𝑎𝑚)-
improved), this massive scheme aims to change 𝑂 (𝑎2𝑚2)-sized lattice artefacts in heavy-quark
observables, potentially leading to smoother continuum extrapolations.

In this study, we present a pilot numerical implementation of the RI/mSMOM (or massive)
scheme on three ensembles with three different lattice spacings, including a comparison to the
RI/SMOM (or massless) scheme. We investigate its effectiveness in mitigating cutoff effects by
studying in particular the renormalised charm-quark mass.

2. Nonperturbative renormalisation

Let us consider the Green’s function of a quark bilinear operator OΓ = 𝜓 𝑓 Γ𝜓 𝑓 ′ between two
external off-shell quark lines in a fixed (Landau) gauge, given by (all quantities in Euclidean space)

𝐺Γ (𝑝3, 𝑝2) = ⟨𝜓 𝑓 (𝑝3)OΓ (𝑞)𝜓 𝑓 ′ (𝑝2)⟩, (1)

where 𝜓 𝑓 and 𝜓 𝑓 ′ are quark fields of different flavours, and 𝑞 = 𝑝2− 𝑝3 (see figure 1 for conventions
used). We are interested in scalar (Γ = 1), pseudoscalar (Γ = 𝑖𝛾5), vector (Γ = 𝛾𝜇) and axial vector
(Γ = 𝛾𝜇𝛾5) bilinears. The quark propagator is defined as

𝑆 𝑓 (𝑝) = ⟨𝜓 𝑓 (𝑝)𝜓 𝑓 (𝑝)⟩ =
1

𝑖�𝑝 + 𝑚 𝑓

, (2)

and the amputated Green’s function is obtained by amputating each leg with the inverse quark
propagator of the corresponding flavour

ΛΓ (𝑝2, 𝑝3) = 𝑆−1
𝑓 (𝑝3)𝐺Γ (𝑝3, 𝑝2)𝑆−1

𝑓 ′ (𝑝2). (3)

In our study, we consider the flavour diagonal case 𝜓 𝑓 = 𝜓 𝑓 ′ = 𝑐, so we drop the flavour subscripts
from here on. The propagators are also related to the amputated Green’s functions of the vector and
axial vector operators via the Ward-Takahashi identities

𝑞𝜇Λ
𝜇

𝑉
(𝑝2, 𝑝3) = 𝑖𝑆−1(𝑝3) − 𝑖𝑆−1(𝑝2), (4)

𝑞𝜇Λ
𝜇

𝐴
(𝑝2, 𝑝3) = −2𝑚Λ𝑃 (𝑝2, 𝑝3) + 𝑖𝛾5𝑆

−1(𝑝2) + 𝑆−1(𝑝3)𝑖𝛾5. (5)
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Figure 1: Choice of kinematics. The dashed bubble represents the operator insertion and higher order
corrections, 𝑝2 and 𝑝3 are the momenta of the external off-shell quark lines.

Renormalised and bare quantities are related via renormalisation constants 𝑍 as

𝜓𝑅 = 𝑍1/2
𝑞 𝜓, 𝑚𝑅 = 𝑍𝑚𝑚, OΓ,𝑅 = 𝑍ΓOΓ, (6)

=⇒ 𝑆𝑅 (𝑝) = 𝑍𝑞𝑆(𝑝), ΛΓ,𝑅 (𝑝2, 𝑝3) =
𝑍Γ

𝑍𝑞

ΛΓ (𝑝2, 𝑝3). (7)

Renormalised quantities are denoted with a subscript 𝑅, while bare quantities are without a subscript.
The renormalisation conditions in the RI/mSMOM scheme are

𝑍𝑞 : lim
𝑚𝑅→𝑚

1
12𝑝2 Tr

[
−𝑖𝑆𝑅 (𝑝)−1

�𝑝
] ����

𝑝2=𝜇2
= 1, (8)

𝑍𝑚 : lim
𝑚𝑅→𝑚

1
12𝑚𝑅

{
Tr

[
𝑆𝑅 (𝑝)−1] ��

𝑝2=𝜇2 +
1
2

Tr
[ (
𝑖𝑞 · ΛA,𝑅

)
𝛾5
] ����

sym

}
= 1, (9)

𝑍𝑉 : lim
𝑚𝑅→𝑚

1
12𝑞2 Tr

[ (
𝑞 · ΛV,𝑅

)
�𝑞
] ��

sym = 1, (10)

𝑍𝐴 : lim
𝑚𝑅→𝑚

1
12𝑞2 Tr

[ (
𝑞 · ΛA,𝑅 + 2𝑚𝑅Λ𝑃,𝑅

)
𝛾5�𝑞

] ����
sym

= 1, (11)

𝑍𝑃 : lim
𝑚𝑅→𝑚

1
12𝑖

Tr
[
ΛP,𝑅𝛾5

] ����
sym

= 1, (12)

𝑍𝑆 : lim
𝑚𝑅→𝑚

{
1
12

Tr
[
ΛS,𝑅

]
+ 1

6𝑞2 Tr
[
2𝑚𝑅Λ𝑃,𝑅𝛾5�𝑞

]}����
sym

= 1. (13)

The subscript ‘sym’ denotes the symmetric momentum configuration 𝑞2 = 𝑝2
2 = 𝑝3

3 = 𝜇2, where
𝜇 is the renormalisation scale. These kinematics are the same as those in the massless scheme,
RI/SMOM. The massive scheme requires the introduction of another scale, 𝑚, a renormalised mass
at which the renormalisation conditions are imposed. The massless scheme is recovered in the limit
𝑚 → 0.

These conditions are defined such that the vector and axial vector Ward-Takahashi identities
(4) and (5) are satisfied by the renormalised quantities, and the renormalisation constants preserve
the relations

𝑍𝑉 = 𝑍𝐴 = 1, 𝑍𝑃 = 1/𝑍𝑚, 𝑍𝑆 = 𝑍𝑃, (14)

as in the continuum MS scheme.
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3. Computational details

Given the framework outlined above, the bare quantities needed from lattice simulations are the
Green’s functions for the bilinear operators 𝐺Γ (𝑝2, 𝑝3) for Γ = 𝑆, 𝑃,𝑉, 𝐴, and the corresponding
external leg propagators 𝑆(𝑝2) and 𝑆(𝑝3). Using these, we can compute the amputated Green’s
functions and impose the renormalisation conditions to calculate the 𝑍-factors in the RI/mSMOM
scheme.

We use three RBC/UKQCD ensembles with unphysical pion masses using 𝑁 𝑓 = 2+1 flavours of
domain wall fermions (DWF). These ensembles, called C1, M1 and F1S [6–10], have inverse lattice
spacings 𝑎−1 ≈ 1.78, 2.38, and 2.79 GeV respectively. We compute bilinear Green’s functions and
external leg propagators for various bare quark masses 𝑎𝑚0 including the light-quark mass and
heavy-quark masses around the charm-quark mass. This is done for various external momenta 𝑎𝑝𝜇

corresponding to physical momenta in the range 2 GeV ≲
√︁
𝑝2 ≲ 4 GeV.

The key point of the RI/mSMOM scheme is the imposition of the renormalisation conditions
at some finite value of a renormalised mass 𝑚. We generate connected pseudoscalar-pseudoscalar
two-point correlation functions for the various choices of simulated bare quark masses. We denote
their respective ground-state masses 𝜂ℎ (𝑎𝑚). Interpolations in the values for 𝜂ℎ to a common value
on all ensembles can then used to fix 𝑚.

Furthermore, in the DWF setup the bare mass requires additive renormalisation that depends
on the domain wall parameters, in addition to multiplicative renormalisation. The renormalised
mass is thus 𝑚𝑅 = 𝑍𝑚𝑚 = 𝑍𝑚(𝑚0 + 𝑚res), where 𝑚0 is the bare mass which is an input to the
simulation, and the residual mass 𝑚res is measured for each choice of bare mass. In the discussion
that follows, 𝑚 will always denote the multiplicatively renormalised bare mass.

4. Methodology

In this section, we describe the procedure used to implement the RI/mSMOM scheme to the
study of the charm-quark mass. As we repeat this calculation on multiple ensembles, we need a
lattice-independent reference quantity that allows us to compare the results across different lattice
spacings. The 𝜂ℎ meson mass in physical units enters as this reference quantity and we use it to set
the various scales involved in this procedure.

We start by using the bilinear Green’s functions and external leg propagators to calculate the
renormalisation constants 𝑍 (𝑎𝜇, 𝑎𝑚) in the massive scheme over a range of renormalisation scales
𝑎𝜇 and bare masses 𝑎𝑚, on each ensemble.

Next, we compute the bare charm-quark mass 𝑚𝑐 on each ensemble. This is done by inter-
polating to the bare mass that corresponds to the physical 𝜂𝑐 mass as listed in the PDG [11] as

𝑚𝑐 = 𝑎−1 · (𝑎𝑚𝑐) = 𝑎−1 ·
(
𝑎𝑚(𝑀𝜂ℎ

= 𝑀𝜂𝑐 )
)
. (15)

Having computed the bare charm-quark mass, we renormalise it using 𝑍𝑚 as calculated using
eqn (9). For this we choose the renormalisation scale 𝑎𝜇 = 𝑎 · (2 GeV) (keeping in mind the
Rome-Southampton window Λ2

QCD ≪ 𝜇2 ≪ (𝜋/𝑎)2). Additionally, we introduce a physical scale
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by choosing a value of the 𝜂ℎ mass, denoted by 𝑀★. On each ensemble, we can then interpolate to
the corresponding bare mass 𝑎𝑚★ given by

𝑎𝑚★ = 𝑎𝑚(𝑀𝜂ℎ
= 𝑀★). (16)

This choice of a physical 𝜂ℎ mass connects the choice of bare masses across the different lattice
spacings and allows us to subsequently take a continuum limit to obtain the renormalised charm-
quark mass

𝑚𝑐,𝑅 (𝜇, 𝑀★) = lim
𝑎→0

𝑍𝑚(𝑎𝜇, 𝑎𝑚★) · 𝑎−1 · (𝑎𝑚𝑐). (17)

The renormalised mass 𝑚 is calculated by extrapolating the renormalised bare mass 𝑚★

𝑚(𝜇, 𝑀★) = lim
𝑎→0

𝑍𝑚(𝑎𝜇, 𝑎𝑚★) · 𝑎−1 · (𝑎𝑚★). (18)

The choice of the physical scale 𝑀★ therefore gives us a handle on the scheme-defining
renormalised mass 𝑚. We perform this continuum extrapolation for different choices of 𝑀★ —
corresponding to different 𝑚 — to study the absorption of cutoff effects in the final results, and
compare it to the massless scheme. In order to make this comparision, the final step of the procedure
is to match the results for each 𝑚 to a scheme 𝑆 in the continuum (for example, MS) such that the
dependence on 𝑚 is removed

𝑚𝑆
𝑐,𝑅 (𝜇) = 𝑅𝑆←mSMOM

𝑚 (𝜇, 𝑚) 𝑚𝑐,𝑅 (𝜇, 𝑚). (19)

It is expected that the renormalised charm-quark mass from the different choices of 𝑚 should
coincide with each other and with results from RI/SMOM in this definition.

5. Results

The methodology described above is implemented using three ensembles, and the preliminary
results are shown in figures 2 and 3. Figure 2 shows the procedure of referencing the 𝜂ℎ meson
mass measurements to calculate the bare charm mass on each lattice, and implementing the NPR
procedure at a chosen physical scale 𝑀★. The top panel shows the interpolation performed for
computing the bare charm mass in lattice units 𝑎𝑚𝑐 using the physical value of 𝑀𝜂𝑐 . Additionally,
the scale 𝑀★ is introduced, and again an interpolation is performed to find the corresponding bare
mass in lattice units 𝑎𝑚★. Having applied these common scales across all lattice spacings, we can
compute the renormalised charm mass using 𝑍𝑚(𝑎𝜇, 𝑎𝑚★), as shown in the middle panel. The
same renormalisation constant is also used for renormalising the bare mass in the bottom panel.

Having computed the renormalised charm and bare masses on all lattices for some choice of
𝑀★, we proceed to perform continuum extrapolations, as prescribed in equations (17) and (18), to
obtain the continuum quantities 𝑚𝑐,𝑅 (𝜇, 𝑀★) and 𝑚(𝜇, 𝑀★). This procedure is shown in figures
3a and 3b respectively. This is the extrapolation where we expect absorption of higher order cutoff
effects with the use of the massive scheme.

In figure 3a, we see that higher order cutoff effects are evidently present in the use of both
the massive and massless schemes. We observe an alleviation of O(𝑎4) effects with the use of the

5
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Figure 2: (𝜇 = 2 GeV) Top row: 𝜂ℎ meson mass 𝑀𝜂ℎ
vs bare mass 𝑎𝑚. 𝑀PDG

𝜂𝑐
corresponds to 𝑎𝑚𝑐 and

choice of physical scale 𝑀★ corresponds to 𝑎𝑚★ on each lattice. Middle row: renormalised charm mass
𝑍𝑚𝑚𝑐 interpolated to 𝑎𝑚★. Bottom row: renormalised mass 𝑍𝑚𝑚 interpolated to 𝑎𝑚★.
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(a) Continuum extrapolation of the renormalised charm
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(b) Continuum extrapolation of the renormalised mass
for various choices of 𝑀★, corresponding to the scheme-
defining renormalised mass 𝑚.

Figure 3: Continuum extrapolations of 𝑍𝑚𝑚𝑐 and 𝑍𝑚𝑚
★ using a quadratic ansatz in 𝑎2. Renormalised

charm mass from different schemes and choices of 𝑀★ should converge after all quantities are matched to a
common scheme. Errorbars include statistical uncertainties and the error in lattice spacing only.
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massive scheme, however this is not yet quantified using a variation in fit ansatze, or additional
lattice spacings. The cutoff effects in these continuum extrapolations are further exacerbated by the
small errors on the datapoints, which currently only include statistical uncertainties and the error
in lattice spacing, and we plan to improve upon these with a careful study of systematic effects
that arise in the several successive steps of interpolations in the procedure. The inclusion of these
systematic errors in the massive scheme may also allow renormalised quantities to be canditates for
a linear fit in 𝑎2 for the continuum extrapolation, for some choices of 𝑀★.

6. Conclusions and future directions

We have performed a preliminary numerical implementation of a massive momentum-subtraction
scheme and used the renormalised charm-quark mass as a test case to study its effect on higher-
order lattice artefacts. Qualitatively, employing this massive scheme, RI/mSMOM, helps reduce
the severity of 𝑂 (𝑎4) cutoff effects in the continuum extrapolation, when compared to the same
extrapolation using the massless scheme, RI/SMOM. In order to further investigate and quantify
this claim, this study needs to be extended to include systematic uncertainties and fit variations.

It is also of interest to do a systematic study of the dependence of this change in lattice artefacts
with the choice of 𝑚 (in practice, the choice of 𝑀★), as it could be expected that there would be an
identifiable ‘window’ of choices that are most effective in absorbing cutoff effects.

Note that the final step of matching to a common scheme still remains to be implemented,
making use of one-loop perturbative calculations for 𝑍𝑚 at finite quark mass (already computed in
the original work [5]). This step will also allow us to verify the convergence of all the schemes, and
to produce a value of the renormalised charm-quark mass in a universal continuum scheme such as
MS which can be directly compared to other computations.

If successful, this massive scheme could be used in the study of other bilinear operators, and
the RI/mSMOM prescription could potentially be extended for four-quark operators as well.
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