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Electromagnetic dipole polarizabilities are fundamental properties of a hadron that represent its
resistance to deformation under external fields. For a charged hadron, the presence of acceleration
and Landau levels complicates the isolation of its deformation energy in the conventional background
field method. In this work, we explore a general method based on four-point functions in lattice
QCD that takes into account all photon, quark and gluon interactions. The electric polarizability
(𝛼𝐸) has been determined from the method in a previous proof-of-principle simulation. Here we
focus on the magnetic polarizability (𝛽𝑀 ) using the same quenched Wilson action on a 243 × 48
lattice at 𝛽 = 6.0 with pion mass from 1100 to 370 MeV. The results from the connected diagrams
show a large cancellation between the elastic and inelastic contributions, leading to a relatively
small and negative value for 𝛽𝑀 consistent with chiral perturbation theory.
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1. Introduction

Understanding electromagnetic polarizabilities has been a long-term goal of lattice QCD. The
standard approach is the background field method which introduces classical static electromagnetic
fields to interact with quarks in QCD.The appeal of the method lies in its simplicity: only two-point
correlation functions are needed to measure the small energy shift with or without the external field,
which amounts to a standard calculation of a hadron’s mass. The energy shift linear in the applied
field is related to dipole moments, and the quadratic shift to polarizabilities. The method is fairly
robust and has been widely applied to neutral hadrons.

When it comes to charged hadrons, however, the method is faced with new challenges. The reason
is rather rudimentary: a charged particle accelerates in an electric field and exhibits Landau levels in
a magnetic field. Such collective motion of the hadron is unrelated to moments and polarizabilities
and must be disentangled from the total energy shift in order to isolate the deformation energy on
which the polarizabilities are defined. The traditional method of extracting ground state energy at
large times breaks down since the two-point function no longer has a single-exponential behavior.
Special techniques have to be developed to analyze such functions.

Here we advocate an alternative approach based on four-point functions in lattice QCD. Instead
of background fields, electromagnetic currents couple to quark fields. All photon-quark, quark-quark,
and gluon-quark interactions are included. It is a general approach that treats neutral and charged
particles on equal footing. The potential of using four-point functions to access polarizabilities has
been investigated in the early days of lattice QCD [1–3]. The effort was deemed too computationally
demanding at the time and the results on limited lattices were inconclusive. Recently, there is
a renewed interest to revive such efforts, partly spurred by the challenges encountered in the
background field method for charged particles. A reexamination of the formalism in Ref. [3] is
carried out in Ref. [4] in which new formulas are derived in momentum space for electric and
magnetic polarizabilities of both charged pion and proton. It is followed by a proof-of-principle
simulation for the electric polarizability of a charged pion [5]. In this work, we extend the calculation
to magnetic polarizability using the same lattice parameters. We note there exists other four-point
function calculations on polarizabilities. Ref.[6] employs a position-space formula for the Compton
tensor to calculate charge pion electric polarizability near the physical point, along with a calculation
on the proton [7]. A comprehensive review on pion polarizabilities from other theoretical approaches
and experiment can be found in Ref. [8, 9]. We also note that although Refs. [10, 11] are based on
the background field method, they are in fact four-point function calculations.

2. Methodology

In Ref. [4], a formula is derived for electric polarizability of a charged pion,

𝛼𝐸 =
𝛼 𝑟2

𝐸

3𝑚𝜋
+ lim
𝒒→0

2𝛼
𝒒 2

∫ ∞

0
𝑑𝑡

[
𝑄44 (𝒒, 𝑡) −𝑄𝑒𝑙𝑎𝑠

44 (𝒒, 𝑡)
]
, (1)

and for its magnetic polarizability,

𝛽𝑀 = −
𝛼 𝑟2

𝐸

3𝑚𝜋
+ lim

𝒒→0

2𝛼
𝒒 2

∫ ∞

0
𝑑𝑡

[
𝑄𝑖𝑛𝑒𝑙

11 (𝒒, 𝑡 ) − 𝑄𝑖𝑛𝑒𝑙
11 (0, 𝑡 )

]
. (2)
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Here 𝛼 = 1/137 is the fine structure constant.
The formulas are in discrete Euclidean spacetime but we keep the time axis continuous for

notational convenience. Zero-momentum Breit frame is employed in the formula to mimic low-energy
Compton scattering, where the initial and final pions are at rest and the photons have purely spacelike
momentum. The formulas have a similar structure in that they both have an elastic contribution in
terms of the charge radius and pion mass, and an inelastic contribution in the form of subtracted time
integrals. They differ in two aspects. The 𝑄44 in 𝛼𝐸 includes both elastic and inelastic contributions
whereas the 𝑄𝑖𝑛𝑒𝑙

11 in 𝛽𝑀 includes only inelastic contributions. In 𝛼𝐸 , the elastic 𝑄𝑒𝑙𝑎𝑠
44 (𝒒, 𝑡) is

subtracted, whereas in 𝛽𝑀 it is the zero-momentum inelastic 𝑄𝑖𝑛𝑒𝑙
11 (0, 𝑡) that is subtracted.

Both 𝛼𝐸 and 𝛽𝑀 have the expected physical unit of 𝑎3 (fm3). In the elastic term 𝑟2
𝐸

scales
like 𝑎2 and 𝑚𝜋 like 𝑎−1. In the inelastic term 1/𝒒 2 scales like 𝑎2, 𝑡 scales like 𝑎, and 𝑄44 and 𝑄11
are dimensionless by definition. The 𝛼𝐸 has been studied thoroughly in a previous work [5], from
which we take the results for pion mass 𝑚𝜋 and charge radius 𝑟2

𝐸
and 𝛼𝐸 . In this work we focus on

the 𝛽𝑀 in Eq. (2).
The four-point function 𝑄11 is defined as,

𝑄11 (𝒒, 𝑡3, 𝑡2, 𝑡1, 𝑡0) ≡

∑︁
𝒙3 ,𝒙2 ,𝒙1 ,𝒙0

𝑒−𝑖𝒒 ·𝒙2𝑒𝑖𝒒 ·𝒙1 Ω|𝜓(𝑥3) : 𝑗𝐿1 (𝑥2) 𝑗𝐿1 (𝑥1) : 𝜓† (𝑥0) |Ω∑︁
𝒙3 ,𝒙0

Ω|𝜓(𝑥3)𝜓† (𝑥0) |Ω
. (3)

Wick contractions of quark-antiquark pairs in the unsubtracted part lead to topologically distinct
quark-line diagrams shown in Fig. 1. The total connected contribution is simply the sum of the

Figure 1: Quark-line diagrams of a four-point function contributing to polarizabilities of a meson. connected
insertions (a), (b), (c); and disconnected insertions (d), (e), (f). The zero-momentum pion interpolating fields
are represented by vertical bars (wall sources).

individual normalized terms,

𝑄11 (𝒒, 𝑡2, 𝑡1) = 𝑄
(𝑎)
11 +𝑄

(𝑏)
11 +𝑄

(𝑐)
11 . (4)

The charge factors and flavor-equivalent contributions have been included in each diagram.

3. Simulation details and results

We use quenched Wilson action with 𝛽 = 6.0 and 𝜅 = 0.1520, 0.1543, 0.1555, 0.1565 on the
lattice 243 × 48. We analyzed 500 configurations for 𝜅 = 0.1520 and 1000 configurations each for
rest of the kappas. The scale of this action is set with inverse lattice spacing 1/𝑎 = 2.312 GeV
and kappa critical 𝜅𝑐 = 0.15708. Dirichlet (or open) boundary condition is imposed in the time
direction, while periodic boundary conditions are used in spatial dimensions. The pion source
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Figure 2: Individual and total four-point functions (left ), their effective mass functions (middle), and isolated
signal for 𝑄11 from the connected diagrams as a function of current separation at 𝑚𝜋 = 600 MeV. The shaded
area between the two is the dimensionless signal contributing to magnetic polarizability. Horizontal gridlines
in the effective mass functions are 𝐸𝜌 −𝑚𝜋 in lattice units where 𝐸𝜌 =

√︃
𝒒2 + 𝑚2

𝜌 with measured 𝑚𝜋 and 𝑚𝜌.

is placed at 𝑡0 = 7 and sink at 𝑡3 = 42 (time is labeled from 1 to 48). One current is inserted at a
fixed time 𝑡1, while the other current 𝑡2 is free to vary. We consider four different combinations
of momentum 𝒒 = {0, 0, 0}, {0, 0, 1}, {0, 1, 1}, {0, 0, 2}. In lattice units they correspond to the values
𝒒2𝑎2 = 0, 0.068, 0.137, 0.274, or in physical units to 𝒒2 = 0, 0.366, 0.733, 1.465 (GeV2).

In Fig. 2 we show the raw normalized four-point functions, both individually and collectively, at
the four different values of momentum 𝒒 and at 𝑚𝜋 = 600 MeV. All points are included and displayed
on a linear scale for comparison purposes. The special point of 𝑡1 = 𝑡2 is regular in diagram a, but
gives irregular results in diagram b and c at all values of 𝒒. The same irregularity is observed in the
electric case. It is an unphysical contact interaction on the lattice which vanishes in the continuum
limit. We treat this point with special care in our analysis below. The results about 𝑡1 = 18 in diagram
b and c are mirror images of each other, simply due to the fact that they are from the two different
time orderings of the same diagram. In principle, this property could be exploited to reduce the
cost of simulations by placing 𝑡1 in the center of the lattice. In this study, however, we computed all
three diagrams separately, and add them between 𝑡1 = 19 and 𝑡3 = 41 as the signal. There is no elastic
contribution in the second term of 𝛽𝑀 in Eq.(2) as long as transverse momentum to 𝑗𝐿1 is considered.
This is evident in the effective mass functions in Fig. 2 where the intermediate states are not on-shell
pions, but states with different mass and energy. Possible intermediate states are either vector or
axial mesons in the magnetic channel. For reference, we draw horizontal lines 𝐸𝜌 − 𝑚𝜋 in lattice
units where 𝐸𝜌 =

√︃
𝒒2 + 𝑚2

𝜌, using measured 𝑚𝜋 and 𝑚𝜌. The effective mass functions in Fig. 2 are
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only provided for reference purposes on the intermediate state. They can become noisy at large
current separations and higher momentum. This is not a concern since there is no fitting performed
at large times. The signal is the time integral of subtracted four-point functions, which amounts to
evaluating the area between two curves. And the signal is dominant at small times.

In the right panel of Fig. 2 we show the connected contribution 𝑄11 (𝒒) at different 𝒒 values and
zero-momentum 𝑄11 (0) as a function of current separation 𝑡 = 𝑡2 − 𝑡1 in lattice units. Only results
for 𝑚𝜋 = 600 MeV are shown as an example; the graphs at the other pion masses look similar. The
time integral required for 𝛽𝑀 in the formula, (1/𝑎)

∫
𝑑𝑡
[
𝑄11 (𝒒, 𝑡) − 𝑄11 (0, 𝑡)

]
, is simply the shaded

area between the two curves, and it is positive. One detail to notice is that the curves include the
𝑡 = 0 point which has unphysical contributions in 𝑄11 mentioned earlier. We would normally avoid
this point and only start the integral from 𝑡 = 1. However, the chunk of area between 𝑡 = 0 and 𝑡 = 1 is
the largest piece in the integral. To include this contribution, we linearly extrapolated both 𝑄11 (𝒒)
and 𝑄11 (0) back to 𝑡 = 0 using the two points at 𝑡 = 1 and 𝑡 = 2. As the continuum limit is approached,
the 𝑡 = 0 point will become regular and the chunk will shrink to zero.

The inelastic term can now be constructed by multiplying 2𝛼/𝒒 2 and the time integral, and it is
a function of momentum. Since 𝛽𝑀 is a static property, we extrapolate it to 𝒒2 = 0 smoothly. We
consider two fits, a quadratic fit 𝑎 + 𝑏 𝑥 + 𝑐 𝑥2 (𝑥 = 𝒒2) using all three data points, and a linear fit using
the two lowest points. The results are shown in Fig. 3 for all pion masses. One observes a spread in
the extrapolated values at 𝒒2 = 0. We treat the spread as a systematic effect as follows. We take the
average of the two extrapolated values along with statistical uncertainties, and half of the difference
in their central values as a systematic uncertainty. The statistical and systematic uncertainties are
then propagated in quadrature to the analysis of 𝛽𝑀 . For our data, the statistical uncertainties are
relatively small, so the systematic uncertainties are dominant in the inelastic contribution.

Finally, we assemble the two terms in the formula in Eq.(2) to obtain 𝛽𝑀 in physical units. At
each pion mass the elastic term is negative, whereas the inelastic term is positive. The total is slightly
positive at the two heaviest pion masses, then turns negative as the pion mass is lowered. To see how
the trend continues to smaller pion masses, we take the total values for 𝛽𝑀 at the four pion masses
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Figure 3: Momentum dependence of the inelastic term in Eq. (2) and its extrapolation to 𝒒2 = 0 at all pion
masses. Red points are based on the shaded areas in Fig. 2. Black curve is a quadratic extrapolation using all
three points. Green curve is a linear extrapolation based on the two lowest points. Empty points indicate the
corresponding extrapolated values contributing to 𝛽𝑀 .
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Figure 4: Left: chiral extrapolation of charged pion magnetic polarizability. Right: individual and total
contributions to charged pion 𝛽𝑀 (right) from four-point functions in lattice QCD based on the formula in
Eq.(2). The total is taken from the left, and the elastic from Ref. [5]; both are chirally extrapolated to the
physical point. The inelastic is from the difference of the two.

and perform a smooth extrapolation to the physical point. Since our pion passes are relatively large,
we consider two forms to cover the range of uncertainties in the extrapolation: a polynomial form
𝑎 + 𝑏 𝑚𝜋 + 𝑐 𝑚3

𝜋 and a form with a divergent 1/𝑚𝜋 term 𝑎
𝑚𝜋

+ 𝑏 𝑚𝜋 + 𝑐 𝑚3
𝜋 inspired by ChPT [12]. The

spread can be considered as a systematic effect. The extrapolated value of −3.2 ± 0.9 to − 1.4 ± 0.5
at the physical point is comparable to the known value of −2.0 ± 0.6 ± 0.7 from PDG and −2.77(11)
from two-loop contribution of ChPT [9, 12]. An interesting feature is a sign change from positive to
negative as pion mass is lowered. It happens around 750 MeV. In contrast, there is no sign change in
the electric case.

A comparison on 𝛽𝑀 can be made here between the four-point function method and the
background field method. For the former, our value of −3.2(9) is the only attempt at the moment. For
the latter, there are several calculations. In Ref. [13, 14], 𝛽𝑀 is studied for both charged and neutral
pions. A fitting form is used that includes Landau levels and up to 𝐵4 contributions in magnetic field
for charged pions. Values of −1.15(31) and −2.06(76) are obtained on two different lattices. No chiral
extrapolation is performed. Since only bare quark masses are given we could not ascertain what
pion masses they correspond to. In Ref. [15], a Laplacian-mode projection technique is employed
at the quark propagator level to filter out the Landau levels. The same technique is used on the
nucleon [16]. A final value of −1.70(14) (25) is reported. It also predicts a sign change in 𝛽𝑀 , but only
after chiral extrapolation. The simulated results are positive at all the pion masses considered, down
to about 300 MeV. A Padé form is introduced to extrapolate the positive values to the negative one
at the physical point. The sign change happens at around 225 MeV. This is different from the sign
change observed in Fig. 4, which happens at a heavier pion mass, before chiral extrapolation. This is
an interesting puzzle for future investigations. The resolution could be in the different systematics
present in the two calculations. For the four-point function method in this work, it could be the
quenched approximation, disconnected diagrams, and the contact term in the connected diagrams.
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