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We present one-loop perturbative results of the renormalization functions for a complete set of
nonlocal quark bilinear operators containing an asymmetric staple-shaped Wilson line, using a
family of improved lattice actions. This study is relevant for the nonperturbative investigations
regarding the renormalization of the unpolarized, helicity and transversity transverse-momentum
dependent parton distribution functions (TMDPDFs) in lattice QCD. We employ a number of
different versions of regularization-independent (RI′) renormalization prescriptions which address
the power and logarithmic divergences of such nonlocal operators, the pinch-pole singularities at
infinite Wilson-line lengths, as well as the mixing among operators of different Dirac structures,
as dictated by discrete symmetries. All cancelations of divergences and admixtures are confirmed
by our results at one-loop level. We compare all the different prescriptions and we provide the
conversion matrices at one-loop order which relate the matrix elements of the staple operators in
RI′ to the reference scheme MS.
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Renormalization of asymmetric staple-shaped Wilson-line operators Gregoris Spanoudes

1. Introduction

One of the directions of research in lattice QCD, which shows a rapid progress in recent years,
is the study of transverse momentum-dependent parton distribution functions (TMDPDFs). These
functions encode the dependence of hadrons on the transverse – to the direction of movement
– momentum of their constituents (valence and sea quarks, gluons), providing insights in the
investigation of the three-dimensional hadron structure. While collinear PDFs, which probe the
one-dimensional structure of hadrons, have been extensively studied in both experiments and theory,
the study of TMDPDFs has been relatively limited. This status is expected to change in the coming
years with new data coming from the planned electron ion colliders of USA and China. Theoretical
calculations of TMDPDFs using lattice QCD can significantly complement the experimental efforts
by providing input into the analysis and interpretation of the experimental data.

The calculation of PDFs, TMDPDFs, etc., from first principles has long been a challenge in
Hadron Physics due to their nonperturbative and light-cone nature. The latter does not allow for
their direct nonperturbative computation on a Euclidean lattice. In the last decade, a pioneering
method for extracting these quantities on the lattice was suggested by X. Ji. This method is based on
the calculation of Euclidean equal-time correlation functions (called quasi-PDFs, quasi-TMDPDFs,
etc.), which are accessible by lattice simulations, and their connection to the physical light-cone
distribution functions using the framework of Large Momentum Effective Theory (LaMET). A
crucial intermediate step in this method is the renormalization of the quasi-distribution functions,
which is necessary for making contact to physically measurable quantities.

The quasi-distribution functions are hadron matrix elements of gauge-invariant nonlocal oper-
ators, which contain path-ordered Wilson lines of different shapes. In this work, we focus on the
renormalization of nonlocal quark bilinear operators with an asymmetric staple-shaped Wilson line,
relevant for the TMDPDFs. There are a number of challenges to address in order to renormalize
such operators properly, including power-law divergences, logarithmic divergences which stem from
the singular points of the Wilson line (cusps, end points), mixing between operators with different
Dirac structures, and pinch-pole singularities in the infinite limit of lateral sizes of the staple.

In what follows, we employ one-loop perturbation theory in both dimensional (DR) and
lattice (LR) regularizations and we calculate the renormalization functions for a complete set of
asymmetric staple-shaped operators. We consider a number of different regularization-independent
(RI′) prescriptions based on the allowed operator mixing as dictated by symmetries. Moreover, we
provide the one-loop conversion matrices which match the RI′-renormalized operators (for each
variant) to the MS scheme, employed in phenomenology. A long write-up of our work, together
with an extended list of references, can be found in a forthcoming paper [1].

2. Calculation Setup

A set of 16 independent nonlocal operators of different Dirac matrices are considered in this
study, which are defined in Euclidean space as follows:

OΓ (𝑧, 𝑦, 𝑦′) ≡ �̄�(0) Γ Wstaple(𝑧, 𝑦, 𝑦′) 𝜓(𝑧�̂�1 + (𝑦 − 𝑦′) �̂�2), (1)

where Wstaple(𝑧, 𝑦, 𝑦′) denotes the path-ordered staple-shaped Wilson line as given schematically
in Fig. 1, and Γ = 1, 𝛾5, 𝛾𝜈𝑖 , 𝛾5𝛾𝜈𝑖 , 𝜎𝜈𝑖𝜈 𝑗

≡ [𝛾𝜈𝑖 , 𝛾𝜈 𝑗
]/2, (𝑖 = 1, 2, 3, 4). �̂�1, 𝜈2 are orthogonal
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directions which form the plane in which the staple lies (see Fig. 1) and �̂�3, �̂�4 are orthogonal
directions perpendicular to this plane.

z

y

y′

~r

(0, 0)

(z, (y − y′))

ν̂2

ν̂1

y + y′

z

Figure 1: The shapes of Wstaple (𝑧, 𝑦, 𝑦′) (left) and Wloop (𝑧, 𝑦 + 𝑦′) (right).

One of the main features of the nonlocal Wilson-line operators is that finite mixing among
operators of different Dirac structures can occur on the lattice. It is first realized in Ref. [2], in
which a one-loop perturbative calculation of straight Wilson-line operators on the lattice has been
performed by our group. This calculation shows that certain pairs of straight Wilson-line operators
must be renormalized as mixing doublets in order to match the lattice bare Green’s functions to the
MS scheme. In the same spirit, a follow-up one-loop lattice calculation for the case of symmetric
staple-shaped Wilson-line operators shows mixing in pairs with a different pattern compared to
the case of straight Wilson line. However, symmetry arguments can show a wider mixing in both
symmetric and asymmetric staple operators; this is examined in the current work.

We investigate the properties of asymmetric staple operators OΓ under the symmetries of parity
P, time reversal T , charge conjugation C and chiral transformations. A generalization of both parity
and time reversal in each direction is obtained in Euclidean space. The symmetry transformations
of OΓ are (translational symmetry has been also applied):

OΓ (𝑧, 𝑦, 𝑦′)
P𝜇−−→ O𝛾𝜇Γ𝛾𝜇 ((−1) 𝛿𝜇𝜈1+1 𝑧, (−1) 𝛿𝜇𝜈2+1 𝑦, (−1) 𝛿𝜇𝜈2+1 𝑦′), (2)

OΓ (𝑧, 𝑦, 𝑦′)
T𝜇−−→ O𝛾5𝛾𝜇Γ𝛾𝜇𝛾5 ((−1) 𝛿𝜇𝜈1 𝑧, (−1) 𝛿𝜇𝜈2 𝑦, (−1) 𝛿𝜇𝜈2 𝑦′), (3)

OΓ (𝑧, 𝑦, 𝑦′)
C−→ O(𝐶Γ𝐶−1 )𝑇 (−𝑧, 𝑦′, 𝑦), (4)

where 𝐶 is the charge conjugation matrix satisfying 𝐶𝛾𝜇𝐶
−1 = −𝛾𝑇𝜇 . Under chiral transformations,

OΓ is invariant only for Γ = 𝛾𝜇, 𝛾5𝛾𝜇. By taking appropriate combinations of staple operators,
which are odd/even under C,P,T [3], the following conclusions for the operator mixing are
obtained: When the fermion action breaks the chiral symmetry, mixing among the quadruplets of
asymmetric staple operators (OΓ,OΓ𝛾𝜈1𝛾𝜈2

,OΓ𝛾𝜈1
,OΓ𝛾𝜈2

) is allowed. In the case of chiral fermions,
the quadruplets are reduced to pairs (OΓ,OΓ𝛾𝜈1𝛾𝜈2

). In the specific case of symmetric staple
operators (𝑦′ = 𝑦), the mixing pattern is simplified to (OΓ,O[Γ,𝛾𝜈1𝛾𝜈2 ]/2,O[Γ,𝛾𝜈1 ]/2,O[Γ,𝛾𝜈2 ]/2) and
(OΓ,O[Γ,𝛾𝜈1𝛾𝜈2 ]/2) for non-chiral and chiral fermions, respectively. Depending on the commutation
relations of each Dirac matrix Γ with 𝛾𝜈1 , 𝛾𝜈2 , and 𝛾𝜈1𝛾𝜈2 , the mixing multiplets become triplets
(doublets) or singlets for the case of non-chiral (chiral) fermions.

In our study, we employ four different variants of the regularization independent (RI′) scheme
for renormalizing the asymmetric staple-shaped operators. All prescriptions consider 4 × 4 renor-
malization matrices 𝑍

𝑋,𝑅

ΓΓ′ (where 𝑋 (𝑅) denotes the regularization (renormalization) scheme) re-
specting the wider mixing dictated by symmetries. The mixing sets of operators OΓ are writ-
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ten explicitly in terms of Γ matrices: 𝑆1 ≡ {1, 𝜎𝜈1𝜈2 , 𝛾𝜈1 , 𝛾𝜈2}, 𝑆2 ≡ {𝛾5, 𝜎𝜈4𝜈3 , 𝛾5𝛾𝜈1 , 𝛾5𝛾𝜈2},
𝑆3 ≡ {𝛾𝜈3 , 𝛾5𝛾𝜈4 , 𝜎𝜈3𝜈1 , 𝜎𝜈3𝜈2}, 𝑆4 ≡ {𝛾𝜈4 , 𝛾5𝛾𝜈3 , 𝜎𝜈4𝜈1 , 𝜎𝜈4𝜈2}.

The first two schemes, referred to as RI′
𝑖
(𝑖 = 1, 2), are defined by the condition1:

1
4𝑁𝑐

(𝑍𝑋,RI′
𝜓

)−1
𝑍
𝑋,RI′

𝑖

ΓΓ′ Tr[ΛΓ′ (𝑞, 𝑧, 𝑦, 𝑦′)𝑃[𝑖 ]
Γ′′ ]

���
𝑞=�̄�

= 𝛿ΓΓ′′ , (Γ, Γ′′ ∈ 𝑆 𝑗 , 𝑖 = 1, 2, 𝑗 = 1−4), (5)

where 𝑞 is the RI′ renormalization 4-vector scale, ΛΓ (𝑞, 𝑧, 𝑦, 𝑦′) = ⟨𝜓(𝑞) |OΓ (𝑧, 𝑦, 𝑦′) |�̄�(𝑞)⟩amp.
is the amputated Green’s function of OΓ with external fermion fields 𝜓(𝑞), and 𝑍

𝑋,𝑅
𝜓

is the
renormalization factor of 𝜓(𝑞). We use the conventions: O𝑅

Γ
(𝑧, 𝑦, 𝑦′) = 𝑍

𝑋,𝑅

ΓΓ′ OΓ′ (𝑧, 𝑦, 𝑦′), and
𝜓𝑅 (𝑞) = (𝑍𝑋,𝑅

𝜓
)1/2

𝜓(𝑞). The projector 𝑃[𝑖 ]
Γ

is defined for each scheme as:

𝑃
[1]
Γ

= 𝑒−𝑖q·r Γ†, (6)

𝑃
[2]
Γ

=



𝑒−𝑖q·r
(
1 − /𝑞𝑇 /𝑞𝐿

𝑞2
𝑇

)
Γ†, Γ ∈ 𝑆1, 𝑆2

𝑒−𝑖q·r
(
1 −

( /𝑞𝑇
−/𝑞𝜈3

) ( /𝑞𝐿
+/𝑞𝜈3

)
𝑞2
𝑇
−𝑞2

𝜈3

)
Γ†, Γ ∈ {𝛾𝜈3 , 𝛾5𝛾𝜈3 , 𝜎𝜈3𝜈1 , 𝜎𝜈3𝜈2}

𝑒−𝑖q·r
(
1 −

( /𝑞𝑇
−/𝑞𝜈4

) ( /𝑞𝐿
+/𝑞𝜈4

)
𝑞2
𝑇
−𝑞2

𝜈4

)
Γ†, Γ ∈ {𝛾𝜈4 , 𝛾5𝛾𝜈4 , 𝜎𝜈4𝜈1 , 𝜎𝜈4𝜈2}

, (7)

where ®r ≡ 𝑧 �̂�1 + (𝑦 − 𝑦′) �̂�2, ®𝑞𝐿 ≡ 𝑞𝜈1 �̂�1 + 𝑞𝜈2 �̂�2 and ®𝑞𝑇 ≡ ®𝑞 − ®𝑞𝐿 = 𝑞𝜈3 �̂�3 + 𝑞𝜈4 �̂�4. Compared to
the first projector, the second one can further remove finite contributions of some Dirac structures,
allowed by residual rotational symmetry, from the elements of the renormalization matrices.

Even though the above two schemes can address all renornalization issues in one-loop per-
turbation theory, recent nonperturbative investigations [4] at multiple lattice spacings show re-
maining linear divergences, as well as significant nonperturbative effects at large distances. An
alternative prescription, in order to overcome these issues, considers modified operators ŌΓ ≡
OΓ/⟨Wloop(𝑧, 𝑦 + 𝑦′)⟩1/2, where ⟨Wloop(𝑧, 𝑦 + 𝑦′)⟩ is the vaccuum expectation value of a rectan-
gular Wilson loop given in Fig. 1. Then the condition takes the following form, resulting to two
alternative schemes, referred to as RI′1-bar and RI′2-bar, (Ō𝑅

Γ
= �̄�

𝑋,𝑅

ΓΓ′ ŌΓ′):

1
4𝑁𝑐

(𝑍𝑋,RI′
𝜓

)−1
�̄�
𝑋,RI′

𝑖

ΓΓ′
Tr[ΛΓ′ (𝑞, 𝑧, 𝑦, 𝑦′)𝑃[𝑖 ]

Γ′′ ]√︁
⟨Wloop(𝑧, 𝑦 + 𝑦′)⟩

���
𝑞=�̄�

= 𝛿ΓΓ′′ , (Γ, Γ′′ ∈ 𝑆 𝑗 , 𝑖 = 1, 2, 𝑗 = 1−4). (8)

The square root of ⟨Wloop⟩ can cancel the linear, cusp and pinch-pole divergences of the operators
OΓ. Cancellations of the pinch-pole divergences allows one to take the limit 𝑦 → ∞ in the
renormalized Green’s functions of ŌΓ in any scheme (including MS). Then �̄�

𝑋,𝑅

ΓΓ′ addresses the
remaining endpoint divergences, as well as the mixing. Since the endpoint divergences do not
depend on the dimensions of the staple, a nonperturbative determination of �̄�

𝑋,𝑅

ΓΓ′ is expected to
exhibit a much milder dependence on the staple lengths 𝑧, 𝑦, 𝑦′. In this way it becomes more
acceptable to renormalize the modified operators ŌΓ defined at large values of the lengths 𝑧, 𝑦, 𝑦′,
using renormalization functions �̄�𝑋,𝑅𝐼 ′

ΓΓ′ defined at smaller values of 𝑧, 𝑦, 𝑦′ within the perturbative
region. Hence, nonperturbative effects at large distances are suppressed. Lattice discretization
effects stemming from the use of small values of the staple parameters can be reduced by subtractions
of artifacts calculated in one-loop perturbation theory.

1From now on, sums over repeated Γ matrices are understood.
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3. Calculation in dimensional and lattice regularizations

The Feynman diagrams that enter our one-loop calculations are shown in Fig. 2. These
diagrams will appear in both DR and LR, since all vertices are present in both regularizations.
Due to the non-local nature of the staple-shaped operators, multiple scales (staple lengths) appear
in the Green’s functions, which make the computation more complex even at one-loop level. The
corresponding calculation on the lattice is even more demanding since the procedure for isolating
divergences from the Feynman integrals, as well as the procedure for taking the continuum limit
𝑎 → 0 (where 𝑎 is the lattice spacing) are more complicated (see, e.g., [2]).

d3ad1
d2a d2b d2c

d3b d3c d4a d4b

d4c d4d d4e d4f

Figure 2: One-loop diagrams contributing to ΛΓ. The straight (wavy) lines represent fermions (gluons).

The perturbative calculation in DR (𝐷 ≡ 4 − 2𝜀 dimensions) demonstrates that pole terms
(O(1/𝜀)) in the Green’s functions ΛΓ are multiples of the tree-level values and therefore there is
no mixing in applying MS to DR. We identified that these O(1/𝜀) terms come from the sum of
cusp (𝑑4𝑑 , 𝑑4 𝑓 ), endpoint (𝑑2𝑎, 𝑑3𝑐) and contact singularities (𝑑4𝑎, 𝑑4𝑏, 𝑑4𝑐).The multiplicative
renormalization factors for the operators OΓ and ŌΓ in the MS scheme are given by:

𝑍
DR,MS
Γ

= 1 − (𝑔MS)2

16𝜋2 𝐶𝐹

7
𝜀
+ O

(
(𝑔MS)4

)
, �̄�

DR,MS
Γ

= 1 − (𝑔MS)2

16𝜋2 𝐶𝐹

3
𝜀
+ O

(
(𝑔MS)4

)
. (9)

They are independent of the Dirac matrix Γ, and the lengths of the staple. The finite terms in ΛΓ are
complex functions with a nontrivial dependence on the staple lengths; they are expressed in terms
of integrals over Feynman parameters, which involve Bessel functions. We have also identified the
pinch-pole singularity, which comes from a term [𝑦/𝑧 tan−1(𝑦/𝑧) + 𝑦′/𝑧 tan−1(𝑦′/𝑧)] of diagram
𝑑4𝑒, when 𝑦 → ∞ is taken for fixed values of 𝑦 − 𝑦′. This term is cancelled (in the infinite 𝑦-limit)
by a term (𝑦 + 𝑦′)/𝑧 tan−1((𝑦 + 𝑦′)/𝑧) appearing in ⟨Wloop⟩, when the modified operator ŌΓ is
employed. The full expressions of the bare Green’s functions can be found in [1].

An important outcome of this perturbative study is the calculation of the one-loop regularization-
independent conversion matrices which relate results from the RI′-type schemes (described in Sec. 2)
to the reference scheme of MS. The conversion matrices take a 4× 4 block-diagonal form (see [1]).
In Fig. 3, we illustrate some representative conversion matrix elements relevant for the operator
O𝛾𝜈1

. We compare all four RI′-type schemes employed in our work. Note that the imaginary parts,
as well as the nondiagonal elements, are identical between RI′

𝑖
and RI′

𝑖
-bar schemes at one loop. As

5
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expected, the real part of the diagonal elements which appear in the left plot has an almost linear
(flat) dependence on 𝑦/𝑎 in the RI′

𝑖
(RI′

𝑖
-bar) schemes. This is related to the presence/absence of

the pinch-pole divergence. Differences between the schemes with index 1 and 2 are visible only
on the elements of the right plot. However, the contribution from these elements is much milder
compared to the real diagonal parts of the left plot.

 RI1

◆ RI2


◼ RI1

 -bar ▲ RI2
 -bar
























◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
◆

◆
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◆

◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼ ◼▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

y/a

R
e

C
γ
ν 1

,γ
ν 1

M
S

,R
I'

z/a = 1, (y-y')/a = -1

 Im Cγν1
, γν1

MS , RI'1
◆ Im Cγν1

, γν1

MS , RI'2
◼ Re Cγν1

, γν2

MS , RI'1

▲ Re Cγν1
, γν2

MS , RI'2
▼ Im Cγν1

, γν2

MS , RI'1
◀ Im Cγν1

, γν2

MS , RI'2





            

◆

◆

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
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0 2 4 6 8 10 12 14

-0.06

-0.04

-0.02

0.00

0.02

0.04

y/a

z/a = 1, (y-y')/a = -1

Figure 3: Conversion matrix elements for O𝛾𝜈1
as functions of 𝑦/𝑎 [�̄� = 2 GeV (MS scale), 𝛽 = 1 (Landau

gauge), 𝑎𝑞 = ( 2𝜋
𝐿
𝑛1,

2𝜋
𝐿
𝑛2,

2𝜋
𝐿
𝑛3,

2𝜋
𝑇
(𝑛4 + 1

2 )), 𝑛1 = 𝑛2 = 𝑛3 = 4, 𝑛4 = 5, 𝐿 = 32, 𝑇 = 64 and 𝑎 = 0.09 fm].

The perturbative calculation in LR (Wilson/clover fermions, Symanzik-improved gluons) al-
lows for extracting one-loop results for a general Wilson-line lattice operator with 𝑛 cusps when
considering the difference between its bare lattice and MS-renormalized Green’s functions 𝛿ΛΓ:

𝛿ΛΓ = −𝑔2 𝐶𝐹

16 𝜋2 𝑒𝑖 q·r
{
2 Γ

[
𝜶1 + 16𝜋2𝑃2 𝛽 + (1 − 𝛽) log(𝑎2 �̄�2)

]
+ 1

2
(Γ/̂𝜈𝑖 + /̂𝜈 𝑓 Γ) (𝜶2 + 𝜶3𝑐𝑆𝑊 )

+Γ
[
(𝑛 + 1)𝜶4 + 𝑛𝜶5 − 16𝜋2𝑃2 𝛽 + (2(𝑛 + 1) + 𝛽) log(𝑎2 �̄�2) + 𝜶6

ℓ

𝑎

]}
+ O(𝑔4), (10)

where ℓ is the length of the Wilson line, 𝑐𝑆𝑊 is the clover coefficient, 𝛽 is the gauge-fixing
parameter [𝛽 = 1 (0): Landau (Feynman) gauge], �̄� is the MS renormalization scale and �̂�

𝑖
(�̂�

𝑓
)

is the direction of the Wilson line in the initial (final) end point. 𝑃2 = 0.0240 and 𝛼𝑖 are given
in Table 1 for different gluon actions (Wilson, Tree-Level Symanzik, Iwasaki). The generalization

Gluon action 𝜶1 𝜶2 𝜶3 𝜶4 𝜶5 𝜶6

Wilson -4.4641 14.4499 -8.2847 -4.5258 0 19.9549
TL Symanzik -4.3413 12.7559 -7.6736 -3.9303 -0.8099 17.2937
Iwasaki -4.1637 9.9365 -6.5276 -1.9053 -2.1011 12.9781

Table 1: Numerical values of the coefficients 𝛼1 − 𝛼6 appearing in Eq. (10).

on the shape of the Wilson line comes from the fact that any parts of the Wilson line which do
not include singular points will give finite contributions, which vanish in 𝛿ΛΓ when taking the
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continuum limit. We identify all types of singularities, including linear divergences (ℓ/𝑎) which
depend on the total length of the Wilson line, cusp and endpoint logarithmic divergences (log(𝑎2 �̄�2),
the coefficients of which depend on the number of cusps. We also identify mixing contributions
(Γ/̂𝜈𝑖 + /̂𝜈 𝑓 Γ)/2, which depend on the direction of the staple line entering the end points and come
from the chirality-breaking parts of the action. However, as concluded by symmetries, additional
mixing structures are expected beyond one loop.

In order to investigate RI′-bar schemes on the lattice, we have also calculated the one-loop bare
Green’s function of ⟨Wloop⟩ and we confirm the cancellation of the linear and cusp divergences
between the staple operator (𝑛 = 2) and the Wilson loop. The lattice renormalization matrices of
OΓ and ŌΓ in the MS scheme can be easily extracted by our calculations:

𝑍
LR,MS
ΓΓ′ = 𝛿ΓΓ′

[
1 − (𝑔MS)2𝐶𝐹

16𝜋2

(
𝑒(2) + 𝑒

𝜓

1 + 𝑒
𝜓

2 𝑐SW + 𝑒
𝜓

3 𝑐
2
SW − 𝛼6

|𝑧 | + |𝑦 | + |𝑦′ |
𝑎

− 7 ln(𝑎2 �̄�2)
)]

+𝛿Γ′ , [Γ,𝛾𝜈2 ]/2 sgn(𝑦) (𝑔MS)2𝐶𝐹

16𝜋2 (𝛼2 + 𝛼3𝑐SW) + O((𝑔MS)4), (11)

�̄�
LR,MS
ΓΓ′ = 𝛿ΓΓ′

[
1 − (𝑔MS)2𝐶𝐹

16𝜋2

(
𝑒(0) + 𝑒

𝜓

1 + 𝑒
𝜓

2 𝑐SW + 𝑒
𝜓

3 𝑐
2
SW − 3 ln(𝑎2 �̄�2)

)]
+𝛿Γ′ , [Γ,𝛾𝜈2 ]/2 sgn(𝑦) (𝑔MS)2𝐶𝐹

16𝜋2 (𝛼2 + 𝛼3𝑐SW) + O((𝑔MS)4). (12)

where 𝑒(𝑛) ≡ 1 − 2𝛼1 − (𝑛 + 1)𝛼4 − 𝑛𝛼5 and 𝑒
𝜓

𝑖
comes from 𝑍

LR,MS
𝜓

.

4. Summary - Future plans

In our work, we have identified the mixing pattern among asymmetric staple-shaped Wilson-
line operators using symmetry arguments for both chiral and non-chiral fermions. We confirm in
one-loop perturbation theory that appropriate RI′-type schemes address all type of divergences and
operator mixing in both continuum and lattice regularizations. One-loop conversion matrices to the
MS scheme are calculated for staple operators of different Dirac matrices. A future plan is to extend
our work to two loops, which will be useful for improving the current nonperturbative investigations.
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