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1. Introduction

Quantum chromodynamics (QCD) describes the strong interaction, which governs the dynam-
ics of hadrons. The phenomena described by QCD are incredibly complex and typically cannot
be described analytically. Instead, simulations of the theory on a discretized space-time lattice can
produce distributions which provide insight on hadronic properties such as internal structure. The
form factors (FFs) and generalized form factors (GFFs) are related to the internal forces of the
hadron and the emergence of their mass [1]. There have been a few lattice studies of the quark
GFFs of the proton and pion, as well as gluonic contibutions from various hadrons [2—4]. Studies
of the pion and kaon are of particular interest, as they are the Goldstone bosons that arise from
spontaneous chiral symmetry breaking in QCD.

In these proceedings, we present our results for the quark GFFs of the pion and kaon for two
ensembles with different lattice spacings. We consider only results accounting for the connected
contributions, as we expect the quark disconnected contributions to be small. We apply parame-
terizations on the 4-vector momentum transfer squared, —¢, and examine whether the lattice data
favor a monopole or an n-pole function. Additionally, we present Mellin moments up to (x*) and
examine SU(3) flavor symmetry-breaking effects in the FFs and GFFs.

2. Methodology

This calculation is carried out on two ensembles of twisted-clover fermions and Iwasaki im-
proved gluons generated by the Extended Twisted Mass Collaboration (ETMC), labelled cA211.30.32
and cB211.25.48 with lattice spacing a = 0.094 fm and a = 0.079 fm, respectively [5]. Tab. I
provides a summary of the other parameters for these two ensembles.

Ensemble B |a(m)| L>xT Ny | my (MeV) | L (fm)
cA211.30.32 | 1.726 | 0.094 | 323 x 64 | 2+1+1 265 3.0
cB211.25.48 | 1.778 | 0.079 | 483 x 96 | 2+1+1 250 3.79

Table 1: Parameters for the ensembles used in this work.

The decomposition of the matrix elements requires a direction of momentum boost for each
order of derivative in the operator. For access to GFFs corresponding to operators with up to three
derivatives, we utilize a boosted kinematic frame with final momentum containing the smallest
nonzero component (1) in each direction for a total of 8§ combinations of final momentum. This
boosted frame also provides the benefit of extracting a denser range of —t = > — (E(p’) — E(p))?,
where ¢ is the momentum transfer in the spatial directions. We also gain access to a higher range
of momentum transfer (2.5-3.0 Gev?). Furthermore, we eliminate mixing under renormalization,
which is possible due to the kinematic setup. The trade-off for this is a decreased signal-to-noise ratio
when compared with a frame utilizing the minimum directions of nonzero momentum. The three-
point functions for ensemble cA211.30.32 have been calculated at source-sink time separations, #,,
of 1.13, 1.32, 1.50, and 1.69 fm. For ensemble cB211.25.48, we extract three-point functions at
ty =1.11, 1.26, 1.42, and 1.58 fm. The statistics for both ensembles is shown in Tab. 2. Calculations
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Ensemble | Frame p(2n/L) ts/a ts/a (fm) confs | src pos. | Total
cA211.30.32 B (£1,£1,£1) | 12,14,16,18 | 1.13,1.32,1.50,1.69 | 122 136 132,736
cB211.25.48 B (1, +1,+1) | 14,16,18,20 | 1.11,1.26,1.42,1.58 | 76 8 4,864

Table 2: Statistics for the ensembles used in this calculation.

on ensemble cA211.30.32 have reached sufficient statistics for high-precision results, while data
production on ensemble cB211.25.48 is ongoing.

The GFFs we analyze are obtained from the matrix elements of local operators containing one
to three covariant derivatives defined as O (¥ #n} = yylupi ... Dty The matrix elements
decompose to form factors (n = 0) and generalized form factors (n > 0) according to [6]:

(M(p)|O™ M(p)) = K[2P1HP"} Ay + 201 AV By (1)
(M(p")|O™PYM(p)) = K[2iP# PY PP} A3y + 2i AW AY PP} By )
(M(p)|OWPT} M(p)) = K[ - 2P1HPYPP P} Agg — 2AAY PPPOI By — 2AMMAYAPATI Cyo] (3)

where the GFFs A;;, B;;, C;; are a function of —f and are frame independent. Here we indicate the

initial momentum as p and the final momentum as p’. Also, P = (p+p’)/2andA=p—-p’. Kisa
1

V4E(p)E(p’)

with E(p) = 1/m%w + p dependent on the meson mass mjy; and the momentum p. In these

kinematic factor dependent on the normalization on the meson state, defined as K =

proceedings, we focus on the GFFs corresponding to the first-order derivative vector operators in
the same fashion as we have done for the scalar, vector, and tensor form factors in Refs. [7, 8§]. We
also update the work of Refs. [9, 10] to include the Mellin moments of the pion and kaon PDF up
to (x).

3. Results

3.1 Mellin moments of PDF's

Our calculations include the forward limit of the FFs and GFFs (-t = 0), allowing us to
extract the Mellin moments of the PDFs up to the third-order derivative operator. Results for
the ensemble cA211.30.32 (at lower statistics) and a detailed methodology for extraction have
previously been published in Refs. [9-11]. In Tab. 3 and Tab. 4, we present updated results for
ensemble cA211.30.32 and preliminary results for ensemble cB211.25.48 for (x"*) withn = 1,2, 3.
The higher two Mellin moments, n = 2, 3, are calculated using operators that avoid both finite and
power-divergent mixing under renormalization. Also, we extract the multiplicative renormalization
functions non-perturbatively [9-11]. For both cases we use results obtained from a two-state fit.
Comparing the numerical values in Tables. 3 - 4, we find that the two ensembles produce results
displaying some differences, likely due to discretization and volume effects. We note that the
statistics in the second ensemble is much lower (see Table 1). The differences in the case of the
kaon are much smaller, suggesting that the higher mass of the meson reduces some effects, but it is
not possible to directly attribute this to the statistics or differences between the lattice parameters.
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Ensemble (x)™" (x2)™" (3"
cA211.30.32 | 0.273(07) | 0.112(06) | 0.036(13)
cB211.25.48 | 0.227(14) | 0.090(12) -

Table 3: The Mellin moments of the pion for the two ensembles used in this work.

Ensemble (x)K" (x2)yK" (3K (x)K* (x?2)K* (x3)K*
cA211.30.32 | 0.243(05) | 0.096(2) | 0.042(6) | 0.307(7) | 0.129(4) | 0.060(12)
cB211.25.48 | 0.234(6) | 0.089(4) | 0.060(11) | 0.320(4) | 0.138(2) | 0.082(4)

Table 4: The Mellin moments of the kaon for the two ensembles used in this work.

3.2 Generalized Form Factors

Here we show the results for the form factors Ay and By extracted from operators with one
covariant derivative. In Fig. 1 we show the results for the pion GFFs. The results from ensemble
cA211.30.32 are shown at the four source-sink separations as well as the two-state fit results. As
the statistical errors do not increase linearly with ¢, we perform a careful analysis to select points
with controlled uncertainty. We find good agreement between all source-sink separations and the
two-state fit. Comparing the two-state fits between both ensembles, we see that there are more
prominent systematic effects in Byg and that it is more difficult to extract points with controlled
errors. It is also clear that there are some discretization effects, although they appear smaller than
previously observed in the scalar, vector, and tensor form factors.
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Figure 1: Left: Results for Ag(: and Bgou for ensemble cA211.30.32 at source-sink separations #;/a =1.13
(blue circles), 1.32 (red squares), 1.50 (green up-triangles), and 1.69 fm (magenta down-triangles) as well
as two-state fit results (orange stars). Right: Comparison of two-state fit results for Ag; and Bg(;‘ between
ensemble cA211.30.32 (orange stars) and cB211.25.48 (green stars) labelled by their lattice spacings.

In Fig. 2 we show the results for the up- and strange-quark components of the kaon as above.
The kaon’s heavier mass reduces the statistical noise compared with the pion allowing for extraction
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of GFF data with controlled errors at more values of —¢. The strange component is dominant in
magnitude compared with the up component. We observe some excited state effects, but these are
typically within errors. In Fig. 3 we show the comparison of the two-state fits of the kaon GFFs for

both ensembles. The accuracy of the data reveals systematic effects in both A>g and Byg.
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Figure 2: Results for A% and Bg) for the up-quark (left) and strange-quark (right) from ensemble

cA211.30.32. Data markers are the same as Fig. 1.
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Figure 3: Comparison of A;,

(orange stars) and cB211.25.48 (green stars).

3.2.1 Parametrization of —¢ dependence

We now move the discussion to the presentation of the generalized form factors A,p and Byp.
We note that the lattice data for the pion and kaon are extracted at differing values of the 4-vector

and Bg) for the up-quark and strange-quark between ensemble cA211.30.32
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momentum transfer squared, —¢, because they have different mass. Thus, in order to compare them,
we must parametrize the ¢ dependence of the form factors. We take inspiration from the monopole
ansatz depicted by the Vector Meson Dominance (VMD) model [12], introducing a free degree n

in the denominator like
Fr(0)

(1+%)"’

Fr(-1) = 4)

where F(0) is the forward limit of the form factor, and Mr is the n-pole mass. Such a parametriza-
tion allows us to test if the monopole fit, n = 1, is preferred by our lattice data. We utilize the
results from the two-state fits to ensure that excited states are eliminated. We apply the fit of Eq. (4),
including data up to a maximum —7 of 1 GeV? and 3GeV? for both the pion and kaon. In Fig. 4, we
compare these parametrizations for the pion GFFs using the monopole and n-pole fits. For the case
of A7, all four bands appear to describe the data well and agree with each other. We find n = 0.88
for the fit, including data up to 1 GeV? and n = 0.81 for the fit up to 3 GeV?2. As the bands agree and
the deviation pole-order from the monopole is fairly small, we conclude that a monopole fit is well

justified. The picture is more complicated for the case of B7,, likely due to the limited amount of

20°
data available for the fits. The n-pole fit including data only up to 1 GeV? produces an asymptotic
fit with an unrealistic value for n. The monopole fits and the n-pole including the full data range
again describe the data fairly well. With a pole-order of n = 1.56, it would be necessary to have

more data to make a conclusion regarding the validity of the monopole fit.
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Figure 4: The parametrization of the pion GFF results from ensemble cA211.30.32. Results are shown for
the n-pole fit including data up to —¢ = 1.0GeV? (blue) and —t = 3.0GeV? (red), and monopole fit results
including data up to —t = 1.0GeV? (green) and — = 3.0GeV? (magenta). Two-state fit data is shown in
orange stars. The values of n from the n-pole fits are shown in the plot legend.

We perform the same analysis for the kaon u- and s-quark contributions, which are shown in
Fig. 5. In all cases, the data are described well by the fits. Also, all fits agree within errors. Fits on
AKX and AK
is avallable for the kaon than for pion case, due to better control of the gauge noise in the heavier

reasonably support the use of a monopole fit. For the case of the By GFF, more data

kaon. Thus, the various fits are better behaved and indeed describe the data. The pole-order for the
full range of data is n = 1.25 for BK and n = 0.81 for BK
continue with the monopole fit Values and the full range of data for the analysis in the next sections.

We conclude that it is reasonable to
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Figure 5: Results for the kaon n-pole and monopole parametrizations. Data format is the same as in Fig. 4.

4. SU(3) flavor symmetry breaking

In our previous work [7, 8], we have observed SU(3) flavor symmetry-breaking effects in the
scalar, vector, and tensor form factors by examining the ratios F'” “ /F K" gt /F K* and FK* /F L
This matches what has been observed in nature in the charge radii of 7% and K*, as well as in 7°
and K°. Following the analysis of the form factors, we examine SU(3) flavor symmetry-breaking
effects in the second Mellin moments of GPDs. Given the difference in the values of —¢ in the
two particles, it is only meaningful to construct such ratios of GFFs using the continuous functions
discussed in the previous section. The results are shown in Fig. 6 for Ayg and Byg. We find
significant suppression of excited states compared to the first Mellin moments of GPDs. In the case
of Ajg, the ratio of the up-quarks has very little dependence on —¢ and is just above 1. In the ratios
involving the up- and strange-quarks, we find that whether the up-quark comes from the pion or
the kaon is insignificant. In both up-strange ratios, the up-quark contribution begins at about 80%
of the strange-quark and reduces to about 70% at higher —¢ values. This differs slightly from what
we have observed with the vector form factor. In that case, the ratio begins around 1 and reduces
to about 80% with increasing —¢t. The case of By is not clear due to the relatively small value for
the GFF and the large uncertainties of the data. Nevertheless, we are only interested in qualitative
conclusions at this stage. As can be seen from Fig. 6 the ratio of the up-quark contributions ranges
between 0 and 20%. For the two-state fit, the effects increases with —¢, while for t; = 1.32, 1.69
fm, it begins at 20% and decreases with —¢ increase. SU(3) flavor symmetry-breaking effects are
also observed in the ratio of the up-quark in each meson with the strange-quark contribution in the
kaon. The effect is between 10 - 30% with a monotonic behavior as ¢, varies.

An interesting aspect is to compare the SU(3) flavor symmetry-breaking effects for the two
ensembles we analyzed. Fig. 7 shows a comparison of the ratios as above using the two-state fits
of Ayp for each ensemble. As seen before, the ensemble with finer lattice spacing displays larger
statistical uncertainties attributable to the lower available statistics. Even so, the ratios show very
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Figure 6: Left: The ratio A;OM / Ag;‘ (top), Agou /Ag; (center), and Afou / Afos (bottom) for the generalized
form factor as a function of —¢ using the results obtained from the lattice labeled cA211.30.32. Right: The
same ratios for the Byyg GFF. The results for ;/a = 14, 18 and the two-state fit are shown with magenta,
yellow, and green bands, respectively.

similar behavior between the two ensembles in all three cases.

&8 1.0 s eeyesesepepeperrr—r—
)
;‘:80,8— a=0.094fm
a=0.079fm
0.6 w w w w 0.61
_—
o1.0 ———- —— R ////
D08 — =
Q e ——— ~
) Ky
0.6 S04
[\
21.0 - --- e =
$" 03t/ 45/
3\90-81\ . 4 Azjéu/F\é{“
< I — o AKFE
0.6 : : : : 0.2 : : : :
0.0 0.5 1.0 1.5 2.0 2.5 0.0 0.5 1.0 1.5 2.0 2.5
—t(GeV?) —t(GeV?)

Figure 7: Left: Comparison of the Ay ratios for the two ensembles. The ensemble cA211.30.32 with lattice
spacing a = 0.094 fm is shown in yellow, and the ensemble cB211.25.48 with spacing a = 0.079 fm is shown
in green. Right: Ratios of the GFFs Ag(; , Agou, and Agos with their vector form factor counterparts (yellow,
green, and blue, respectively). All ratios are of data from two-state fits.
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4.1 Hierarchy of Mellin moments

Another component of this work is the comparison of different Mellin moments on the same
ensemble, that is, Apg and the vector form factor. In the right panel of Fig. 7, we plot these ratios.
The ratios at —t = 0 are equivalent to the Ayo(—t = 0) = (x), as the vector form factor is equal to
1. As the ratios are curves and not flat lines, it is clear that the slopes of the GFFs differ from their
vector FF counterparts. We observe that the higher-order Mellin moments are suppressed more
slowly than the lower-order ones, and their contributions become about 50% of Fy at —t = 2.5
GeV?. This is observed across both mesons and flavors.

5. Summary

In these proceedings, we present a lattice QCD calculation of the pion and kaon generalized
form factors, as well as the Mellin moments (x") with n € [1,3]. We employ two N = 2+1+1
ensembles of twisted mass fermions with clover improvement. The results are renormalized in
the MS scheme at 2 GeV. For both ensembles, we utilize a boosted kinematic frame with final
momentum p’ = QT” (1, 1, £1). We extract the GFFs from matrix elements calculated with three-
point functions at four different source-sink separations, as well as data from a two-state fit. The
GFF results are self-consistent when comparing source-sink separations and two-state fit results
within the same ensemble with limited excited-state effects. When comparing the results between
ensembles, it is apparent that the differences between ensemble parameters lead to some systematic
effects, in particular discretization and volume effects.

We parametrize the —t dependence of the GFFs using an n-pole fit and test the validity of the
monopole by setting the pole-order as a free parameter. In most cases, the monopole fit appears well
motivated, with any tension attributable to a low number of available data. Using the parametrized
data, we examine SU(3) flavor symmetry-breaking effects by taking ratios of the GFFs for the
up-quark in the pion and the up- and strange-quark in the kaon. In both ensembles, we observe
SU(3) flavor symmetry-breaking effects from 10% to 30% when taking ratios of the up and strange
contributions. Finally, we examine the relationship between the vector FF and the one-derivative
GFF A9 finding that the latter decrease more rapidly with increasing —.
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