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We present results for the axial-vector coupling and root-mean-square (RMS) radii of the nucleon
obtained from 2+1 flavor lattice QCD at the physical point with a large spatial extent of about
10 fm. Our calculations are performed with the PACS10 gauge configurations generated by the
PACS Collaboration with the six stout-smeared 𝑂 (𝑎) improved Wilson-clover quark action and
Iwasaki gauge action at 𝛽 = 1.82 and 2.00 corresponding to lattice spacings of 0.085 fm and
0.063 fm, respectively. We first evaluate the value of the axial-vector coupling of the nucleon
(𝑔𝐴). In addition, the isovector electric, magnetic and axial radii and magnetic moment from the
corresponding form factors are also determined. Combining the results at 𝛽 = 1.82 and 2.00, we
finally discuss the finite lattice spacing effect. It was found that the effect on 𝑔𝐴 is kept smaller
than the statistical error of 2% while the effect on the isovector radii was observed as a possible
discretization error of about 10%, regardless of the channel.
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1. Introduction

In the standard model of modern particle physics, protons and neutrons, known as nucleons,
are composite particles of quarks and gluons, and the interaction among them is formulated as
Quantum Chromodynamics (QCD). This indicates that the nucleon has a non-trivial structure due
to the complex dynamics of QCD. One of the topics that have recently come into the spotlight is the
“size” of the nucleon such as electric (⟨𝑟2

𝐸
⟩), magnetic (⟨𝑟2

𝑀
⟩) and axial (⟨𝑟2

𝐴
⟩) radii, which can be

extracted as the root-mean-square (RMS) radius from the corresponding form factors [1].
Recently, much effort has been devoted to the high-precision determination of the nucleon

RMS radius in each channel using lattice QCD calculations. In general, the observables determined
from lattice QCD simulations are subject to both statistical and systematic uncertainties. As for the
systematic uncertainties on the nucleon RMS radius, it is known that there are four major sources:
1) chiral extrapolation, 2) finite size effect, 3) finite lattice spacing effect and 4) excited-state
contamination. Although great efforts has been made to improve our knowledge of the nucleon,
it is not accurate enough to solve problems (e.g. the proton radius puzzle [2]) or to provide a
high-precision input for current neutrino oscillation experiments [3]. The most recent lattice QCD
simulations done by NME [4], PNDME [5] and Mainz [6–8] groups have reproduced the nucleon
electric RMS radius, magnetic moment, magnetic RMS radius and axial radius with statistical
precision of about 5% by taking into account the detailed analyses for the systematic uncertainties.
However, percent-level accuracy for the electromagnetic sector and a few percent-level calculations
for the rest are highly desirable for solving puzzles and tensions [9].

In this work, we present the result of our recent study on the nucleon form factors. Our
previous work [10] has dealt with most uncertainties, but discretization uncertainties have not yet
been examined. Therefore we calculate on the second PACS10 ensemble in order to study the
discretization uncertainties of the nucleon form factors. Combining our previous results obtained
from the coarser lattice spacing [10], the finite lattice spacing effects are investigated by comparing
the two results.

2. Method

We calculate the electric and magnetic form factors, 𝐺𝐸 (𝑞2) and 𝐺𝑀 (𝑞2) and the axial form
factor 𝐹𝐴(𝑞2). The first two are relevant for the electron-nucleon scattering experiment, while the
latter is important input for the weak process associated with the neutrino-nucleus scattering.

We simply focus on the isovector quantities, where there is no disconnected contribution in the
exact SU(2) isospin limit [11]. The isovector electric and magnetic form factors are given by the
combination of proton’s and neutron’s form factors,

𝐺𝑣
𝑙 (𝑞

2) = 𝐺
𝑝

𝑙
(𝑞2) − 𝐺𝑛

𝑙 (𝑞
2), 𝑙 = {𝐸, 𝑀}. (1)

which can be used for comparison with experiments without evaluating the disconnected contribu-
tions. As for the axial form factor, the axial vector coupling, 𝑔𝐴 = 𝐹𝐴(𝑞2 = 0), is experimentally
well determined as 𝑔𝐴 = 1.2756(13) [12]. Therefore, we also calculate this particular quantity as a
good reference for verifying the accuracy and reliability of our calculations.
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In this study, the exponentially smeared quark operator 𝑞𝑆 (𝑡, 𝒙) =
∑

𝒚 𝐴e−𝐵 |𝒙−𝒚 |𝑞(𝑡, 𝒚) with
the Coulomb gauge fixing is used for the construction of the nucleon interpolating operator as
well as a local quark operator 𝑞(𝑡, 𝒙). The nucleon two-point function with nucleon interpolating
operator located at smeared (S) or local (L) source (𝑡src), and local sink (𝑡sink) is constructed as

𝐶𝑋𝑆 (𝑡sink − 𝑡src; 𝒑) = 1
4

Tr
{
P+⟨𝑁𝑋 (𝑡sink; 𝒑)𝑁𝑆 (𝑡src;− 𝒑)⟩

}
with 𝑋 = {𝑆, 𝐿}, (2)

where the nucleon operator with a three-dimensional momentum 𝒑 is given for the proton state by

𝑁𝐿 (𝑡, 𝒑) =
∑︁
𝒙

𝑒−𝑖𝒑 ·𝒙𝜀𝑎𝑏𝑐
[
𝑢𝑇𝑎 (𝑡, 𝒙)𝐶𝛾5𝑑𝑏 (𝑡, 𝒙)

]
𝑢𝑐 (𝑡, 𝒙) (3)

with the charge conjugation matrix, 𝐶 = 𝛾4𝛾2. The superscript 𝑇 denotes a transposition, while the
indices 𝑎, 𝑏, 𝑐 and 𝑢, 𝑑 label the color and the flavor, respectively.

To calculate the isovector nucleon form factors, we evaluate the nucleon three-point functions,
which are constructed with the spatially smeared source and sink operators of the nucleon as

𝐶𝑘
O𝛼

(𝑡; 𝒑′, 𝒑) = 1
4

Tr
{
P𝑘 ⟨𝑁𝑆 (𝑡sink; 𝒑′)𝐽O𝛼 (𝑡; 𝒒 = 𝒑 − 𝒑′)𝑁𝑆 (𝑡src;− 𝒑)⟩

}
(4)

with a given isovector bilinear operator defined as 𝐽O𝛼 = 𝑢̄ΓO
𝛼 𝑑 with ΓO

𝛼 = 𝛾𝛼 and 𝛾𝛼𝛾5 for the vector
(𝑉𝛼) and axial-vector (𝐴𝛼). In the above equation, P𝑘 denotes the projection operator to extract
the form factors. For the unpolarized case (𝑘 = 𝑡), P𝑡 ≡ P+𝛾4 is chosen, while P5𝑧 ≡ P+𝛾5𝛾𝑧 is
chosen for the polarized case in 𝑧 direction (𝑘 = 5𝑧). In a conventional way to extract the form
factors, we take an appropriate combination of two-point function (2) and three-point function (4),

R𝑘
O𝛼

(𝑡; 𝒑′, 𝒑) =
𝐶𝑘
O𝛼

(𝑡; 𝒑′, 𝒑)
𝐶𝑆𝑆 (𝑡sink − 𝑡src; 𝒑′)

√︄
𝐶𝐿𝑆 (𝑡sink − 𝑡; 𝒑) 𝐶𝑆𝑆 (𝑡 − 𝑡src; 𝒑′) 𝐶𝐿𝑆 (𝑡sink − 𝑡src; 𝒑′)
𝐶𝐿𝑆 (𝑡sink − 𝑡; 𝒑′) 𝐶𝑆𝑆 (𝑡 − 𝑡src; 𝒑) 𝐶𝐿𝑆 (𝑡sink − 𝑡src; 𝒑) ,

(5)

which yields the following asymptotic values in the asymptotic region (𝑡sep/𝑎 ≫ (𝑡 − 𝑡src)/𝑎 ≫ 1):

R𝑡
𝑉4
(𝑡; 𝒒) = 1

𝑍𝑉

√︂
𝐸𝑁 + 𝑀𝑁

2𝐸𝑁

𝐺𝑣
𝐸 (𝑞

2), (6)

R5𝑧
𝑉𝑖
(𝑡; 𝒒) = 1

𝑍𝑉

−𝑖𝜀𝑖 𝑗3𝑞 𝑗√︁
2𝐸𝑁 (𝐸𝑁 + 𝑀𝑁 )

𝐺𝑣
𝑀 (𝑞2), (7)

R5𝑧
𝐴𝑖
(𝑡; 𝒒) = 1

𝑍𝐴

√︂
𝐸𝑁 + 𝑀𝑁

2𝐸𝑁

[
𝐹𝐴(𝑞2)𝛿𝑖3 −

𝑞𝑖𝑞3
𝐸𝑁 + 𝑀𝑁

𝐹𝑃 (𝑞2)
]
, (8)

where the renormalization factors are defined through the renormalization of the quark currents
𝐽O𝛼 = 𝑍𝑂𝐽

O
𝛼 . The renormalization factor 𝑍𝑉 and 𝑍𝐴 are determined by the Schrödinger functional

method (see Appendix E in Ref. [13]). We evaluate the values of the target form factor in the
standard plateau method.

The RMS radius of a given form factor 𝐺𝑙 (𝑞2) can be determined from the slope of 𝐺𝑙 (𝑞2) at
𝑞2 = 0,
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⟨𝑟2
𝑙 ⟩ = − 6

𝐺𝑙 (0)
𝑑𝐺𝑙 (𝑞2)
𝑑𝑞2

����
𝑞2=0

. (9)

Here we use the notation of 𝐺𝐴 ≡ 𝐹𝐴 for the axial-vector form factor. Finally in this study,
z-expansion method, which in known as an model-independent 𝑞2-parameterization, is employed
for studying the 𝑞2-dependence of each form factor. For a detail of the z-expansion method, see
Ref. [13, 14] and all relevant references therein.

3. Simulation details

We mainly use the PACS10 configurations generated by the PACS Collaboration with the
six stout-smeared 𝒪(𝑎) improved Wilson-clover quark action and Iwasaki gauge action at 𝛽 =

1.82 and 2.00 corresponding to the lattice spacings of 0.085 fm (coarse) and 0.063 fm (fine),
respectively [10, 13, 15]. When we compute nucleon two-point and three-point functions, the
all-mode-averaging (AMA) technique [16–18] is employed in order to reduce the statistical errors
significantly without increasing computational costs. The nucleon interpolating operators defined
in Eq. (3) are exponentially smeared with (𝐴, 𝐵) = (1.2, 0.16) for 1284 lattice ensemble and
(𝐴, 𝐵) = (1.2, 0.11) for 1604 lattice ensemble. As for the three-point functions, the sequential
source method is employed and calculated with 𝑡sep/𝑎 = {10, 12, 14, 16} for 1284 lattice ensemble
and 𝑡sep/𝑎 = {13, 16, 19} for 1604 lattice ensemble.

Table 1: Parameters of the second PACS10 ensemble. See Refs. [10, 13, 15] for further details.

𝛽 𝐿3 × 𝑇 𝑎−1 [GeV] 𝜅𝑢𝑑 𝜅𝑠 𝑐SW 𝑚𝜋 [GeV]
2.00 1603 × 160 3.1108(70) 0.125814 0.124925 1.02 0.138
1.82 1283 × 128 2.3162(44) 0.126177 0.124902 1.11 0.135

4. Numerical results

Combining our two results from large volume simulations at the fine and coarse lattice spacings,
we can discuss the finite lattice spacing effects on 𝑔𝐴, 𝜇𝑣 ,

√︃
⟨(𝑟𝑣

𝐸
)2⟩,

√︃
⟨(𝑟𝑣

𝑀
)2⟩ and

√︃
⟨(𝑟𝑣

𝐴
)2⟩. Recall

that the continuum limit results are not yet determined in our study, we only evaluate the differences
between two results from different lattice spacing as a possible size of the lattice spacing effect.

Figure 1 shows the lattice spacing 𝑎-dependence for these five quantities. The inner error bars
represent the statistical uncertainties, while the outer error bars represent the total uncertainties
given by adding the statistical errors and systematic errors in quadrature. The systematic errors take
into account uncertainties stemming from the excited-state contamination and so on (see details
Ref. [13]).

Let us first discuss the size of the finite lattice spacing effect on the axial-vector coupling 𝑔𝐴,
that is precisely measured by the experiments. The axial-vector coupling 𝑔𝐴 = 𝐹𝐴(𝑞2 = 0) is
directly determined from the ratio (8) at zero momentum transfer without the 𝑞2-extrapolation. In
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the top-left panel of Fig. 1, the two results obtained at different lattice spacings can reproduce the
experimental value within statistical precision of at most 2%. This implies that the discretization
error on the axial-vector coupling is less than 2%, which is well controlled in our calculations. In
the top-right panel of Fig. 1, the small discretization error, which is less than 1%, is also observed
for the magnetic moment 𝜇𝑣 evaluated by Eq. (7), the two results for the magnetic moment are
both 5-6% smaller than the experimental value. However, recall that the magnetic moment is not
accessible without the 𝑞2-extrapolation to the zero momentum point, and hence more comprehensive
investigations with the derivative of form factor (DFF) method [19]. are necessary in order to fully
resolve the current discrepancy.

Apart from the question of whether the results are consistent with the experimental values,
both quantities, 𝑔𝐴 and 𝜇𝑣 , do not seem to be subject to large discretization errors. In contrast,
the RMS radii, which are determined from the form-factor slope at the zero momentum point, may
suffer from the 𝑂 (𝑞𝑎) discretization effects that do not appear in 𝑔𝐴 and 𝜇𝑣 . Indeed, as shown
in three bottom panels of Fig. 1, the presence of the discretization errors is clearly visible for the
isovector RMS radii. Their sizes can be estimated as about 10%, regardless of the channel.

Especially,
√︃
⟨(𝑟𝑣

𝐸
)2⟩ can be evaluated with a statistical error of less than 5% accuracy, while

the magnitude of the discretization uncertainty is much larger than the statistical one. Therefore,
as shown in the bottom-left panel of Fig. 1, the certain difference between the two results is clearly
observed in

√︃
⟨(𝑟𝑣

𝐸
)2⟩, which is unexpectedly large. However, this observation may bridge the

gap between our lattice results and experimental values. Similarly, the finite lattice spacing effect
observed in

√︃
⟨(𝑟𝑣

𝐴
)2⟩ as shown in the bottom-right panel of Fig. 1 tend to fill the difference between

lattice QCD results and experimental values. It is important to emphasize here that the total errors in
the axial radius obtained at two lattice spacings are much smaller than the two estimations obtained
from the model-independent 𝑧-expansion analysis for both 𝜈𝑁 and 𝜈𝐷 scattering data.

5. Summary

We have calculated the nucleon form factors in the vector and axial-vector channels using the
second PACS10 ensemble generated at the physical point on a (10 fm)4 volume. The PACS10 gauge
configurations are generated by the PACS Collaboration with the stout-smeared 𝑂 (𝑎) improved
Wilson quark action and Iwasaki gauge action.

Since the continuum-limit extrapolation requires results from at least three lattice spacings, we
have investigated the systematic uncertainties associated with the finite lattice spacing on 𝑔𝐴 and
isovector RMS radii from the difference between the current results obtained at two lattice spacings.
It was found that the the finite lattice spacing effect on 𝑔𝐴 is kept below the statistical error of less
than 2%, which is currently achieved in our calculations, while both results of 𝑔𝐴 obtained at two
lattice spacings reproduce the experimental value within their statistical precisions. Therefore, the
lattice discretization effect on 𝑔𝐴 is negligibly small in our calculations. On the other hand, the
systematic errors associated with the finite lattice spacing on the isovector RMS radii are about 10%
and cannot be ignored regardless of channel.

Needless to say that additional lattice simulations using the third PACS10 ensemble is required
for achieving a comprehensive study of the discretization uncertainties and then taking the continuum
limit of our target quantities. Such planning is now underway.
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Figure 1: Summary for our best estimates and the experimental values forthe axial-vector coupling (top,
left), isovector magnetic moment (top, right) and three kinds of the isovector RMS radius: electric (bottom,
left), magnetic (bottom, center) and axial (bottom, right). The inner error bars show the statistical error, while
the outer error bars evaluated by both the statistical and systematic errors added in quadrature. Uncertainties
from the excited-state contamination and the violation of the dispersion relation are taken into account as the
systematic errors. This figure is reprinted from Ref. [13].
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