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spatial extent is 48 spacings or about 5.4750(14) fm. The strange and degenerate up and down
quark mass values are set at their essentially physical values to provide the physical Ω mass and a
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1. Introduction

RIKEN-BNL-Columbia (RBC) and UKQCD collaborations have been jointly studying nucleon
structure using dynamical domain-wall fermions (DWF) numerical lattice-QCD ensembles [1–5].
To extract the nucleon observables, we use the standard ratios, 𝐶 (3)Γ,𝑂 (𝑡src, 𝑡, 𝑡snk)/𝐶 (2) (𝑡src, 𝑡snk),
of two-point, 𝐶 (2) =

∑
𝛼𝛽 ((1 + 𝛾𝑡 )/2)𝛼𝛽 ⟨𝑁𝛽 (𝑡snk)�̄�𝛼 (𝑡src)⟩, and three-point, 𝐶 (3)Γ,𝑂 =

∑
𝛼𝛽 Γ𝛼𝛽

⟨𝑁𝛽 (𝑡sink)𝑂 (𝑡)�̄�𝛼 (𝑡src)⟩, correlators with a nucleon operator, 𝑁 = 𝜖𝑎𝑏𝑐 (𝑢𝑇𝑎𝐶𝛾5𝑑𝑏)𝑢𝑐, and an
appropriate observable operator 𝑂. Plateaux of these ratios in time between the source and sink
are obtained with appropriate spin (Γ = (1 + 𝛾𝑡 )/2 or (1 + 𝛾𝑡 )𝑖𝛾5𝛾𝑘/2) or momentum-transfer
projections, which in turn give lattice bare value estimates for the expected values, ⟨𝑂⟩, for the
relevant observables. Further details can be found in our earlier publications, such as Ref. [3].

Most recently, the Lattice Hadron Physics (LHP) collaboration joined the effort using a physical-
mass ensemble [6–12]. In Lattice 2022, I reported the nucleon isovector vector- and axialvector-
current form factors [12] calculated jointly by LHP, RBC, and UKQCD collaborations using the
2+1-flavor dynamical domain-wall fermions lattice-QCD ensemble generated jointly by RBC and
UKQCD collaborations. In this “48I” ensemble [13], the lattice spacing is set at about 0.1141(3)
fm, and the lattice spatial extent is 48 spacings or about 5.4750(14) fm. The dynamical strange and
degenerate up and down quark mass values are set at their essentially physical values to provide the
physical Ω mass and a degenerate pion mass of 0.1392(2) GeV. Our nucleon mass estimate is about
0.947(6) GeV. Though possible excited-state contamination was detected in the nucleon isovector
vector charge, such contamination was not detected in the axialvector charge nor any of the form
factors. Thus, we proceeded to extract shape parameters such as mean-squared radii, the anomalous
magnetic moment, and the pseudoscalar coupling, as was summarized in a table that I reproduce
here as Table 1 for the readers’ convenience.

In that report, I used two methods to extract the shape parameters [12]: 1) linear determination
using the two smallest momenta transfer values available, and 2) dipole fits to ∝ (1 + 𝑄2/𝑀2

𝑝)−𝑝

with 𝑝 = 2. Since the two methods broadly agreed with each other, and they do not differ much
from fits using other multipolarity 𝑝 = 1, 3, 4, ...7, I also commented that “the shape parameter

𝑇 = 8 9 10 11 12 experiment
⟨𝑟2

1⟩ linear 0.134(14) 0.14(2) 0.13(3) 0.16(5) 0.13(8) 0.868(3) fm2

dipole 0.135(6) 0.143(8) 0.142(13) 0.14(2) 0.13(3)
𝐹2(0) linear 3.159(4) 3.250(6) 3.242(8) 3.252(13) 3.61(2) 3.705874(5)𝜇𝑁

dipole 3.10(5) 3.15(6) 3.22(8) 3.24(11) 3.5(2)
⟨𝑟2

𝐴
⟩ linear 0.177(2) 0.174(2) 0.182(4) 0.192(5) 0.066(8) 0.5(2)[14]

dipole 0.177(7) 0.174(10) 0.176(14) 0.18(2) 0.15(3)
𝐹𝑃 (0) linear 21.01(3) 22.61(5) 23.90(7) 23.04(11) 26.5(2) –

dipole 23(2) 25(2) 26(2) 26(2) 30(2)

Table 1: The isovector form factor shape parameters obtained by dipole fits agree with those from linear
extrapolations using only the smallest two 𝑄2 values. The vector-current parameters, however, disagree with
well-established experiments [15]. The errors are single-elimination jack-knife statistical.
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Figure 1: The two 𝑄2 ↦→ 𝑧 mappings we present here, the one with 𝑡0 = 0 (left pane) and the other with
𝑡0 = −𝑄2

max = −10 (right pane).

estimates from other fit ansatze, such as bounded-𝑧 expansion, should not differ either, though we
are yet to complete such analyses.” Here, I like to follow up on this comment.

2. Naive bounded-𝑧 polynomial expansion

Bounded 𝑧 parameter

𝑧(𝑞2) = 𝑧(𝑡; 𝑡0, 𝑡cut) =
√
𝑡cut − 𝑡 − √

𝑡cut − 𝑡0√
𝑡cut − 𝑡 + √

𝑡cut − 𝑡0
, (1)

maps 𝑡 = 𝑞2 = −𝑄2 to within the unit disk |𝑧 | ≤ 1. Form factors can be expanded by polynomials
of 𝑧,

𝐹 (𝑄2) =
𝑘max∑︁
𝑘=0

𝐹𝑘𝑧(𝑞2)𝑘 , (2)

with appropriate 𝑡cut = 4𝑚2
𝜋 for vector and 𝑡cut = 9𝑚2

𝜋 for axialvector currents [16]. The parameter
𝑡0 allows us to adjust 𝑄2 ↦→ 𝑧 mapping (see Fig. 1).

Naive fits to the isovector vector form factor, 𝐹1, calculated on the “48I” ensemble [12, 13]
with a source-sink separation of 8 lattice units, for 𝑡0 = 0 and 𝑘max = 3 and 4 are presented in Fig.
2. The large gap in 𝑧 between 𝑄2 = 0 and one lattice unit allows unphysical kinks in the fits.

This can be improved by using 𝑡0 = −𝑄2
max, as presented in Fig. 3. The smaller gap in 𝑧 between

𝑄2 = 0 and 1 lattice units now allows a tamed fit with 𝑘max = 4 to give a “much improved” estimate
of ⟨𝑟2

1⟩ ∼ (0.45fm)2. However, with 𝑘max = 5 (right) the kink from the gap in 𝑧 returns and changes
the sign of ⟨𝑟2

1⟩.
These results point to a need for better constraining the polynomial coefficients.

3. Constrained bounded-𝑧 polynomial expansion

Indeed a useful constraint arises from QCD: at large 𝑄2 the form factors should fall at least as
fast as 1/𝑄4 [17]:

𝑄𝑛𝐹 (𝑄2) → 0, (3)
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Figure 2: Fits with 𝑘max = 3 (left pane) and 4 (right pane) using a naive 𝑄2 ↦→ 𝑧 mapping with 𝑡0 = 0 to
the isovector vector form factor, 𝐹1, calculated on the RBC+UKQCD ”48I” ensemble. The large gap in 𝑧

between 𝑄2 = 0 and one lattice unit allows unphysical kinks in the fits.

for 𝑛 = 0, 1, 2, and 3. Since lim𝑄2→∞ 𝑧 = 1, these are equivalent with

𝑑𝑛𝐹 (𝑧)
𝑑𝑧𝑛

����
𝑧=1

= 0, (4)

for 𝑛 = 0, 1, 2, and 3. These constrain the polynomial form to

𝐹 (𝑧) = (1 − 𝑧)4𝐵(𝑧) (5)

with arbitrary polynomial 𝐵(𝑧), because

1. 𝑛 = 0 leads to 𝐹 (𝑧) = (1 − 𝑧)𝐸 (𝑧),

Figure 3: A better fits with 𝑘max = 4 (center pane) and 5 (right pane) using 𝑄2 ↦→ 𝑧 mapping with
𝑡0 = −𝑄2

max to the isovector vector form factor, 𝐹1, calculated on the RBC+UKQCD ”48I” ensemble. The
smaller gap in 𝑧 between 𝑄2 = 0 and 1 lattice units now allows a tamed fit with 𝑘max = 4 to give a “much
improved” estimate of ⟨𝑟2

1⟩ ∼ (0.45fm)2. However, the estimate changes the sign when 𝑘max is increased to
5.
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Figure 4: Constrained fit with 𝑘max = 8 to the isovector vector form factor, 𝐹1, plotted against 𝑄2 in lattice
units (left pane) and against bounded-𝑧 (right pane). Good 𝜒2 per degree of freedom < 1 requires this order,
𝑘max = 8, but also brings the kink from the gap in 𝑧 between 𝑄2 = 0 and 1. This results in a rather unphysical,
yet positive, estimate for ⟨𝑟2

1⟩.

2. 𝑛 = 1 leads to 𝐸 (𝑧) = (1 − 𝑧)𝐷 (𝑧),

3. 𝑛 = 2 leads to 𝐷 (𝑧) = (1 − 𝑧)𝐶 (𝑧),

4. 𝑛 = 3 leads to 𝐶 (𝑧) = (1 − 𝑧)𝐵(𝑧).

These are, of course, equivalent to the more conventional ‘sum rules’ [16] in the literature.
We found that good fits with 𝜒2 per degree of freedom < 1 for the present nucleon isovector

form factors usually require (1 − 𝑧)4× fourth-order or higher polynomials (see Figs. 4 and 5).
However those with 𝑘max = 8 (left) and 9 (right) differ in ⟨𝑟2

1⟩ signs.
These behaviors do not change as we vary the fitting range from all the ten 𝑄2 points between

0 and 10 lattice units to a) 0 ≤ 𝑄2 ≤ 6, or b) every other points 𝑄2 = 0, 2, 4, 6, 8, and 10. However,
removing the 𝑄2 = 0 point makes the fits much less controlled toward 𝑄2 → 0. Also, these

Figure 5: Constrained fit with 𝑘max = 9 to the isovector vector form factor, 𝐹1, plotted against 𝑄2 in lattice
units (left pane) and against bounded-𝑧 (right pane). This does not improve on 𝑘max = 8, but merely changes
the sign of the estimated ⟨𝑟2

1⟩, again because of the kink from the gap in 𝑧 between 𝑄2 = 0 and 1.
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behaviors do not change as we look at the other form factors, 𝐹2, 𝐹𝐴, and 𝐹𝑃, with all the source-
sink separations of 8, 9, 10, 11, and 12 lattice units. Nor do the behaviors change as we move 𝑡0

farther away, to two orders of magnitude larger.

4. Conclusion

We found the QCD-constrained bounded-𝑧 expansions for the present nucleon isovector form
factors do not provide their shape parameters in agreement with those extracted by linear or dipole
fits. In particular, we observe the following:

1. the linear and dipole extractions as summarized in Table 1, which are driven by the calculated
form factor values at 𝑄2 = 0 and 1, and 1 and 2 in lattice units, do not seem to agree well
with the respective experiments, and

2. the bounded-𝑧 polynomial fits we so far tried are not stable because of the large gap in 𝑧

between 𝑄2 = 0 and 1.

We note Bayesian priors [18, 19] may help to further constrain the bounded-𝑧 polynomial fits.
However, if such a prior works merely to thin the influence from large 𝑄2, larger than 2 in lattice
units, using the smallest two 𝑄2 points for linear extrapolations likely works better.

We need smaller momentum transfer units before the calculations can be compared with the
experiment. Lattice-QCD calculations with smaller momentum transfer units can be achieved by
either larger volumes or different boundary conditions.
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