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After briefly reviewing the potential for the N-flavor Thirring model, formulated with reducible
fermions in 2+1d, to exhibit a strongly-coupled UV-stable fixed point where U(2N) symmetry is
spontaneously broken by a fermion bilinear condensate, we present recent lattice studies using
the Domain Wall Fermion formulation. In particular, we focus on possible improved methods for
extracting the necessary Ly — oo limit, where L; is the wall separation, through a combination
of partial quenching (ie. Lg(valence) > Lg(sea)), replacing the Shamir kernel with the Wilson
kernel in the definition of the overlap operator, and improved estimation of the signum function
using the Zolotarev approximation. Equation of state fits for critical exponents on 12° systems
yield encouraging agreement between distinct approaches, consistent with universal scaling, while
contradicting earlier fits based on a naive extrapolation. The new results are also in tension with
old results obtained with staggered fermions.
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1. Introduction

The Thirring model is a covariant quantum field theory of interacting fermions with Lagrangian

density
2

L=y(@+m)y; + 2g—N(lZi?’ulﬁi)2- (D

Here the index i runs over N flavors. The contact interaction between currents is repulsive between
like charges and attractive between opposite. In 2+1d we may specify the fields ¢, to lie in
reducible representations of the spinor algebra, so that the Dirac matrices y,, are 4 x 4, and there
is a matrix ys = yoy1y2Y3 such that {ys,y,} = 0. For sufficiently large interaction strength g% and
sufficiently small N the Fock vacuum may be disrupted through formation of a particle — antiparticle

bilinear condensate
0lnZ

om

This results in a dynamically-generated mass gap at Dirac points where E(p) = 0, in close analogy

(Yy) = # 0. (2)

to chiral symmetry breaking in QCD. It has been hypothesised [1] that the transition to non-
vanishing condensate at g2(N) defines a Quantum Critical Point whose universal properties could
perhaps characterise low energy electronic excitations in a planar material such as graphene. Such
a fixed point would correspond to a strongly-interacting quantum field theory with a priori no small
dimensionless parameters.

In the absence of a bare fermion mass the Lagrangian (1) is invariant under a global U(2N)
generated by the following rotations:

W ey s et W ey, s hem MY, 3)
Yo Y, g el Yo Y g el )

Once m # 0 (4) are no longer symmetries, so bilinear condensation results in a symmetry breaking
U@2N) — U(N)®U(N); this should be compared to the pattern U(N)®U(N) —U(N) which pertains
either to models built using staggered lattice fermions or continuum models using the K&hler-Dirac
formulation of relativistic fermions [2].

2. Domain Wall Fermions

In a series of papers [3-5] we have studied the strong dynamics of this proposed symmetry
breaking through lattice simulations with reducible fermions implemented through a domain wall
construction of the form Ly, = ¥(x, s)Dpwr¥(y, s’), where s, s” are coordinates along a fictitious
third spatial direction, with open boundaries (ie. domain walls) separated by distance L;. As
Ly — oo, near zero-modes of Dpwr are localised on the walls as + eigenmodes of y3, and
U(2N)-symmetric 2+1d physics described in terms of

Y(x) = P-W(x, 1)+ Po¥(x, Ly);  §(x) = P(x, L)P- + P(x, )Py, &)

with projectors P, = %(1 +v3).
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Now, for an arbitrary Dirac kernel D operating in the target 2+1d space, the closest we can get
to U(2N) symmetry is articulated by the Ginsparg-Wilson (GW) relations

{3, D} =2Dy3D; {ys,D} =2DysD; [y3ys,D]=0. 6)

By construction (6) are satisfied by the 2+1d overlap operator

1 A
Dy = = |(1 1- ; 7
for the choice of Shamir kernel
A =[2+ Dy - M]"'[Dw - M], (8)

with Dy the 2+1d Wilson fermion kernel and Ma = O(1) the domain wall height, the overlap
operator D, can be shown to be equivalent to the Ly — oo limit of Dpw r used to date [6]:

detDpw r(m)
1
Ly—oo detDpwp(m = 1)

= detD,y(m). 9

The four-fermion interaction in the Thirring model may be reproduced by the introduction of a
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Figure 1: Quantifying the approach to Ly — o

bosonic vector auxiliary field A, coupled to the conserved current iy, . In the lattice model
set out in [3-5], A, is located on a link of the 2+1d lattice and linearly coupled to the conserved
DWF current which is defined throughout the bulk. Hence off-diagonal elements of Dpwr are
of the form D, ~ (1 +iA,) rather than the canonical D, ~ e'4x of abelian gauge theories: the
link fields are thus non-compact and non-unitary, which makes inversion of Dpwpr numerically
challenging. We simulate the Thirring model with N = 1 using the RHMC algorithm to reproduce

the functional measure \/detDI)W rDpwr [4]. Taking Ly — oo is hard; we have fitted data from
16 x Ly = 8,16, . . ., 80 using an exponential Ansarz

U)o — W) 1, = A(B, m)e AL, (10)
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Figure 2: Bilinear condensate for Shamir kernel on 123 x Ly at 8 = 0.24, for various different Lg(sea)
(labelled A in key), for Ly(valence) = 24 (yellow), 60 (blue), 96 (orange) (labelled M in key).

with inverse coupling 8 = ag~>. Fig. 1(a) shows a compendium of fitted values for A. For weak
coupling B > 0.4, A is roughly m-independent (blue band), but for stronger couplings g < 0.35,
A oc m (red band), implying that here the large-L; limit is extremely challenging in the massless
limit. Fig. 1(b) shows a compendium of the residual ¢, defined by

o = SFH(L) * 3 ()~ kTy30) (an

which should vanish if the U(2N) symmetry relating the two condensates on the RHS is restored.
Again, at fixed L and strong coupling the symmetry restoration becomes harder as m — 0. Further
results for the locality of D, and the restoration of the GW relations (6) can be found in [5].

3. Improving L; — oo

Since lack of control of the Ly — oo limit casts doubt on the accuracy of earlier studies [4, 5], we
have recently experimented with three strategies for ameliorating the problem. Further discussion
can be found in [7].

* Partial Quenching (PQ): This is the most straightforward to implement. The main impact
of finite Ly appears in measurements in the fermion sector (the chief example being the
bilinear condensate order parameter itself), while the effect on the underlying bosonic A,
configurations is much milder, as exemplified in Fig. 2. Accordingly we have made studies
with Lg(sea) # Lg(valence), the most straightforward choice being Lg(sea) < Lg(valence).

* Wilson kernel: We have replaced the Shamir kernel (8) in the definition (7) of Doy, where
the corresponding DWF operator is represented as an Lg X Ly matrix!

Dyw-M+I  -P. 0 im®P,
P, Dw-M+I  -P_ 0
Dspr = 12
SHT 0 P, Dw-M+I  -P. (12)
—im®P_ 0 P, Dyw-M+I

IThe corner elements in (12,13) are appropriate for a mass term inuyy3y, equivalent to myny after U(2N) rotation.
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Figure 3: Convergence of the overlap with increasing Ly on a fixed 123 auxiliary background, for both
Shamir and Wilson kernels, and mass terms m ¥y, magriyay, with mya = mza = 0.05.

with the Wilson kernel A = Dw — M, with DWF transcription

A+ (A-DP- 0 —im(A - P,
Dwir = (A-DPs A+1 (A-DP- 0 (13)
0 (A-DP, A+I (A -DP-
+im(A - )P- 0 (A-DP; A+1

which is much better-conditioned.

* Improved Rational approximation for sgn: The approach of Dpwr to Doy at finite Ly
depends on a rational approximation to sgn(A) = A/ VAT A expressed as a product of Ly
factors. We have replaced the hyperbolic tangent (HT) form

s 1-x\"
- -1 — HT . —
sgn(x) = tanh(Lg tanh™" x) T+ 707 with Tgr ( T x) (14)

used in vanilla DWF [6] by the Zolotarev (Z) approximation

Lg/2-1 2 L
-7 T am - x s 1
sgn(x) ~ — 2 = gp ot @ =X)Ly Tz = [, (15)
472 T dn = x) o1 L ¥ @sx
m= $=

where the coefficients a,,, dp,, d depend on the applicable range of the approximation, chosen
to match the spectral range of A [8]. The superior Ls-convergence of Z over HT is shown
in Fig. 3. The coefficients wy found via the roots of sgn(x) = 1 can be used to replace all
instances of A in the sth row of (13) by wsA to yield the optimised DWF introduced by
Chiu [8].

4. Results for the Equation of State

Since determination of the bilinear condensate on a finite system requires m # 0, our approach
to characterising the critical properties is to fit a renormalisation group-inspired equation of state
(EoS) to data collected in the critical regime but with m > 0:

m=A(g - g2 )W) P + Bly)°. (16)
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Figure 4: Thirring model equation of state on 123

Shamir PQ 123 Wilson PQ 123 Shamir 16° staggered 163 staggered FSS
Ls(v) = 300HT Ly(v) =30Z [5] (9] [10]

agz? 0.339(24) 0.336(33) 0.283(1) - -

B 0.89(26) 1.04(29) 0.320(5) 0.57(2) 0.70(1)

0 2.07(40) 2.08(33) 4.17(5) 2.75(9) 2.63(2)

v 0.91(28) 1.1(3) 0.55(1) 0.71(3) 0.85(1)

n 0.96(18) 0.95(15) 0.16(1) 0.60(4) 0.65(1)

Table 1: Critical parameter fits

Data from a partially-quenched approach using the Shamir kernel is shown in Fig. 4(a) and from
the Wilson kernel with Zolotarev approximation to sgn in the valence sector in Fig. 4(b). The fitted
critical coupling ag-? and exponents S, § are tabulated in Table 1, along with further exponents
v,n estimated from hyperscaling. For comparison results from the earlier study [5] based on
extrapolating Shamir kernel data to L; — oo using the Ansatz (10), as well as two complementary
studies of the Thirring model formulated with staggered lattice fermions, one using the HMC
algorihm on fixed volume fitting the EoS (16) [9], and one using the fermion bag algorithm to
perform a finite volume scaling analysis [10], are also shown.

Since Shamir and Wilson kernels are in effect two distinct regularisations of the Thirring model,
we expect the derived critical exponents to coincide. While larger volumes and more statistics are
needed to make definitive conclusions, the compatibility of the results from the two new approaches
is encouraging, and consistent with universal scaling at a critical point for N = 1. The new results
are also clearly incompatible with previous published results [5], suggesting that the exponential
extrapolation (10) is not controlling the large-L limit at accessible values of Lg; in particular the
approach seems to under-estimate the critical g_ 2. Finally, it is worth remarking that the Thirring
model defined using DWF yields distinct critical properties to those of the staggered fermion model,
corroborating the claim that at a strongly-coupled continuum limit naive taste symmetry recovery
cannot be assumed. Rather, it may well be that a distinct interacting fermion theory based on the
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UN)®U(N) symmetry of Kéhler-Dirac fermions may exist, as outlined in [2].
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