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After briefly reviewing the potential for the N-flavor Thirring model, formulated with reducible
fermions in 2+1d, to exhibit a strongly-coupled UV-stable fixed point where U(2N) symmetry is
spontaneously broken by a fermion bilinear condensate, we present recent lattice studies using
the Domain Wall Fermion formulation. In particular, we focus on possible improved methods for
extracting the necessary Ls → ∞ limit, where Ls is the wall separation, through a combination
of partial quenching (ie. Ls(valence) > Ls(sea)), replacing the Shamir kernel with the Wilson
kernel in the definition of the overlap operator, and improved estimation of the signum function
using the Zolotarev approximation. Equation of state fits for critical exponents on 123 systems
yield encouraging agreement between distinct approaches, consistent with universal scaling, while
contradicting earlier fits based on a naive extrapolation. The new results are also in tension with
old results obtained with staggered fermions.
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1. Introduction

The Thirringmodel is a covariant quantum field theory of interacting fermions with Lagrangian
density

L = ψ̄i(∂/+m)ψi +
g2

2N
(ψ̄iγµψi)

2. (1)

Here the index i runs over N flavors. The contact interaction between currents is repulsive between
like charges and attractive between opposite. In 2+1d we may specify the fields ψ, ψ̄ to lie in
reducible representations of the spinor algebra, so that the Dirac matrices γµ are 4 × 4, and there
is a matrix γ5 = γ0γ1γ2γ3 such that {γ5, γµ} = 0. For sufficiently large interaction strength g2 and
sufficiently small N the Fock vacuummay be disrupted through formation of a particle – antiparticle
bilinear condensate

〈ψ̄ψ〉 ≡
∂ ln Z
∂m

, 0. (2)

This results in a dynamically-generated mass gap at Dirac points where E( ®p) = 0, in close analogy
to chiral symmetry breaking in QCD. It has been hypothesised [1] that the transition to non-
vanishing condensate at g2

c(N) defines a Quantum Critical Point whose universal properties could
perhaps characterise low energy electronic excitations in a planar material such as graphene. Such
a fixed point would correspond to a strongly-interacting quantum field theory with a priori no small
dimensionless parameters.

In the absence of a bare fermion mass the Lagrangian (1) is invariant under a global U(2N)
generated by the following rotations:

ψ 7→ eiαψ ψ̄ 7→ ψ̄e−iα; ψ 7→ eαγ3γ5ψ, ψ̄ 7→ ψ̄e−αγ3γ5 ; (3)
ψ 7→ eiαγ3ψ, ψ̄ 7→ ψ̄eiαγ3 ; ψ 7→ eiαγ5ψ, ψ̄ 7→ ψ̄eiαγ5 . (4)

Once m , 0 (4) are no longer symmetries, so bilinear condensation results in a symmetry breaking
U(2N) →U(N)⊗U(N); this should be compared to the pattern U(N)⊗U(N) →U(N) which pertains
either to models built using staggered lattice fermions or continuum models using the Kähler-Dirac
formulation of relativistic fermions [2].

2. Domain Wall Fermions

In a series of papers [3–5] we have studied the strong dynamics of this proposed symmetry
breaking through lattice simulations with reducible fermions implemented through a domain wall
construction of the form Lkin = Ψ̄(x, s)DDWFΨ(y, s′), where s, s′ are coordinates along a fictitious
third spatial direction, with open boundaries (ie. domain walls) separated by distance Ls. As
Ls → ∞, near zero-modes of DDWF are localised on the walls as ± eigenmodes of γ3, and
U(2N)-symmetric 2+1d physics described in terms of

ψ(x) = P−Ψ(x, 1) + P+Ψ(x, Ls); ψ̄(x) = Ψ̄(x, Ls)P− + Ψ̄(x, 1)P+, (5)

with projectors P± = 1
2 (1 ± γ3).
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Now, for an arbitrary Dirac kernel D operating in the target 2+1d space, the closest we can get
to U(2N) symmetry is articulated by the Ginsparg-Wilson (GW) relations

{γ3,D} = 2Dγ3D; {γ5,D} = 2Dγ5D; [γ3γ5,D] = 0. (6)

By construction (6) are satisfied by the 2+1d overlap operator

Dov =
1
2

[
(1 + m) + (1 − m)

A
√
A†A

]
; (7)

for the choice of Shamir kernel

A = [2 + DW − M]−1[DW − M], (8)

with DW the 2+1d Wilson fermion kernel and Ma = O(1) the domain wall height, the overlap
operator Dov can be shown to be equivalent to the Ls →∞ limit of DDWF used to date [6]:

lim
Ls→∞

detDDWF (m)
detDDWF (m = 1)

= detDov(m). (9)

The four-fermion interaction in the Thirring model may be reproduced by the introduction of a

⟨ψ̄ ψ⟩∞ − ⟨ψ̄ ψ⟩Ls
= A(β, m)e−Δ(β,m)Ls

Decay constant : Δ(β, m)
 at weak coupling∼ ∝ m0

 at strong coupling∼ ∝ m

ma = 0.05

ma = 0.005

ma

 not yet under control  
at lightest masses, strongest couplings

Ls → ∞
Have Ls = 8,16,…,80

Stress-testing DWF…

(a) ∆(β,m) on 163 × Ls [5]
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(b) δh(β,m) on 163 × 48 [5]

Figure 1: Quantifying the approach to Ls →∞

bosonic vector auxiliary field Aµ coupled to the conserved current iψ̄γµψ. In the lattice model
set out in [3–5], Aµ is located on a link of the 2+1d lattice and linearly coupled to the conserved
DWF current which is defined throughout the bulk. Hence off-diagonal elements of DDWF are
of the form Dµ ∼ (1 + iAµ) rather than the canonical Dµ ∼ eiAµ of abelian gauge theories: the
link fields are thus non-compact and non-unitary, which makes inversion of DDWF numerically
challenging. We simulate the Thirring model with N = 1 using the RHMC algorithm to reproduce
the functional measure

√
detD†DWFDDWF [4]. Taking Ls → ∞ is hard; we have fitted data from

163 × Ls = 8, 16, . . . , 80 using an exponential Ansatz

〈ψ̄ψ〉∞ − 〈ψ̄ψ〉Ls = A(β,m)e−∆(β,m)Ls, (10)
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Ch.9 Dynamic Overlap Condensate Results 90

Figure 9.17: Dynamic condensate plots with the Shamir kernel varying Ls. Left
panel: C vs �. Right panel: C vs m.

Following the intuition that there may be no requirement for the auxiliary field to be

generated with such a stringent Ls value, we look at partially quenched condensates in

fig. 9.18. In the left panel, the � = 0.4 case is considered. Fig. 9.17 indicates that the

solution is Ls converged by Ls = 60. To the two curves with sea and valence fermions

calculated with the same Ls values, are added curves where the valence fermions, and

hence the condensate is measured, with a di↵erent Ls value. In the first additional

curve, the auxiliary fields are generated with Ls = 24 and the measurements are made

with Ls = 60. In the second, we reverse the procedure and generate the auxiliary fields

with Ls = 60 and measure with Ls = 24. Pleasingly, it seems su�cient to use the

Ls = 24 auxiliary field to capture the converged Ls measurement. On the other hand,

there seems to be nothing to be gained from overextending the Ls value of the auxiliary

field if it is not to be matched in the measurement. This pattern seems to be matched

in the right panel, considering the � = 0.24 case, although slightly less convincingly at

the m = 0.01 datapoint, even though the Ls limit has not been reached. Given the

high costs of dynamically generating the auxiliary fields, this represents a significant

potential in compuational cost cutting.
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m
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A60M96,� = 0.24
A96M96,� = 0.24

Figure 9.18: Partially quenched Shamir condensates. AXMY in the legend denotes
the auxiliary fields were generated with Ls = X, and the measurements were taken

with Ls = Y . Left panel: � = 0.4. Right panel: � = 0.24.

Figure 2: Bilinear condensate for Shamir kernel on 123 × Ls at β = 0.24, for various different Ls(sea)
(labelled A in key), for Ls(valence) = 24 (yellow), 60 (blue), 96 (orange) (labelled M in key).

with inverse coupling β ≡ ag−2. Fig. 1(a) shows a compendium of fitted values for ∆. For weak
coupling β > 0.4, ∆ is roughly m-independent (blue band), but for stronger couplings β < 0.35,
∆ ∝ m (red band), implying that here the large-Ls limit is extremely challenging in the massless
limit. Fig. 1(b) shows a compendium of the residual δh defined by

δh ≡ =〈Ψ̄(1)γ3Ψ(Ls)〉 ≈
1
2

(
〈ψ̄ψ〉 − i〈ψ̄γ3ψ〉

)
(11)

which should vanish if the U(2N) symmetry relating the two condensates on the RHS is restored.
Again, at fixed Ls and strong coupling the symmetry restoration becomes harder as m→ 0. Further
results for the locality of Dov and the restoration of the GW relations (6) can be found in [5].

3. Improving Ls →∞

Since lack of control of the Ls →∞ limit casts doubt on the accuracy of earlier studies [4, 5], we
have recently experimented with three strategies for ameliorating the problem. Further discussion
can be found in [7].

• Partial Quenching (PQ): This is the most straightforward to implement. The main impact
of finite Ls appears in measurements in the fermion sector (the chief example being the
bilinear condensate order parameter itself), while the effect on the underlying bosonic Aµ
configurations is much milder, as exemplified in Fig. 2. Accordingly we have made studies
with Ls(sea) , Ls(valence), the most straightforward choice being Ls(sea) � Ls(valence).

• Wilson kernel: We have replaced the Shamir kernel (8) in the definition (7) of Dov, where
the corresponding DWF operator is represented as an Ls × Ls matrix1

DSHT =

©­­­­«
DW − M + I −P− 0 imP+
−P+ DW − M + I −P− 0

0 −P+ DW − M + I −P−

−imP− 0 −P+ DW − M + I

ª®®®®¬
(12)

1The corner elements in (12,13) are appropriate for a mass term imψ̄γ3ψ, equivalent to mψ̄ψ after U(2N) rotation.
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Better rational approximation of sgn(!)
sgn(x) ≈ tanh(Ls tanh−1 x) = 1 − $HT

1 + $HT

sgn(x) ≈ 1 − $Z

1 + $Z
≡ dx

∏Ls/2−1
m=1 (am − x2)

∏Ls/2
m=1 (dm − x2)

coefficients  depend on range of applicability of approximation  
and are given in terms of Jacobi elliptic functions
am, dm, d

$HT = ( 1 − x
1 + x )

Ls

$Z =
Ls

∏
s=1

1 − ωsx
1 + ωsx

DWZ =
ω1DW + I (ω1DW − I )P− 0 −im(ω1DW − I )P+

(ω2DW − I )P+ ω2DW + I (ω2DW − I )P− 0
0 (ω3DW − I )P+ ω3DW + I (ω3DW − I )P−

+im(ω4DW − I )P− 0 (ω4DW − I )P+ ω4DW + I

Optimal DWF
T-W Chiu PRL90 (2003) 071601

Zolotarev 
approximation

Euclidean Cayley transformReplace

with

Ch.7 Locality and the GW error 51

limit). This is shown in the right panel where the convergence plots are identical for the

corresponding formulations. 122 ⇥ 12 lattices were used and the auxiliary field instance

was generated, with the quenched assumption, with weak coupling of � = 2. Not only

do we want each formulation to converge with Ls, we want all Shamir formulations to

convergence to the same values, and all Wilson formulations to converge to the same

values, although these will be distinct. Happily, we find this to be the case.
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1e-08
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WM3,HT
WM1,Z
WM3,Z

Figure 7.1: Dirac Operator Convergence. Left panel: Direct evaluation of the overlap
operator (eqn. 3.55 and variants). Right panel: Indirect calculation of the overlap

operator through KDW (eqn. 3.91) and KM3
DW (eqn. 3.92)

7.2 Locality of Overlap Operator

Overlap and domain wall fermions operators in the Ls ! 1 limit obey the GW relation.

In order to recover the U(2) symmetry in the continuum limit a ! 0, we must have

the GW terms aD�5D (eqn.3.19) and equivalently the transform terms aD
2 (eqn.3.21)

vanishing in the same limit. A su�cient condition for this to be the case is the Dirac

operator being exponentially local, which also ensure the uniqueness of the continuum

limit [52]. The overlap operator is a dense matrix and manifestly non-local and hence

exponential locality is certainly not obvious. Proof that it is has been given for the

overlap operator in 3+1d in the weakly coupled region for QCD [52], and numerical

support was also provided. The proof depends on the positive real boundedness of

H†H, where H is the kernel of the sign function, and makes a separate case for when

the smallest eigenvalues go to zero. However, the upper boundedness stems from the

unitarity of the gauge links U = ei✓. However, with the non-unitarity U = 1 + i✓, there

is no such bound. Further, we are considering a strongly coupled region. Considering

these factors, it is not inevitable that locality will hold near a critical region, nor in an

unbounded model of di↵erent dimension.

To recover continuum U(2) symmetry as a ! 0, we require

errLs = |Dov;Lsψ − Dov;Ls−2ψ |

With

⇒
Figure 3: Convergence of the overlap with increasing Ls on a fixed 123 auxiliary background, for both
Shamir and Wilson kernels, and mass terms m1ψ̄ψ,m3ψ̄iγ3ψ, with m1a = m3a = 0.05.

with the Wilson kernel A = DW − M , with DWF transcription

DWHT =

©­­­­«
A + I (A − I)P− 0 −im(A − I)P+
(A − I)P+ A + I (A − I)P− 0

0 (A − I)P+ A + I (A − I)P−
+im(A − I)P− 0 (A − I)P+ A + I

ª®®®®¬
(13)

which is much better-conditioned.

• Improved Rational approximation for sgn: The approach of DDWF to Dov at finite Ls

depends on a rational approximation to sgn(A) ≡ A/
√
A†A expressed as a product of Ls

factors. We have replaced the hyperbolic tangent (HT) form

sgn(x) ≈ tanh(Ls tanh−1 x) =
1 − THT

1 + THT
with THT =

(
1 − x
1 + x

)Ls

(14)

used in vanilla DWF [6] by the Zolotarev (Z) approximation

sgn(x) ≈
1 − TZ
1 + TZ

≡ dx

∏Ls/2−1
m=1 (am − x2)∏Ls/2
m=1 (dm − x2)

with TZ =

Ls∏
s=1

1 − ωsx
1 + ωsx

, (15)

where the coefficients am, dm, d depend on the applicable range of the approximation, chosen
to match the spectral range of A [8]. The superior Ls-convergence of Z over HT is shown
in Fig. 3. The coefficients ωs found via the roots of sgn(x) = 1 can be used to replace all
instances of A in the sth row of (13) by ωsA to yield the optimised DWF introduced by
Chiu [8].

4. Results for the Equation of State

Since determination of the bilinear condensate on a finite system requires m , 0, our approach
to characterising the critical properties is to fit a renormalisation group-inspired equation of state
(EoS) to data collected in the critical regime but with m > 0:

m = A(g−2 − g−2
c )〈ψ̄ψ〉

δ−1/β + B〈ψ̄ψ〉δ . (16)

5
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which would have been a disappointing result. Of course, this data only hints at the

similarity of the results, and more and better data is required. Results in the next chap-

ter will suggest a further refinement of the window should be considered, ie smaller m

values with a more focused � range around the critical value.

We note the significant di↵erence with the values given in [8]. The exponents found

with a Shamir kernel on 162 ⇥ 16 mesh were �c = 0.320(5), �m = 0.320(5), � = 4.17(5),

corresponding to ⌫ = 0.55(1) and ⌘ = 0.16(1). Further comparison with a staggered

formulation may be considered which give �m = 0.57(2), � = 2.75(9), corresponding to

⌫ = 0.60(4) and ⌘ = 0.71(3). We attribute the di↵erence to the lack of Ls convergence

in earlier work. Although extrapolation techniques were utilized, as hinted at in section

8.1, we suspect the Ls convergence curves may not be amenable to such techniques.

Figure 9.26: Equation of State fits with di↵erent condensate data windows for Shamir
HT formulations. The critical coe�cients at the top of each plot are tabulated in table

9.2. Ls = 300 for the measurements in all cases.

 PQ, Shamir, HT123

m = A(g−2 − g−2
c )⟨ψ̄ψ⟩δ−1/β + B⟨ψ̄ψ⟩δ

g−2
c = 0.339(24); β = 0.89(26); δ = 2.07(40)

ν = 0.91(28); η = 0.96(18)

Ls(sea) = 96, Ls(valence) = 300

Equation 
of State

fitted critical  
parameters

order parameter 
requires  

hence measurements 
taken with 

D−1[A]
m > 0

⇒ (a) Shamir kernel, Ls(sea) = 30, Ls(valence) = 300

 Wilson, Ls(sea)=30HT, Ls(valence)=30Z
Zolotarev range [0.0005,20] 

123

m = A(g−2 − g−2
c )⟨ψ̄ψ⟩δ−1/β + B⟨ψ̄ψ⟩δ

g−2
c = 0.336(33); β = 1.04(29); δ = 2.08(33)
ν = 1.1(3); η = 0.95(15)

Ch.9 Dynamic Overlap Condensate Results 95

case id Ls � �c �m � �2/dof

dw1 24 [0.20,0.6] 0.328(22) 1.06(19) 2.111(208) 0.189
dw2 30 [0.20,0.6] 0.326(26) 1.01(23) 2.132(267) 0.151
dw3 24 [0.22,0.55] 0.339(30) 1.07(27) 2.067(287) 0.106
dw4 30 [0.22,0.55] 0.336(33) 1.04(29) 2.078(325) 0.0899
dw5 24 [0.22,0.50] 0.355(37) 1.19(32) 1.942(294) 0.0738
dw6 30 [0.22,0.50] 0.349(40) 1.13(33) 1.979(339) 0.0694

Table 9.1: Equation of state critical exponents found with partially quenched Wilson
Zolotarev kernel for di↵erent � data range windows. Mass range is [0.01, 0.05].

Figure 9.25: Equation of State fits with di↵erent condensate data windows for Wilson
Zolotarev formulations. The critical coe�cients at the top of each plot are tabulated
in table 9.1. Left panel: uses Ls = 24 for measurements. Right panel: uses Ls = 30 for

measurements.

Note we have doubled the errors of the condensate measurement in the fit. As noted for

EoS:

fitted critical  
parameters

(b) Wilson kernel, Ls(sea) = 30HT, Ls(valence) = 30Z

Figure 4: Thirring model equation of state on 123

Shamir PQ 123 Wilson PQ 123 Shamir 163 staggered 163 staggered FSS
Ls(v) = 300HT Ls(v) = 30Z [5] [9] [10]

ag−2
c 0.339(24) 0.336(33) 0.283(1) - -

β 0.89(26) 1.04(29) 0.320(5) 0.57(2) 0.70(1)
δ 2.07(40) 2.08(33) 4.17(5) 2.75(9) 2.63(2)
ν 0.91(28) 1.1(3) 0.55(1) 0.71(3) 0.85(1)
η 0.96(18) 0.95(15) 0.16(1) 0.60(4) 0.65(1)

Table 1: Critical parameter fits

Data from a partially-quenched approach using the Shamir kernel is shown in Fig. 4(a) and from
the Wilson kernel with Zolotarev approximation to sgn in the valence sector in Fig. 4(b). The fitted
critical coupling ag−2

c and exponents β, δ are tabulated in Table 1, along with further exponents
ν, η estimated from hyperscaling. For comparison results from the earlier study [5] based on
extrapolating Shamir kernel data to Ls → ∞ using the Ansatz (10), as well as two complementary
studies of the Thirring model formulated with staggered lattice fermions, one using the HMC
algorihm on fixed volume fitting the EoS (16) [9], and one using the fermion bag algorithm to
perform a finite volume scaling analysis [10], are also shown.

Since Shamir andWilson kernels are in effect two distinct regularisations of the Thirringmodel,
we expect the derived critical exponents to coincide. While larger volumes and more statistics are
needed to make definitive conclusions, the compatibility of the results from the two new approaches
is encouraging, and consistent with universal scaling at a critical point for N = 1. The new results
are also clearly incompatible with previous published results [5], suggesting that the exponential
extrapolation (10) is not controlling the large-Ls limit at accessible values of Ls; in particular the
approach seems to under-estimate the critical g−2

c . Finally, it is worth remarking that the Thirring
model defined using DWF yields distinct critical properties to those of the staggered fermion model,
corroborating the claim that at a strongly-coupled continuum limit naive taste symmetry recovery
cannot be assumed. Rather, it may well be that a distinct interacting fermion theory based on the

6
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U(N)⊗U(N) symmetry of Kähler-Dirac fermions may exist, as outlined in [2].
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