
P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
3
4
4

Euclidean Weak-Field General Relativity on the Lattice

C. Bouchard∗

University of Glasgow,
Glasgow, UK

E-mail: chris.bouchard@glasgow.ac.uk

A lattice formulation of Euclidean, weak-field, path integral quantized general relativity – the
low energy effective theory of quantum gravity – is presented. The lattice formulation allows
the generation of a Markov chain of dynamic, vacuum (matter free) spacetimes at non-zero
temperature, obtained here using the Metropolis algorithm. The positive action conjecture is
implemented on the lattice, ensuring both a probabilistic interpretation of exp(−𝑆GR) and that
𝛿(𝑆GR) = 0 generates the Einstein field equations. Equilibrated spacetimes are found to have
nonzero curvature, a consequence of quantization. Preliminary studies of discretization and finite
volume systematic effects, and the variation of vacuum spacetime curvature with temperature are
presented. Prospects and future directions, including the combination with the QCD vacuum, are
discussed.
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1. Euclidean, path integral quantized, weak-field general relativity

Neglecting a cosmological constant, the general relativistic (GR) action and path integral are

𝑆GR =

∫
𝑑4𝑥 𝜅

√︁
−det 𝒈 𝑅, 𝑍 =

∫
𝑑 [𝒈] 𝑒i𝑆GR (𝒈) , (1)

where 𝜅 = 𝑐4/16𝜋𝐺 ∼ 1035 fm−2.1 Wick rotation 𝑡 → −i𝑡E, or equivalently complexifying the
metric

√︁
−det 𝒈 → −i

√︁
det 𝒈E, and identifying 𝑆GR → i𝑆GR,E gives

𝑆GR = −
∫

𝑑4𝑥 𝜅
√︁

det 𝒈 𝑅, 𝑍 =

∫
𝑑 [𝒈] 𝑒−𝑆GR (𝒈) , (2)

where we drop the subscript E and work exclusively with Euclidean metric. In the weak-field
regime and using the background field method [1], the dynamic small field 𝒉(𝑥) lives on a static
flat background spacetime with metric 𝜼 = diag(1, 1, 1, 1), so that

𝑔𝜇𝜈 (𝑥) = 𝜂𝜇𝜈 + ℎ𝜇𝜈 (𝑥) , |ℎ𝜇𝜈 | ≪ 1 . (3)

Because 𝒉 lives on flat spacetime, a simple Wick rotation suffices and we avoid issues associated
with complex metric [2]. There is no distinction between upper and lower indices and we use
lower throughout. At O(ℎ),

√︁
det 𝒈 𝑅 is a total derivative whose integral vanishes due to boundary

constraints discussed in Sec. 3. The leading contribution to LGR is then O(ℎ2) [1],

L (2)
GR =

𝜅

2

(
1
2
(𝜕𝜌ℎ𝜇𝜈)2 − 1

2
(𝜕𝜇tr 𝒉)2 + 𝜕𝜈ℎ𝜇𝜈𝜕𝜇tr 𝒉 − 𝜕𝜌ℎ𝜇𝜈𝜕𝜈ℎ𝜌𝜇

)
. (4)

Some historical context: The path integral was proposed in [3] as an approach to quantum
gravity then later revived with Euclidean metric (see the collected works in [4]), which required
ensuring 𝑆GR ≥ 0 via the positive action conjecture [5–8]. Though nonrenormalizability [1, 9]
moved the search for a UV completion elsewhere, this can be seen as a simple consequence of
an effective field theory description of the UV theory. In the weak-field formulation developed
here with lattice spacing 𝑎, 𝜇 = 1/𝑎 must be below the Planck scale 𝜇 ≪ 𝑚P, or equivalently
𝑎 ≫ ℓP ∼ 10−20 fm. In principle, the effective theory includes terms proportional to 𝑅2 and
𝑅2
𝜇𝜈 , though their contributions are small in the weak-field regime [10]. L (2)

GR is quadratic in 𝒉

so is amenable to analytic perturbation theory. The approach developed here may offer a cross
check of perturbative results [11, 12] and provide temperature dependence. The eventual goal is a
combination of the spacetime and QCD vacuua to permit two-way interaction.

2. Gauge fixing and discretization

GR has two physical degrees of freedom but symmetric 𝒉 has 10 components. Gauge fixing,
for which we choose the harmonic gauge,

𝜕𝜇ℎ𝜇𝜈 −
1
2
𝜕𝜈tr 𝒉 = 0 , (5)

1Both 𝜅 and 𝑅 have mass dimension 2. We input a value for the dimensionless quantity 𝑎2𝜅 and extract, e.g., the
dimensionless quantity 𝑎2𝑅 from the simulation. The value of 𝑎2𝜅 fixes the lattice spacing in the simulation.
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eliminates four degrees of freedom. Four more are constrained by the contracted Bianchi identity,
𝜕𝜇𝐺𝜇𝜈 = 0, written in terms of the Einstein tensor, 𝐺𝜇𝜈 = 𝑅𝜇𝜈 − 1

2𝑅𝑔𝜇𝜈 . As part of the Metropolis
update algorithm Eq. (5) is used to fix diagonal entries of 𝒉 in terms of ℎ𝜇𝜈 with 𝜇 < 𝜈.

A discrete (nth order forward finite difference approximation, denoted 𝑓𝑛) and finite volume
introduce discretization and finite volume systematic effects

𝜕𝜈 ℎ𝛼𝛽 = 𝛿
( 𝑓𝑛)
𝜈 ℎ𝛼𝛽 + O(𝑎𝑛) ,

∫
𝑑4𝑥 = 𝑎4

∑︁
𝑥

+ O(FV) , (6)

so that the lattice GR action is

𝑆GR = 𝑎4
∑︁
𝑥

L (2, 𝑓𝑛)
GR (𝑥) + O(ℎ3, 𝑎𝑛, FV) . (7)

We use the same discretization to evaluate Eqs. (4) and (5).

3. Positive action conjecture

Provided 𝑆GR ≥ 0, the Markov chain gives snapshots of the dynamic spacetime vacuum with
probability 𝑝(𝒉) ∝ 𝑒−𝑆GR (𝒉) . 𝑆GR ≥ 0 is imposed via the positive action conjecture [5–8]: all
four-dimensional Riemannian asymptotically Euclidean manifolds have 𝑆GR ≥ 0, with 𝑆GR = 0 if
and only if the manifold is everywhere flat. The proof [8] uses 𝑅(𝑥) ≤ 0 for all 𝑥 and we require
this to ensure a well-defined local probability density.

In analytic work, the positive action conjecture is enforced by adding a surface term to the
action, e.g., the Gibbons-Hawking-York term,

𝑆GHY = 2𝜅
∫
𝜕𝑉

√︁
det 𝒈̂

(
𝑔̂
𝜇
𝜈 𝜕𝜇𝑛

𝜈 + 1
2
𝑔̂𝜈𝜌𝑛𝜇𝜕𝜇𝑔𝜈𝜌

)
, (8)

with 𝑛 the unit normal to 𝜕𝑉 . 𝛿(𝑆GR + 𝑆GHY) = 0 then ensures the metric induced on the boundary,
𝒈̂ = 𝒈 |𝜕𝑉 , asymptotes to the flat space metric at infinity, ie. 𝒈̂ = 𝜼̂ + O(1/𝑉), and that the Einstein
field equations minimize the action. With the same discretization used to evaluate Eqs. (4) and (5),
we instead explicitly impose

𝒉|𝜕𝑉 = 0 , 𝑛 · 𝜕𝒉|𝜕𝑉 = 0 (9)

on proposed values of 𝒉 on and near, as specified by the discretization, the boundary.
Perhaps because we use a discrete approximation of a Riemannian manifold, and/or because we

impose positive action in finite volume, we see violations despite imposing Eq. (9). We additionally
require that for proposed update 𝒉 → 𝒉̃, 𝑅( 𝒉̃) ≤ 0 everywhere, else the update is rejected. The
frequency of violations is observed to decrease with increasing volume.

4. Metropolis updates

The merger of the positive action constraint, gauge fixing, and the Metropolis update algorithm
is illustrated in Fig. 1. The size of random updates proposed for 𝒉 are fixed by the Planck length ℓP,
ie. ℎ𝛼𝛽 → ℎ̃𝛼𝛽 = ℎ𝛼𝛽 + 𝜖𝛼𝛽 with 𝜖𝛼𝛽 uniformly distributed in −ℓP/𝑎 ≤ 𝜖𝛼𝛽 ≤ ℓP/𝑎. Fig. 2 plots
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Figure 1: Sketch of a Metropolis sweep through the lattice, with 20 updates per spacetime point, including
gauge fixing and the positive action conjecture. 𝑅 ≤ 0 is enforced for all spacetime points at which 𝑅 changes
as a result of a proposed update and the change in 𝑆GR is evaluated over the same subset of spacetime points.

Figure 2: 𝑆GR/𝑁𝑡𝑁
3
𝑠 versus sweep for various choices of max |𝜖𝛼𝛽 | shows the Planck length results in the

most efficient approach to thermalization. Larger updates result in lower acceptance rates while smaller
updates have larger acceptance rates but require more sweeps to reach thermalization.

𝑆GR/𝑁𝑡𝑁
3
𝑠 = −𝑎4𝜅

〈√︁
det 𝒈 𝑅

〉
, a proxy for the magnitude of the average curvature, demonstrating

that the Planck length is the optimal choice for thermalization.
Ensembles generated are listed in Table 1, with parameters chosen to allow finite volume and

temperature studies and a comparison of discretizations 𝑓 1 and 𝑓 2. The left panel of Fig. 3 shows
a Markov chain of ensembles, demonstrating nonzero curvature of the spacetime vacuum, a conse-
quence of the quantization of 𝒉. The Metropolis algorithm suffers from significant autocorrelation,
with autocorrelation lengths O(103) times longer than quenched lattice QCD with a similar setup.
The right panel of of Fig. 3 shows the significant binning required to address autocorrelations.2

2Large autocorrelations result in low statistics, e.g., 13.9 binned measurements in Fig. 3. Errors are inflated by the
student t distribution factor,

√︁
(𝑁 − 1)/(𝑁 − 3) for 𝑁 binned measurements, to partially address this.
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ensemble discretization 𝑎/fm 𝑁𝑡 𝑇/MeV 𝑁𝑠 𝐿/fm 𝑁cfg bin size
f1T137L072 𝑓 1 0.241 6 136.7 33 0.722 30481 2200
f1T137L144 𝑓 1 0.241 6 136.7 63 1.44 35812 3000
f1T137L217 𝑓 1 0.241 6 136.7 93 2.17 12449 800
f1T137L289 𝑓 1 0.241 6 136.7 123 2.89 15081 1800
f1T137L361 𝑓 1 0.241 6 136.7 153 3.61 6061 1500
f2T137L144 𝑓 2 0.241 6 136.7 63 1.44 19421 1400
f2T117L144 𝑓 2 0.241 7 117.1 63 1.44 32606 4000
f2T103L144 𝑓 2 0.241 8 102.5 63 1.44 22727 2000

Table 1: Ensembles with spacetime volume 𝑎𝑁𝑡 (𝑎𝑁𝑠)3 generated for this study. Top panel ensembles use
discretization 𝑓 1 and have varying spatial volume while bottom panel ensembles use 𝑓 2 and have varying
temperature. The last column gives the bin size required to address autocorrelations.

Figure 3: Left: The Markov chain for ensemble f1T137L072 is illustrated by plotting 𝑆GR/𝑁𝑡𝑁
3
𝑠 versus

sweep. Right: A binning analysis of 𝑆GR/𝑁𝑡𝑁
3
𝑠 for saved configurations (every 100th sweep), with error

band highlighted for a bin size of 2200.

5. Preliminary results, outlook, and summary

Though lattice spacings are only required to satisfy 𝑎 ≫ ℓP, we choose 𝑎 in anticipation of
coupling spacetime and QCD. We are also generating vacuum spacetimes with zeptometer and
nanometer scale lattice spacings to permit a study of scale dependence. Nonrenormalizability
complicates the removal of discretization effects. In lieu of perturbatively running results at
different lattice spacings to a common scale, we instead compare discretizations at fixed lattice
spacing. Equilibrated ensembles f1T137L144 and f2T137L144 reveal a relative Δ𝑆 ( 𝑓 1, 𝑓 2)

GR of 13%.
We are implementing the third order forward finite difference, 𝑓 3, to see if |Δ𝑆 ( 𝑓 2, 𝑓 3)

GR | < Δ𝑆
( 𝑓 1, 𝑓 2)
GR ,

which would provide further indication that discretization effects are under control.
The left panel of Fig. 4 shows results for 𝑆 (2, 𝑓 1)

GR /6𝑁3
𝑠 as a function of 𝑁𝑠, illustrating the feasi-

bility of an infinite volume extrapolation. The only low energy scale in the simulation comes from
the lattice spacing 𝜇 = 1/𝑎 (and perhaps the temperature, 𝑇 = 1/𝑎𝑁𝑡 , though within uncertainties
the data do not require a second scale). Assuming exponentially decaying FV effects, the result
of an unconstrained fit to 𝑓 (𝑁𝑠) = 𝑓∞ − 𝑓𝜇𝑒

−𝑁𝑠 is shown overlayed on the data. The fit finds
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Figure 4: Left: Data for 𝑆 (2, 𝑓 1)
GR /6𝑁3

𝑠 are plotted versus 𝑁𝑠 for lattices with a temperature of 𝑇 = 136.7 MeV.
Overlayed is the result of a fit, discussed in the text, allowing an infinite volume extrapolation. Right: Data
for 𝑆 (2, 𝑓 2)

GR /𝑁𝑡63 are plotted versus 1/𝑁𝑡 for lattices with a spatial extent of 𝐿 = 1.44 fm.

𝑓∞ = 0.7967(13) and 𝑓𝜇 = 0.95(21) with 𝜒2/dof = 3.3/3. This 𝑓∞ corresponds to an infinite
volume average curvature, ⟨𝑅∞⟩ = −3.1262(51) × 10−3 m−2.

The right panel of Fig. 4 shows data for 𝑆 (2, 𝑓 2)
GR /𝑁𝑡63 at three different temperatures. Classical

GR is known to vary with temperature [13] and quantum GR effects have been found to decrease
with temperature [14], consistent with our results.

Autocorrelations severely degrade the efficiency of data generation using the Metropolis al-
gorithm with GR, significantly more so than with quenched QCD. We are implementing the
Hamiltonian Monte Carlo update algorithm [15] in an attempt to address this.

We are currently evaluating components the Einstein tensor 𝐺𝜇𝜈 , which will allow a check
of the contracted Bianchi identity, 𝜕𝜇𝐺𝜇𝜈 = 0, and should allow for a calculation of the quantum
vacuum contribution to the cosmological constant. We are also investigating calculating quantum
corrections to the classical gravitational potential to allow comparison with analytic results [16].

Next, we plan to couple the dynamic vacuua of spacetime and QCD to investigate their
interaction. How these theories are coupled depends whether gravity is treated as a fundamentally
classical or quantum theory [17].

Acknowledgments

Thanks to Salvatore Butera for many helpful discussions. Most of the ensembles were generated
on the University of Glasgow’s Particle Physics Experiment group computing cluster.

References

[1] G. ’t Hooft and M. J. G. Veltman, One loop divergencies in the theory of
gravitation, Ann. Inst. H. Poincare Phys. Theor. A 20, 69-94 (1974),
http://www.numdam.org/item/AIHPA_1974__20_1_69_0/

[2] E. Witten, A Note On Complex Spacetime Metrics, arXiv:2111.06514 [hep-th]

6

http://www.numdam.org/item/AIHPA_1974__20_1_69_0/
https://arxiv.org/abs/2111.06514


P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
3
4
4

Lattice GR C. Bouchard

[3] C. W. Misner, Feynman quantization of general relativity, Rev. Mod. Phys. 29, 497-509 (1957),
doi:10.1103/RevModPhys.29.497

[4] G. W. Gibbons and S. W. Hawking, Euclidean quantum gravity, Singapore: World Scientific
(1993) 586 pages

[5] J. W. York, Jr., Role of conformal three geometry in the dynamics of gravitation, Phys. Rev.
Lett. 28, 1082-1085 (1972), doi:10.1103/PhysRevLett.28.1082

[6] G. W. Gibbons, S. W. Hawking and M. J. Perry, Path Integrals and the In-
definiteness of the Gravitational Action, Nucl. Phys. B 138, 141 (1978),
doi:10.1016/0550-3213(78)90161-X

[7] G. W. Gibbons and C. N. Pope, The Positive Action Conjecture and Asymptotically
Euclidean Metrics in Quantum Gravity, Commun. Math. Phys. 66, 267 (1979),
doi:10.1007/BF01197188

[8] R. M. Schoen and S. T. Yau, Proof Of The Positive Action Conjecture In Quantum Relativity,
Phys. Rev. Lett. 42, 547 (1979), doi:10.1103/PhysRevLett.42.547

[9] M. H. Goroff and A. Sagnotti, Quantum gravity at two loops, Phys. Lett. B 160, 81-86 (1985),
doi:10.1016/0370-2693(85)91470-4

[10] K. S. Stelle, Classical gravity with higher derivatives, Gen. Rel. Grav. 9, 353-371 (1978),
doi:10.1007/BF00760427

[11] J. F. Donoghue, Introduction to the effective field theory description of gravity,
arXiv:gr-qc/9512024 [gr-qc]

[12] C. P. Burgess, Quantum gravity in everyday life: General relativity as an effective field theory,
Living Rev. Rel. 7, 5-56 (2004), doi:10.12942/lrr-2004-5 [arXiv:gr-qc/0311082
[gr-qc]]

[13] R. C. Tolman, On the Weight of Heat and Thermal Equilibrium in General Relativity, Phys.
Rev. 35, 904-924 (1930), doi:10.1103/PhysRev.35.904

[14] F. T. Brandt, J. Frenkel, D. G. C. McKeon and G. S. S. Sakoda, Thermal quantum grav-
ity in a general background gauge, Phys. Rev. D 107, no.8, 085020 (2023),
doi:10.1103/PhysRevD.107.085020 [arXiv:2304.00166 [hep-th]]

[15] S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B
195, 216-222 (1987), doi:10.1016/0370-2693(87)91197-X

[16] J. F. Donoghue, Leading quantum correction to the Newtonian potential, Phys. Rev. Lett.
72, 2996-2999 (1994), doi:10.1103/PhysRevLett.72.2996 [arXiv:gr-qc/9310024
[gr-qc]]

[17] J. Oppenheim, A post-quantum theory of classical gravity?, arXiv:1811.03116 [hep-th]

7

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.29.497
https://doi.org/10.1103/PhysRevLett.28.1082
https://doi.org/10.1016/0550-3213(78)90161-X
https://link.springer.com/article/10.1007%2FBF01197188
https://link.aps.org/doi/10.1103/PhysRevLett.42.547
https://www.sciencedirect.com/science/article/pii/0370269385914704?via%3Dihub
https://doi.org/10.1007/BF00760427
https://arxiv.org/abs/gr-qc/9512024
https://doi.org/10.12942/lrr-2004-5
https://arxiv.org/abs/gr-qc/0311082
https://arxiv.org/abs/gr-qc/0311082
https://journals.aps.org/pr/abstract/10.1103/PhysRev.35.904
https://doi.org/10.1103/PhysRevD.107.085020
https://arxiv.org/abs/2304.00166
https://doi.org/10.1016/0370-2693(87)91197-X
https://doi.org/10.1103/PhysRevLett.72.2996
https://arxiv.org/abs/gr-qc/9310024v2
https://arxiv.org/abs/gr-qc/9310024v2
https://arxiv.org/abs/1811.03116

	Euclidean, path integral quantized, weak-field general relativity
	Gauge fixing and discretization
	Positive action conjecture
	Metropolis updates
	Preliminary results, outlook, and summary

