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Triviality of φ4 theory in four dimensions can be avoided if the bare coupling constant is negative
in the UV. Theories with negative coupling can be put on the lattice if the integration domain for
φ(x) is contour-deformed from the real to the complex domain. In 0+1d (quantum mechanics),
one can recover results from PT -symmetric quantummechanics in this way. In this work, I report
on an attempt to put negative coupling φ4 theory in 4 dimensions on the lattice.
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1. Introduction

It is commonly assumed that scalar field theory with quartic interaction in four dimensions
is quantum trivial in the continuum, meaning that all expectation values of the field theory are
Gaussian. Many people in the lattice community have worked on this subject [1–4], essentially
always corroborating the notion of quantum triviality in scalar field theory.

In 2019 quantum triviality for one and two component scalar fields has been rigorously proved
in Ref. [5]. The mathematical proof rests on certain assumptions regarding the defining action
of the field theory, in particular that the interaction potential is bounded from below. In different
words, the proof assumes that the lattice scalar self-coupling is positive definite λ0 > 0.

However, exact analytic calculations for interacting scalars, which are possible in the O(N)
model in the large N limit [6–9], suggest that the running coupling in the continuum approaches
zero from below [10]

lim
a→0

λ0 → 0− , (1)

where a is the lattice spacing for the theory.
From the outset, negative coupling lattice field theory faces an important issue: The standard

path integral representation for the partition function can not be used to access the negative coupling
region, because the potential is unbounded from below. This is in complete analogy to the integral
representation of many special functions in mathematics, such as the Γ(x) function and the Riemann
ζ (x) function, which have integral representations only for x ∈ R+. However, analytic continuations
of these functions to the whole complex plane, and in particular x ∈ R− have been known by
mathematicians for centuries.

In the context of quantum mechanics, the use of analytic continuation to access Hamiltonians
with classically unbounded potentials is relatively recent, cf. Ref. [11]. On the lattice, scalar field
theory with negative (and even complex) coupling on the lattice in 1d and 2d was considered in
a pioneering study by Lawrence, Oh and Yamauchi in Ref. [12]. In this study, the authors used
contour deformations of the lattice partition function as a practical method to implement analytic
continuation. The 1d case was further studied in comparison to Hamiltonian spectra in Ref. [13],
where the relation between different analytic continuations andPT -symmetry was further clarified.

Studies of scalar field theory with negative coupling in 4d on the lattice are even more recent,
in particular for single component scalar fields studied in Ref. [10] and proposals for lattice actions
for multi-component scalar fields given in Ref. [14]. The present write-up outlines the setup for 4d
scalar field theory with negative coupling on the lattice.

2. A toy model in 0d

The simplest toy model for this case is 0d field theory with a partition function given by the
integral representation

Z0(λ) =
∫ ∞

−∞

dφ e−λφ
4
, Re(λ) > 0 . (2)

This integral representation can not be used to access values of Z0(λ) for λ ∈ R−. However, onemay
define an analytic continuation of Z0(λ) that lets us access λ < 0. Specifically, instead of integrating
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Figure 1: Contour deformation for integrations in the complex domain of φ(x). “Normal” integration for
φ(x) is for along the real line, but the “Deformed” integration contour is along two segments at an angle to
the real line.

along x ∈ R, consider for the negative coupling partition function the “contour-deformed” integral

Z0
C

(g = −λ =) =
∫
C

dφ egφ
4
=

∫ ∞

0
dse−iαegs

4e−4iα
+

∫ 0

−∞

dseiαegs
4e4iα

, (3)

if C is given by a path in the complex plane sketched in Fig. 1, or analytically given by

φ→ s
[
eiαθ(−s) + e−iαθ(s)

]
, s, α ∈ R , (4)

with α ∼ π
4 the angle with respect to the real axis. The precise value of α is unimportant, as long

as Re
(
e±4iα

)
< 0, because then the integrals in (3) are convergent and can be evaluated to give

Z0
C

(g) = Γ
(
5
4

)
g−

1
4

(
e−iα

(
e−4iα−iπ

)− 1
4 + eiα

(
e4iα−iπ

)− 1
4

)
=
√

2Γ
(
5
4

)
g−

1
4 . (5)

For the simple toy model at hand, one can recognize Z0
C

(g) = Re Z0(λ = −g) to be related to
(2) when first performing the integral for λ > 0, then using the analytic continuation of the root
function for λ → −g < 0, and finally taking the real part.

3. Quantum mechanics: 1d

A slightly more interesting toy model is provided by considering the partition function for
quantum mechanics, given by

Z1(λ) =
∫
Dφe−SE , SE =

∫ β

0
dτ

[
1
2
φ̇2 + λφ4

]
, (6)

where β is the radius of the Euclidean circle. As in the 0d toy model, this integral representation
exists for λ > 0, and direct evaluation of Z1(λ) for λ = −g < 0 is not possible. However, on the
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Figure 2: Quantum mechanical partition function for “upside-down” quartic potential V (x) = −gx4, once
from contour deformation (7) for N = 5 sites and once from the spectrum of the PT -symmetric Hamiltonian
(8). .

lattice with N sites one can employ the same contour deformation (4) at every lattice site in order
to define a contour-deformed partition function for the negative coupling theory

Z1
C (g = −λ) =

∫ N∏
i=1

dφi
√

2π
e
−

∑
i

(
N
2 (φi+1−φi )2+ gβ3

N s4
i

)
, φN+1 = φ1 , (7)

where for simplicity I’ve taken the angle α = π
4 and rescaled φ→

√
βφ. Note that this mixed form

with both (complex-valued) φi’s and (real-valued) si’s allows for compact notation of Z1
C
, but belies

the complicated structure of the integral1. In particular, the discretized derivative term (φi+1 − φi)
mixes the left part of the integration contour (1) on site i with the right part on site i + 1, with the
appropriate weights e±iα in both the exponent and the Jacobian. Clearly, the action is complex, and
therefore the theory possesses a sign problem. However, because the highest polynomial term in
the action is proportional to gs4

i , Z1
C

(g) constitutes a convergent integral representation for g > 0
on the lattice.

Evaluation of Z1
C

(g) is possible for a small number of sites N by direct integration [13], see
figure 2. The resulting partition function is real and positive-definite. Moreover, it can be compared
to the partition function for the PT -symmetric theory

Z1
PT

(g) =
∞∑
n=0

e−βg
1
3 En , (8)

with En the energy-levels calculated in Ref. [11]. In the same units as used in the rest of this
work, the first few energy levels are given by E0 ' 0.930546, E1 ' 3.781896, E2 ' 7.435067,

E3 ' 11.628327 and higher-lying eigenvalues by the WKB formula En =

[
3
√

2
(
n+ 1

2
)

Γ2
(

1
4
) ] 4

3

π2. A

1Note that for quantum mechanics, a different choice of contour C allows one to bring the action into an alternative
Hermitian form [15], which greatly simplifies the study of negative coupling quantum mechanics.
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comparison of Z1
calPT(g) and Z1

C
(g) is shown in Figure 2. As can be seen from this figure, the

contour-deformed partition function agrees with high numerical accuracywith the partition function
obtained from theHamiltonian spectrumof thePT -symmetric theory. I take this as further evidence
that the contour-deformed lattice theory can be used to access properties of the negative-coupling
system.

4. Negative Coupling φ4 theory in 4d

Motivated by the successes in the lower-dimensional toy models, I consider the contour-
deformed partition function of scalar φ4 theory in 4 dimensions:

Z4
C (g) =

∫
C

∏
sites i

dφi
√

2π
e−SL , SL =

∑
sites i



∑
x̂

(φi+x̂ − φi)2

2
+

m2φ2
i

2
− gφ4

i


, (9)

where I consider a lattice with Nτ × N3
σ sites and

∑
x̂ is over all Euclidean directions τ, x, y, z. For

each site, I choose the contour (4) with α = π
4 so that in particular

− gφ4
i → +gs4

i , (10)

is the highest polynomial power in the action SL . Integration over si therefore is well-defined at
every site, but the action of the theory is neither real-valued nor polynomial in the continuum limit.
Yet it constitutes a well-defined lattice theory that is amenable to numerical integration.

The fact that the action is complex prohibits the naive use of Monte Carlo importance sampling
techniques to calculate Z4

C
(g), because the theory has a sign problem. By contrast, for a small

number of sites, Z4
C

(g) is amenable to direct numerical integration. In practice, direct numerical
integration techniques on modern multi-core computers are limited to oscillatory integrals of up to
(roughly) 30 dimensions. Therefore, evaluation of Z4

C
(g) via direct numerical integration is limited

to tiny lattices N3
σ × Nτ of sizes 23 × 1, 24 and 33 × 1. Because of this limitation, I report on results

for Z4
C

(g) for Nτ = 1 and Nσ = 2, 3 only.
While non-perturbative results for single-component scalar field theory in four dimensions are

notoriously hard to obtain, exact results exist for the O(N) model in the large N limit. The results
obtained in Refs. [8–10, 14] indicate that in the large N limit, the theory is asymptotically free with a
second order phase transition at a critical temperature Tc. Even though applying the insights gained
in the N → ∞ limit to the case of single component scalars with N=1 may be challenging, one can
nevertheless try to use the large N results as a qualitative guidance. In particular, for this work the
relation between the bare lattice coupling g and the lattice spacing a is assumed to be given by the
analytic O(N�1) result

g = −
2π2

ln (Tca)
, (11)

with Tc again the critical temperature of the theory. Using the temperature in lattice units

T =
1

Nτa
, (12)

allows to relate the bare coupling constant to the physical temperature in units of Tc as

g =
2π2

ln
(
NτT
Tc

) . (13)
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Figure 3: Reduced partition function (15) for negative coupling φ4 theory on lattices Nτ = 1, Nσ = 2, 3 via
direct numerical integration of (9). For reference, also the Stefan Boltzmann limiting value π2

90 is shown.

In practice, direct evaluation of (9) is performed for the choice

m2 = 1 , (14)

in lattice units and various values of the bare lattice coupling g. From (13), one expects limT→∞ g →

0 in the high temperature limit. By contrast, large values of g are expected to probe the low-
temperature properties of the theory.

In order to compare different lattice simulations, I arbitrarily fix Z4
C

(g = 2) to correspond to
the partition function value at zero temperature. Using this choice to subtract the zero-temperature
contribution, the combination

N3
τ

N3
σ

ln
Z4
C

(g)

Z4
C

(g = 2)
'

p(T ) − p(T = 0)
T4 , (15)

becomes a measure of the reduced finite temperature pressure p(T ), or equivalently the number of
degrees of freedom of the theory. Results for this quantity are shown in Fig. 3 in comparison to the
expected continuum high-temperature Stefan Boltzmann limit. From Fig. 3, one can see that there
is little difference between the Nσ = 2, 3 results. In addition, the obtained shape of the reduced
partition function (15) matches the expectation for the reduced pressure of the O(N) model studied
in Ref. [8]. More simulation data, in particular for Nτ > 1 would be needed in order to offer more
conclusive interpretations.

5. Conclusions

In this work, I reported on attempts to study negative coupling φ4 theory on the lattice using
contour deformation techniques. In 4d, the contour-deformed theory leads to a complex but stable
lattice action that is amenable to direct numerical integration techniques. I performed such direct
numerical integrations on small lattices Nτ = 1, Nσ = 2, 3 finding encouraging results.
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