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The lattice gauge-scalar model with the scalar field in the adjoint representation of the gauge group has
two completely separated confinement and Higgs phases according to the preceding studies based on
numerical simulations which have been performed in the specific gauge fixing based on the conventional
understanding of the Brout-Englert-Higgs mechanism.
In this talk, we reexamine this phase structure in the gauge-independent way based on the numerical
simulations for the model with SU(2) gauge group performed without any gauge fixing which is motivated
to confirm the recently proposed gauge-independent Brout-Englert-Higgs mechanics for the mass of the
gauge field without relying on any spontaneous symmetry breaking. For this purpose we investigate
correlation functions between gauge-invariant operators obtained by combining the original adjoint
scalar field and the new field called the color-direction field constructed from the gauge field based on
the gauge-covariant gauge-field decomposition due to Cho-Duan-Ge-Shabanov and Faddeev-Niemi. We
reproduce gauge-independently the transition line separating confinement and Higgs phase, and discover
surprisingly a new transition line that divides the confinement phase into two parts. Finally, we discuss
the physical meaning of the new transition and implications to confinement mechanism. This talk is
based on the preprint [1]
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1. Introduction

We investigate the gauge-scalar model to clarify the mechanism of confinement in the Yang-Mills
theory in the presence of matter fields and also non-perturbative characterization of the Brout-Englert-
Higgs (BEH) mechanism [2] providing the gauge field with the mass, in the gauge-independent way.

For concreteness, we reexamine the lattice 𝑆𝑈 (2) gauge-scalar model with a radially-fixed scalar
field (no Higgs mode) which transforms according to the adjoint representation of the gauge group 𝑆𝑈 (2)
without any gauge fixing. In fact, this model was investigated long ago in [3] by taking a specific gauge,
say unitary gauge, based on the traditional characterization for the BEH mechanism to identify the Higgs
phase. It is a good place to recall the traditional characterization of the BEH mechanism: If the original
continuous gauge group is spontaneously broken, the resulting massless Nambu-Goldstone particles are
absorbed into the gauge field to provide the gauge field with the mass. In the perturbative treatment, such a
spontaneous symmetry breaking is signaled by the non-vanishing vacuum expectation value of the scalar
field. However, this is impossible to realize on the lattice unless the gauge fixing condition is imposed,
since gauge non-invariant operators have vanishing vacuum expectation value on the lattice without gauge
fixing due to the Elitzur theorem [4]. This traditional characterization of the BEH mechanism prevents us
from investigating the Higgs phase in the gauge-independent way.

This difficulty can be avoided by using the gauge-independent description of the BEH mechanism
proposed recently by one of the authors [5, 6], which needs neither the spontaneous breaking of gauge
symmetry, nor the non-vanishing vacuum expectation value of the scalar field. Then we can give a gauge-
independent definition of the mass for the gauge field resulting from the BEH mechanism. Therefore,
we can study the Higgs phase in the gauge-independent way on the lattice without gauge fixing based
on the lattice construction of gauge-independent description of the BEH mechanism. Consequently, we
can perform numerical simulations without any gauge-fixing and compare our results with those of the
preceding result [3] obtained in a specific gauge. Indeed, our gauge-independent study reproduces the
transition line separating Higgs and confinement phases obtained by [3] in a specific gauge.

2. Lattice 𝑆𝑈 (2) gauge-scalar model with a scalar field in the adjoint representation

The 𝑆𝑈 (2) gauge-scalar model with a radially-fixed scalar field in the adjoint representation is given
on the lattice with a lattice spacing 𝜖 by the following action with two parameters 𝛽 and 𝛾:

𝑆GS :=
𝛽

2

∑︁
𝑥

∑︁
𝜇<𝜈

tr
{(

1 −𝑈𝑥,𝜇

) (
1 −𝑈†

𝑥,𝜇

)}
+ 𝛾

2

∑︁
𝑥,𝜇

tr
(
(𝐷 𝜖

𝜇 [𝑈]𝝓𝑥)†(𝐷 𝜖
𝜇 [𝑈]𝝓𝑥)

)
, (1)

where𝑈𝑥,𝜇𝜈 := 𝑈𝑥,𝜇𝑈𝑥+𝜖 𝜇̂,𝜈𝑈
†
𝑥+𝜖 𝜈̂,𝜇𝑈

†
𝑥,𝜈 represents plaquettes with a gauge variable𝑈𝑥,𝜇 := exp(−𝑖𝑔𝜖A𝑥,𝜇) ∈

𝑆𝑈 (2) on a link ⟨𝑥, 𝜇⟩, 𝝓𝑥 = 𝜙𝐴
𝑥𝜎

𝐴 ∈ 𝑠𝑢(2) − 𝑢(1) (𝐴 = 1, 2, 3) represents a scalar field on a site 𝑥 in
the adjoint representation subject to the radially-fixed condition: 𝝓𝑥 · 𝝓𝑥 = 𝜙𝐴

𝑥 𝜙
𝐴
𝑥 = 1, and 𝐷 𝜖

𝜇 [𝑈]𝝓𝑥

represents the covariant derivative in the adjoint representation defined with 𝜖 being the lattice spacing as

𝐷 𝜖
𝜇 [𝑈]𝝓𝑥 := 𝑈𝑥,𝜇𝝓𝑥+𝜖 𝜇̂ − 𝝓𝑥𝑈𝑥,𝜇 . (2)

This action reproduces in the naive continuum limit 𝜖 → 0 the continuum gauge-scalar theory with a
radially-fixed scalar field |𝜙(𝑥) | = 𝑣 and a gauge coupling constant 𝑔 where 𝛽 = 4/𝑔2 and 𝛾 = 𝑣2/2. Note
that this action is invariant under the gauge transformation Ω𝑥 ∈ 𝑆𝑈 (2) as

𝑈𝑥,𝜇 → Ω𝑥𝑈𝑥,𝜇Ω
†
𝑥+𝜖 𝜇̂ = 𝑈′

𝑥,𝜇, 𝝓𝑥 → Ω𝑥𝝓𝑥Ω
†
𝑥 = 𝝓′

𝑥 (3)
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In what follows we take the lattice spacing 𝜖 = 1 in the numerical simulation.
The numerical simulation can be performed by updating link variables and scalar fields alternately.

For link variable𝑈𝑥,𝜇 we can apply the standard HMC algorithm. While for scalar field we reparametrized
the variable 𝝓𝑥 according to the adjoint-orbit representation:

𝝓𝑥 := 𝑌𝑥𝜎
3𝑌†

𝑥 , 𝑌𝑥 ∈ 𝑆𝑈 (2), (4)

which satisfies the normalization condition 𝝓𝑥 · 𝝓𝑥 = 1 automatically. Therefore, the Haar measure is
replaced by

∏
𝑥 𝑑𝝓𝑥𝛿(𝝓𝑥 · 𝝓𝑥 − 1) to

∏
𝑥 𝑑𝑌𝑥 , and we can apply the standard HMC algorithm for the

variable 𝑌𝑥 to update configurations of the scalar fields 𝝓𝑥 .

3. gauge-independent analyses of the phase structure

To search for the phase boundary, we measure the expectation value ⟨O⟩ of a chosen operator O
by changing 𝛾 (or 𝛽) along the 𝛽 =const. (or 𝛾 =const.) lines. The location of the phase boundary is
determined based on two ways: (i) The location at which ⟨O⟩ changes from ⟨O⟩ ≃ 0 to ⟨O⟩ > 0 , (ii) the
location at which ⟨O⟩ changes abruptly, i.e., the bent, step and gap in the plots of the measurements.

3.1 Action densities for the plaquette and scalar parts

First of all, in order to determine the phase boundary of the model, we measure the Wilson action per
plaquette (plaquette-action density) and that of the scalar action per link (scalar-action density):

𝑃 =
1

6𝑁site

∑︁
𝑥

∑︁
𝜇<𝜈

1
2

tr(𝑈𝑥,𝜇𝜈) , (5)

𝑀 =
1

4𝑁site

∑︁
𝑥

∑︁
𝜇

1
2

tr
( (
𝐷𝜇 [𝑈𝑥,𝜇]𝝓𝑥

)† (
𝐷𝜇 [𝑈𝑥,𝜇]𝝓𝑥

) )
, (6)

which are the gauge-invariant version that Brower et al. have adopted in [3] .

3.2 Correlations between the scalar field and the color-direction field through the gauge covariant
decomposition

To investigate gauge-independently the phase structure of the gauge-scalar model, we introduce the
lattice version [7, 8] of change of variables based on the idea of the gauge-covariant decomposition of the
gauge field, so called the CDGSFN decomposition [9–12]. For a review, see [13].

In the decomposition, we introduce the site variable 𝒏𝑥 := 𝑛𝐴𝑥𝜎𝐴 ∈ 𝑠𝑢(2) − 𝑢(1) which is called the
color-direction (vector) field, in addition to the original link variable 𝑈𝑥,𝜇 ∈ 𝑆𝑈 (2). A link variable 𝑈𝑥,𝜇

is decomposed into two parts: 𝑈𝑥,𝜇 := 𝑋𝑥,𝜇𝑉𝑥,𝜇 . We identify the lattice variable𝑉𝑥,𝜇 with a link variable
which transforms in the same way as the original link variable 𝑈𝑥,𝜇, and we define the lattice variable
𝑋𝑥,𝜇 such that it transforms in just the same way as the site variable 𝒏𝑥:

𝑉𝑥,𝜇 → Ω𝑥𝑉𝑥,𝜇Ω
†
𝑥+𝜇 = 𝑉 ′

𝑥,𝜇 , 𝑋𝑥,𝜇 → Ω𝑥𝑋𝑥,𝜇Ω
†
𝑥 = 𝑋 ′

𝑥,𝜇 , 𝒏𝑥 → Ω𝑥𝒏𝑥Ω
†
𝑥 = 𝒏′𝑥 . (7)

Such decomposition is obtained by solving the definning equation:

𝐷𝜇 [𝑉]𝒏𝑥 := 𝑉𝑥,𝜇𝒏𝑥+𝜇 − 𝒏𝑥𝑉𝑥,𝜇 = 0 , tr(𝒏𝑥𝑋𝑥,𝜇) = 0 . (8)
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This defining equation has been solved exactly [7] and the decomposition is obtained uniquly for a given
set of link variables𝑈𝑥,𝜇 once a set of site variables 𝒏𝑥 is given. The configurations of the color-direction
field {𝒏∗𝑥} are obtained by minimizing the functional:

𝐹red [{𝒏𝒙}|{𝑈𝑥,𝜇}] :=
∑︁
𝑥,𝜇

tr
{(
𝐷𝑥,𝜇 [𝑈]𝒏𝑥

)† (
𝐷𝑥,𝜇 [𝑈]𝒏𝑥

)}
(9)

which we call the reduction condition.
Therefore, as a new gauge-invariant order parameter, we propose the scalar-color correlation detected

by the scalar-color composite operator:

𝑄 =
1

𝑁site

∑︁
𝑥

1
2

tr(𝒏∗𝑥𝝓𝑥) , {𝒏∗𝑥} = argmin
{𝒏𝑥 }

𝐹red [{𝒏𝑥}|{𝑈𝑥,𝜇}] , (10)

where {𝒏∗𝑥} is the color-direction field configuration determined by the reduction condition (9). This has
two kinds of ambiguity. One comes from the so-called lattice Gribov copies that are the local minimal
solutions of the reduction condition. In order to avoid the local minimal solutions and to obtain the
absolute minimum, the reduction condition is solved by using the over-relaxation algorithm and changing
the initial values to search for the absolute minimum of the functional. The other comes from the choice
of a global sign factor, which originates from the fact: whenever a configuration {𝒏∗𝑥} is a solution, the
flipped one {−𝒏∗𝑥} is also a solution, since the reduction functional is quadratic in the color field. To
avoid these issues, we propose to use ⟨|𝑄 |⟩ and

〈
𝑄2〉, which are examined as the order parameters that

determine the phase boundary.

4. Lattice result

We perform Monte Carlo simulations on the 164 lattice with periodic boundary condition in the
gauge-independent way (without gauge fixing). In each Monte Carlo step (sweep), we update link
variables {𝑈𝑥,𝜇} and scalar fields {𝝓𝑥} alternately by using the HMC algorithm with integral interval
Δ𝜏 = 1 as explained in the previous section. We take thermalization for 5000 sweeps and store 800
configurations for measurements every 25 sweeps.

First, we try to determine the phase boundary from the plaquette-action density in eq(5) and the
scalar-action density in eq(6). Figure 1 shows the results of measurements of the plaquette-action density
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Figure 1: Average of the plaquette-action density ⟨𝑃⟩: (Left) ⟨𝑃⟩ versus 𝛾 on various 𝛽 = const. lines, (Right) ⟨𝑃⟩
versus 𝛽 on various 𝛾 =const. lines.
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Figure 2: Average of the scalar-action density ⟨𝑀⟩: (Left) ⟨𝑀⟩ versus 𝛾 on various 𝛽 = const. lines, (Right) ⟨𝑀⟩
versus 𝛽 on various 𝛾 =const. lines.
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Figure 3: The phase boundary determined by the action densities: (Left) ⟨𝑃⟩, (Right) ⟨𝑀⟩.

⟨𝑃⟩ in the 𝛽–𝛾 plane. The left panel shows the plots of ⟨𝑃⟩ along 𝛽 =const. lines as functions of 𝛾, where
error bars are not shown because they are smaller than the size of the plot points. On the other hand, the
right panel shows the plots of ⟨𝑃⟩ along 𝛾 =const. lines as functions of 𝛽. Figure 2 shows the results of
measurement of the scalar-action density ⟨𝑀⟩ in the 𝛽–𝛾 plane. The left panel of Fig.2 shows the plots of
⟨𝑀⟩ along 𝛽 =const. lines as functions of 𝛾, while the right panel of Fig.2 shows the plots of ⟨𝑀⟩ along
𝛾 =const. lines as functions of 𝛽.

In Figure 3, we plot the phase boundary determined from the above mesurements. The left panel
of Fig.3 shows the phase boundary determined from ⟨𝑃⟩, and the right panel of Fig.3 shows the phase
boundary determined from the scalar-action density ⟨𝑀⟩. The location of the phase boundary is determined
by a gap or step in the plots of measurements. The interval between the two simulation points in each plot
corresponds to the short line with ends. The error bars in the phase boundary are due to the spacing of the
simulation points. It should be noticed that the two phase boundaries determined from ⟨𝑃⟩ and ⟨𝑀⟩ are
consistent within accuracy of numerical calculations. Thus we find that the gauge-independent numerical
simulations reproduce the critical line obtained by Brower et al. [3].

Next, we try to determine the phase bundery from the scalar-color correlation in eq.(10). Figure 4
shows the measurements of ⟨|𝑄 |⟩. The left panel shows plots of ⟨|𝑄 |⟩ versus 𝛾 along various 𝛽 =const.
lines, while the right panel shows plots of ⟨|𝑄 |⟩ versus 𝛽 along various 𝛾 =const. lines. Figure 5, on the
other hand, shows the measurements of

〈
𝑄2〉 in the same manner as ⟨|𝑄 |⟩. The left panel shows plots of〈

𝑄2〉 versus 𝛾 along various 𝛽 =const. lines, while the right panel shows plots of
〈
𝑄2〉 versus 𝛽 along

5
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Figure 4: Average of the scalar-color composite field ⟨|𝑄 |⟩: (Left) ⟨|𝑄 |⟩ versus 𝛾 on various 𝛽 =const. lines,
(Right) ⟨|𝑄 |⟩ versus 𝛽 on various 𝛾 =const. lines.
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Figure 5: Average of the squared scalar-color composite field
〈
𝑄2〉: (Left)

〈
𝑄2〉 versus 𝛾 on various 𝛽 =const.

lines, (Right)
〈
𝑄2〉 versus 𝛽 on various 𝛾 =const. lines.

various 𝛾 =const. lines.
Figure 6 shows the phase boundary (critical line) determined by ⟨|𝑄 |⟩ and

〈
𝑄2〉. The left panel

of Fig.6 shows the phase boundary determined from ⟨|𝑄 |⟩. The right panel of Fig.6 shows the phase
boundary determined from

〈
𝑄2〉. The purple boundary indicates that ⟨|𝑄 |⟩ changes from ⟨|𝑄 |⟩ ≃ 0 to

⟨|𝑄 |⟩ > 0 (or
〈
𝑄2〉 changes from

〈
𝑄2〉 ≃ 0 to

〈
𝑄2〉 > 0). The black boundary corresponds to the location

at which ⟨|𝑄 |⟩ (or
〈
𝑄2〉) has gaps. The orange boundary corresponds to the location at which ⟨|𝑄 |⟩ (or〈

𝑄2〉) bends. The results in Fig.6 are consistent with each other.
Fig.6 shows not only the phase boundary that divides the phase diagram into two phases, so-called the

Higgs phase and the confinement phase, but also the new boundary that divides the confinement phase into
two different parts. It should be remarked that this finding owes much to gauge-independent numerical
simulations and their analyses, and this new results can only be established through our framework.

5. Understanding the new phase structure

Finally, we discuss why the above phase structure should be obtained and how the respective phase is
characterized from the physical point of view. Figure 7 shows the schematic view of the resulting phase
structure. In the region below the new critical line 𝛾 < 𝛾𝑐 (𝛽) where the average ⟨|𝑄 |⟩ takes very small or
vanishing values, the color direction field 𝒏𝑥 takes various possible directions with no specific direction
in color space, which we call the disordered phase. The effect of the scalar field would be relatively small

6
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Figure 6: Phase boundary determined from color-scalar correlation: (Left) ⟨|𝑄 |⟩, (Right)
〈
𝑄2〉.
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Figure 7: Phase structure of the lattice SU(2) gauge-adjoint scalar model: (I) Confinement phase, (II) Higgs phase,
(III) Confinement phase.

and confinement would occur in the way similar to the pure 𝑆𝑈 (2) gauge theory (𝛾 = 0), which we call
Confinement phase (I). In the region above the critical line, including the two phases: Higgs phase (II)
𝛾 > 𝛾𝑐 (𝛽), 𝛽 > 𝛽𝑐 (𝛾) and Confinement phase (III) 𝛾 > 𝛾𝑐 (𝛽), 𝛽 < 𝛽𝑐 (𝛾), the average ⟨|𝑄 |⟩ takes the
non-vanishing value, the color-direction field 𝒏𝑥 correlates strongly with the given scalar field 𝝓𝑥 which
tends to align to an arbitrary but a specific direction as expected from the spontaneous symmetry breaking,
which we call the orderd phase.

In the Confinement phase (I), confinement is expected to occur due to vacuum condensations of
non-Abelian magnetic monopoles [14]. Here the non-Abelian magnetic monopole should be carefully
defined gauge-independently using the gauge-independent method, which is actually realized by extending
the gauge-covariant decomposition of the gauge field, see [13] for a review.

In the Higgs phase (II), the off-diagonal gauge fields for the modes 𝑆𝑈 (2)/𝑈 (1) become massive due
to the BEH mechanism, which is a consequence of the (partial) spontaneous symmetry breaking 𝑆𝑈 (2) →
𝑈 (1) according to the conventional understanding of the BEH mechanism, although this phenomenon is
also understood gauge-independently based on the new understanding of the BEH mechanism without
the spontaneous symmetry breaking [5]. Therefore, the diagonal gauge field for the mode 𝑈 (1) always
remains massless everywhere.

In the other Confinement phase (III), the gauge fields become massive due to different physical
origins. Indeed, the gauge fields become massive due to self-interactions among the gauge fields, as in the
phase (I). In the phase (III), no massless gauge field exists and the gauge fields for all the modes become
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massive, which is consistent with the belief that the original gauge symmetry 𝑆𝑈 (2) would be kept intact
and not spontaneously broken.

In the Confinement phases (I) and (III) there occur magnetic monopole condensations which play the
dominant role in explaining quark confinement based on the dual superconductor picture [14–18] while
in the Higgs phase (II) there are no magnetic monopole condensations and confinement would not occur.
However, it should be remarked that the origin of magnetic monopoles is different in the two regions, (I)
and (III). In phase (III) the magnetic monopole is mainly originated from the adjoint scalar field just like
the ‘t Hooft-Polyakov magnetic monopole in the Georgi-Glashow model [19]. In phase (I) the magnetic
monopole is constructed from the gauge field. Indeed, the magnetic monopole can be constructed only
from the gauge degrees of freedom, which is explicitly constructed from the color direction field in the
gauge-independent way [13].

6. Summary and discussion

We have investigated the lattice 𝑆𝑈 (2) gauge-scalar model with the scalar field in the adjoint rep-
resentation of the gauge group in a gauge-independent way. We have reexamined this phase structure
in the gauge-independent way based on the numerical simulations performed without any gauge fixing,
which should be compared with the preceding studies [3]. This is motivated to confirm the recently
proposed gauge-independent BEH mechanics for giving the mass of the gauge field without relying on
any spontaneous symmetry breaking [5, 6]. For this purpose we have investigated correlation functions
between gauge-invariant operators obtained by combining the original adjoint scalar field and the new
field called the color-direction field which is constructed from the gauge field based on the gauge-covariant
decomposition of the gauge field due to CDGSFN.

We have reproduced gauge-independently the transition line separating the confinement phase and the
Higgs phase which was obtained in [3]. We have shown surprisingly the existence of a new transition line
that divides completely the confinement phase into two parts. We have discussed the physical meaning
of the new transition and implications to confinement mechanism. More discussions on the physical
properties of the respective phase will be given in subsequent papers. In particular, it is quite important
to study whether or not the new phase (III) is a lattice artefact and survives the continuum limit.

The result obtained in this paper should be compared with the lattice 𝑆𝑈 (2) gauge-scalar model with
the scalar field in the fundamental representation of the gauge group in a gauge-independent way. This
model has a single confinement-Higgs phase where two confinement and Higgs regions are analytically
continued according to the preceding studies [20, 21]. Even in this case, it is shown [22] that the
composite operator constructed from the original fundamental scalar field and the color-direction field can
discriminate two regions which indicates the existence of the transition line seperating the confinement-
Higg phase into completely different two phases, Confinement phase and Higgs phase.
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